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Abstract. The wavepacket dynamics of (non-stationary) rotational quantum states of the C60
molecule are investigated. It is demonstrated that the icosahedral symmetry of this molecule
gives rise to a variety of peculiar coherence phenomena which are characteristic for this specific
discrete symmetry group. On the one hand, the dynamics of these wavepackets reflects the
underlying classical dynamics on the associated manifold of group space. On the other hand,
these dynamics also exhibit characteristic quantum features such as the appearance of fractional
revivals, of quantum tunnelling between different classically accessible regions of the associated
manifold of group space and of cat-like quantum states which are generated in the course of the
time evolution.

(Some figures in this article are in colour only in the electronic version; see
www.iop.org)

1. Introduction

Recent progress in the generation and manipulation of single atoms and molecules has opened
up new possibilities for studying basic properties of matter in new parameter regimes. The
numerous experiments which have been performed so far on the dynamics of atoms in
standing-wave light fields [1] suggest that the diffraction of molecules by electromagnetic
fields might offer interesting new perspectives due to the expected intricate interplay between
internal and external degrees of freedom. In this context fullerenes and their most famous
representative, namely the molecule C60, constitute interesting examples [2]. Indeed, in a
very recent experiment [3] wave properties have also been observed in the diffraction of a C60

molecule.
The molecule C60 is a fascinating object worthy of independent study before asking

questions concerning the dynamics of this molecule in external electromagnetic fields. On
the one hand, this molecule is sufficiently complex to exhibit a rich variety of quantum
phenomena which are also specific for other large molecules. On the other hand, it is also
amenable to a rather systematic theoretical description due to its high symmetry. Due to rapid
experimental advances in the field of molecular spectroscopy the controlled preparation of
coherent superpositions of rotational or vibrational states of the C60 molecule seems feasible
in the near future so that the experimental exploration of these quantum phenomena is within
reach.

Motivated by these experimental developments, in this paper the coherent dynamics of the
rotational degrees of freedom of a C60 molecule in its electronic and vibrational ground state are
investigated theoretically. Due to the icosahedral symmetry of the electronic and vibrational
ground state the dynamics of these rotational degrees of freedom exhibit a rich variety of
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quantum coherence phenomena which are specific for this particular high symmetry. So far
theoretical investigations in this context have concentrated mainly on the resulting structure
of the rotational energy spectra which exhibit characteristic fine and superfine splittings
[4]. Contrary to these previous time-independent investigations the main emphasis of this
paper is on novel time-dependent effects which manifest themselves in the dynamics of
rotational wavepackets. It is demonstrated that for sufficiently short times many aspects of this
wavepacket dynamics can be understood on the basis of the underlying classical dynamics of
the rotational degrees of freedom. These classical dynamics take place on a two-dimensional
curved, compact manifold which is associated with the group space of the rotation group.
For longer interaction times the dynamics of these wavepackets is dominated by characteristic
coherence phenomena such as the appearance of fractional revivals and of quantum mechanical
tunnelling between various classically accessible regions. Another striking feature of the long-
time dynamics of these wavepackets is the appearance of cat-like states which are localized
on different parts of the classical manifold of group space and which reflect the icosahedral
symmetry of this molecule. The systematic exploration of these time-dependent effects might
be viewed as a first, necessary step towards the final goal of obtaining a complete understanding
of the more elaborate problem of coherent diffraction of rotationally excited fullerenes by a
spatially varying electromagnetic field.

This paper is organized as follows. The basic Hamiltonian describing the quantum
dynamics of the rotational degrees of freedom of C60 together with its associated classical
Hamiltonian is introduced and discussed in section 2. In section 3 the time evolution of
coherent states is investigated. These coherent states are well localized in the classical phase
space which is associated with the classical dynamics of the rotational degrees of freedom and
which forms a 2-sphere.

2. The Hamiltonian

In the ground state the molecule C60 forms an object having icosahedral symmetry [2]. Thus
the dynamics of the rotational degrees of freedom in the electronic and vibrational ground state
can be described phenomenologically by a Hamiltonian of the form [4, 5]

Ĥ = BĴ2 + T [6]. (1)

The first term of this Hamiltonian describes the dynamics of a rigid spherical top with structure
constant B. The second term results from the icosahedral symmetry of the molecule and
contains the invariant sixth-rank tensor

T [6] = 1
5

√
11T 6

0 + 1
5

√
7(T 6

5 − T 6
−5). (2)

It is formed by components of the angular momentum operator Ĵ in the body-fixed frame of
the molecule. The quantities T kq denote the components of an irreducible tensor of rank k with
respect to the rotation group [6]. Their matrix elements with respect to the angular momentum
eigenstates |J,m〉 in the body-fixed frame of the molecule, i.e. Ĵ3|J,m〉 = m|J,m〉,
Ĵ2|J,m〉 = J (J + 1)|J,m〉 (where J and m are integers), can be obtained with the help
of the Wigner–Eckart theorem [6]. Within a given J -manifold these matrix elements can be
expressed in terms of Wigner 3j symbols [6] by

〈J,m|T 6
q |J,m′〉 = (−1)J−m√

2J + 1

(
6 J J

q m −m′

)
〈J‖T [6]‖J 〉. (3)

Thereby the reduced matrix element 〈J‖T [6]‖J 〉 depends only on the value of the angular
momentum J .
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The sixth-rank tensor of equation (2) is the invariant of lowest non-trivial order with
icosahedral symmetry. The invariant of next higher order in the angular momentum operators
Ĵ is of order ten and we assume that its contribution to the dynamics is negligible. The
order of this non-trivial tensorial invariant can be derived in a straightforward way from
the character table of the icosahedral symmetry group [4]. Thus apart from the spherical
top contribution the Hamiltonian of equation (2) might be viewed as arising from a power-
series expansion in terms of the angular momentum operator Ĵ of the molecule in which only
the term of lowest order is kept, which is invariant under the icosahedral symmetry group.
Within this approach the rotational dynamics of a C60 molecule is characterized by the two
structure constants B and 〈J‖T [6]‖J 〉. In the subsequent discussion it will be assumed that
the contribution of the tensorial invariant of sixth order is much smaller than the leading term
describing a spherical top. Thus the influence of this sixth-order tensorial invariant can be
treated perturbatively and causes a small splitting of each J -manifold of the spherical top into
a icosahedral multiplet. It should be mentioned that contributions higher than second order in
J which are spherically symmetric have been neglected in the Hamiltonian of equation (1).
Within a perturbative treatment these terms would give rise to global level shifts of each J -
manifold of the spherical top which do not affect the relative energy positions within each
icosahedral multiplet.

The typical structure of such a multiplet, which has already been analysed in detail
previously [4], is plotted in figure 1 for J = 300. The eigenvalues within each multiplet
form clusters of almost degenerate eigenvalues. The small splittings between these energy
levels within one of these clusters are called superfine-structure splittings [4, 5]. Within a
semiclassical description of the rotational dynamics this superfine splitting might be traced
back to effects of quantum mechanical tunnelling between trajectories of the corresponding

Figure 1. Eigenvalues of the rescaled Hamiltonian H̃ = (H −BĴ2)/(〈J‖T [6]‖J 〉) calculated for
J = 300. The minimum (maximum) eigenvalue approaches the classical limit of E = −√

11/9
(E = √

11/5). The thickness of the lines is used to indicate the superfine structure of the spectrum.
Note the high energy density near the classical separatrix energy E = −√

11/16.
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classical dynamics. In this example the orders of magnitudes of these splittings range from
10−3 for the lowest-lying states up to 10−7 for the highest excited states within the multiplet (in
units of 〈J‖T [6]‖J 〉). The fine structure of this multiplet, i.e. the energy separation between
different clusters, is much larger in magnitude and it originates from the breaking of the
spherical symmetry by the icosahedral structure of the molecule. One also notes that there is
an energy region of a particularly high level density. In a classical description of the rotational
dynamics this energy regime corresponds to classical separatrix motion.

In order to obtain some more insight into the classical aspects of the rotational dynamics
which underlie these energy splittings let us consider the classical Hamiltonian associated with
equation (1), namely

H = BJ 2 + C 1
80

√
11

(
231 cos6 β − 315 cos4 β + 105 cos2 β − 5

+42 cosβ sin5 β cos(5φ)
)
J 6. (4)

This Hamiltonian involves the Cartesian angular momentum components

Jx = J sin(−β) cos(−φ)
Jy = J sin(−β) sin(−φ) (5)

Jz = J cos(−β)
in the body-fixed frame of the molecule. The angles (−β) and (−φ) denote the associated polar
and azimuthal angles in the molecular body-fixed frame [4]. This Hamiltonian is symmetric
with respect to the icosahedral symmetry group. Analogously to equation (1), it is constructed
from the Hamiltonian of the spherical top and from the lowest-order polynomial of the angular
momentum components (in the body-fixed frame of the molecule) which is symmetric with
respect to the icosahedral symmetry group. In equation (4) we have introduced the as yet
unknown structure constant C whose value is fixed later.

In figure 2 the energy surface is depicted as a function of the Cartesian components
Jx, Jy, Jz and as a function of the polar angle β and the azimuthal angle φ. The energy surface
of the Hamiltonian of equation (4) has three types of local extrema which are defined by the
conditions

∂H
∂β

= 0
∂H
∂φ

= 0. (6)

There are 20 degenerate minima the energies of which are given by

Hmin = BJ 2 − C 1
9

√
11J 6. (7)

The separatrix energy of the 30 degenerate saddle points on the energy surface has the value

Hsep = BJ 2 − C 1
16

√
11J 6. (8)

The 12 degenerate maxima of the energy surface all have the value

Hmax = BJ 2 + C 1
5

√
11J 6. (9)

These extremal values are apparent in the cut of the energy surface illustrated in figure 2(c).
Identifying CJ 6 ≡ 〈J‖T [6]‖J 〉, the maximum value of the classical Hamiltonian of
equation (4) converges to the corresponding highest energy level of the icosahedral multiplet
of equation (1) for J � 1. Thus the quantum mechanical multiplets are all located inside
the interval [Hmin,Hmax]. According to equation (1) for J = 60, for example, the highest
eigenvalues of the Hamiltonian (Ĥ − BĴ2)/〈J‖T [6]‖J 〉 equal 0.5576, while the smallest
eigenvalues are given by −0.3319. ForJ = 300, for example, the corresponding maximum and
minimum values are given by 0.640 and −0.356, which compare well with the corresponding
classical values of

√
11/5 ≈ 0.663 324 and −√

11/9 ≈ −0.368 514.
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Figure 2. (a) Visualization of the dependence of the classical rotational energy H as given by
equation (4) on the components of the angular momentum in the body-fixed frame of the molecule;
the surface reflects the icosahedral symmetry of the molecule. The parameters are B|J |2 = 1 and
CJ 6 ≡ 〈J‖T [6]‖J 〉 = 0.3. (b) Cut of this surface with a surface of constant energy; the resulting
classical trajectories are circles. (c) Energy dependence of the energy surface as a function of the
angles β and φ. To visualize the minima we plot the negative of the potential.

The possible classical motions of the body-fixed angular momentum components are
obtained from the conservation of energy and angular momentum, i.e. H = constant and
J = constant. The icosahedral symmetry of the energy surface implies that close to the
maximum energy there are 12 closed classical trajectories, whereas close to the minimum
energy their number increases to 20. On a semiclassical level the superfine-structure splitting
might be attributed to quantum mechanical tunnelling between these energetically degenerate
classical trajectories. The associated exponential dependence of these splittings on the
associated imaginary actions explains the extremely small magnitudes of these superfine-
structure splittings on a qualitative level. The energy barriers which have to be overcome in
these tunnelling processes are higher for classical trajectories close to the maximum energy
Hmax than for those close to the minimum energy Hmin. This qualitative picture also explains
why the superfine-structure splitting is significantly smaller for energy levels close to the
maximum energy of an icosahedral multiplet than for energies close to the minimum energy.
At the separatrix energy the possible classical trajectories form a closed network of paths
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extending over the energy surface. This network consists of 30 unstable fixed points which are
connected by classical trajectories forming a system of separatrices. Classically it takes infinite
time to traverse one of these trajectories which connects an unstable and a stable manifold of
two adjacent saddle points.

Figure 3. Time evolution of the Q-function for the coherent state |β = 0.199, φ = 0〉: time steps
in units of t = 40h̄/〈J‖T [6]‖J 〉. The plots are ordered from left to right and from top to bottom.
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3. Rotational wavepacket dynamics—numerical examples

In this section characteristic aspects of rotational wavepackets are investigated, the dynamics
of which are governed by the Hamiltonian of equation (1).

Let us assume that initially the C60 molecule is prepared in its electronic and vibrational
ground state and that the initial rotational state is a coherent state [7] of the form

|ψin〉 = |β, φ〉 = 1

(1 + |τ |2)J eτ Ĵ
+ |J,−J 〉 =

J∑
m=−J

√(
2J

J +m

)
(tan (β/2) e−iφ)J+m

(1 + tan (β/2)2)J
|J,m〉

(10)

with τ = tan (β/2) e−iφ . This coherent state may be visualized as being localized on a 2-
sphere representing the phase space of the rotational degrees of freedom. This phase space
is parametrized by the azimuthal and polar angles β and φ which form coordinates on this
2-sphere and which have already been introduced in section 2 (compare with equation (4)).
Extreme cases of these coherent states correspond to the positions β = 0 and π , which are
associated with the states |J,−J 〉 and |J, J 〉, respectively.

How can one prepare a coherent state of the type of equation (10)? This aim may be
achieved in two steps. First, one prepares one of the states |J, J 〉 or |J,−J 〉. These states may
be prepared with the help of a static magnetic field which is strong enough to induce Zeeman
splitting in a particular J -manifold of rotational states and by selecting from the resulting
Zeeman manifold the state of highest or lowest energy. Afterwards coherent states of the form
of equation (10) may be prepared by inducing a rotation within this Zeeman manifold with
the help of an appropriately applied additional magnetic field. During these preparatory steps
the applied magnetic fields should be so strong that the influence of the icosahedral interaction
Hamiltonian of equation (2) is negligible.

After its preparation the dynamics of such a coherent state are determined by the
Hamiltonian of equation (1). These dynamics can be visualized conveniently with the help of
the Q-function [8]

Q(β, φ, t) = 2J + 1

4π
|〈β, φ|ψ(t)〉|2. (11)

Thereby |ψ(t)〉 denotes the state of the system at time t . This Q-function is particularly
convenient for exhibiting the relation between the quantum dynamics of the rotational

Figure 4. Time evolution of the Q-function for the coherent state |β = 0.199, φ = 0〉: (a)
t = 1440 000h̄/〈J‖T [6]‖J 〉 and (b) t = 80 000 000h̄/〈J‖T [6]‖J 〉.
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Figure 5. Time evolution of the Q-function for the coherent state |β = 1.998, φ = 0〉: time steps
in units of t = 30h̄/〈J‖T [6]‖J 〉. The plots are ordered from left to right and from top to bottom.

wavepacket and its corresponding classical dynamics on the associated 2-sphere which
represents the classical phase space of the rotational degrees of freedom.

Let us consider a coherent state withJ = 60 which is localized close to the north pole of the
2-sphere, with β = 0.199, φ = 0 and with the mean energy 〈Ĥ −BJ2〉/〈J‖T [6]‖J 〉 = 0.348.
The corresponding possible classical trajectories describe precessions of the body-fixed angular
momentum around the 12 local maxima of the Hamiltonian of equation (1). One of these
maxima is the north pole. Within a semiclassical framework the period of this precession
determines the energy quantization in the neighbourhood of this mean energy. The quantum
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Figure 6. Time evolution of the Q-function for the coherent state |β = 1.998, φ = 0〉: (a)
t = 40 000h̄/〈J‖T [6]‖J 〉 and (b) t = 81 470h̄/〈J‖T [6]‖J 〉.

dynamics of the rotational degrees of freedom are summarized in figures 3 and 4. The sequence
of Q-functions is given in time steps of magnitude [40h̄/〈J‖T [6]‖J 〉] from top to bottom and
from left to right. The initial stage of the time evolution of the wavepacket reflects the classical
precession around the north pole. However, eventually the dispersion of the wavepacket
leads to the characteristic scenario of fractional revivals [9–11]. The splitting of the original
wavepacket around time t = 80h̄/〈J‖T [6]‖J 〉 into two parts is clearly visible in figure 3. This
splitting takes place at one fourth of the revival time. The revival time TR itself is defined by
the relation

1

2

d2E(n)

dn2
TR/h̄ = 2π. (12)

For our purposes we may approximate the second derivative by the finite difference

d2E(n)

dn2
= E(1) + E(3)− 2E(2) (13)

with E(1) = 0.557, E(2) = 0.362 and E(3) = 0.200. The resulting revival time
TR = 380h̄/〈J‖T [6]‖J 〉 is consistent with figure 3.

The long-time behaviour of the rotational wavepacket is depicted in figure 4 for times
t = 1.44×106h̄/〈J‖T [6]‖J 〉 (a) and 80.00×106h̄/〈J‖T [6]‖J 〉 (b). These figures demonstrate
that, in addition to revival phenomena, the long-time dynamics of the wavepacket is also
dominated by tunnelling between the 12 possible classical trajectories which are associated
with the mean energy and the angular momentum of the initial coherent state. As a result of this
tunnelling maxima appear in theQ-function at time t = 1.44×106h̄/〈J‖T [6]‖J 〉 (figure 4(a))
at the positions of the maxima of the classical Hamiltonian of equation (4). At even longer
integration times, e.g. at t = 80.00×106h̄/〈J‖T [6]‖J 〉, the wavepacket also tunnels to the south
pole of the 2-sphere. The characteristic time scale on which these tunnelling phenomena take
place is determined by the superfine-structure splittings of the multiplet depicted in figure 1.
Within a semiclassical framework the magnitude of these splittings is determined by imaginary
classical actions which characterize tunnelling through the energy barriers between classically
accessible regions of phase space. The large magnitude of the characteristic tunnelling time
originates from the large energy barriers which separate different classical trajectories.

The time evolution of an initial coherent state |β = 1.998, φ = 0〉 is depicted in
figures 5 and 6. The average energy of this coherent state is equal to the separatrix energy, i.e.
〈Ĥ − B/J2〉/〈J‖T [6]‖J 〉 = −0.207. At this particular energy the classical trajectories form
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Figure 7. Time evolution of the Q-function for the coherent state |β = 1.752, φ = 0〉: time steps
in units of t = 300h̄/〈J‖T [6]‖J 〉. The plots are ordered from left to right and from top to bottom.

a network of closed orbits which extends over the 2-sphere. These classical orbits are formed
by paths which connect all 30 unstable fixed points of the Hamiltonian of equation (4). The
time evolution of the Q-function is shown in time steps of magnitude [30h̄/〈J‖T [6]‖J 〉].
It is apparent how the initially prepared wavepacket spreads on the 2-sphere along the
classically accessible paths. The dynamics of this spreading resembles aspects of quantum
mechanical tunnelling at the top of an energy barrier. The time evolution for longer times,
i.e. for t = 40 000h̄/〈J‖T [6]‖J 〉 figure 6(a) and for t = 81 470h̄/〈J‖T [6]‖J 〉 figure 6(b)
is shown in figure 6. At t = 40 000h̄/〈J‖T [6]‖J 〉 the wavepacket is delocalized over the
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Figure 8. Time evolution of the Q-function for the coherent state |β = 1.752, φ = 0〉: (a)
t = 50 000h̄/〈J‖T [6]‖J 〉 and (b) t = 93 000h̄/〈J‖T [6]‖J 〉.

whole network of classical paths which extends over the 2-sphere. This spreading along this
classical network of trajectories is accompanied by characteristic revival phenomena. At time
t = 81 470h̄/〈J‖T [6]‖J 〉, for example, the Q-function exhibits a complete revival.

The time evolution of a coherent state |β = 1.752, φ = 0〉 is depicted in figures 7 and
8. The mean energy of this coherent state is 〈Ĥ − BJ2〉/〈J‖T [6]‖J 〉 = −0.309. Thus
the initial coherent state is localized close to one of the 20 minima of the Hamiltonian of
equation (4). The time evolution is shown in time steps of magnitude [300h̄/〈J‖T [6]‖J 〉].
For this particular energy the classical trajectories are closed orbits on the 2-sphere which
are concentrated around the 20 minima of the Hamiltonian. As the energy barriers between
two minima are much lower than the corresponding energy barriers between two maxima of
the Hamiltonian (4) the characteristic time scale of tunnelling is much smaller than in the
case considered in figures 3 and 4. The effects of tunnelling are apparent from figure 7.
Eventually the wavepacket is concentrated in the neighbourhoods of all the 20 minima of the
Hamiltonian (4). One also notices the revival of the wavepacket at t = 4 × 300h̄/〈J‖T [6]‖J 〉.
As a result of the characteristic revival phenomena at particular times the wavepacket may
be localized also around some of these minima only thus forming various cat-like quantum
states. Two such cases are depicted in figure 8 for times t = 50 000h̄/〈J‖T [6]‖J 〉 (a) and for
t = 93 000h̄/〈J‖T [6]‖J 〉 (b). It is the non-trivial quantum rotational dynamics induced by the
icosahedral symmetry of the rotational degrees of freedom which prepares this special type of
cat-like state, which are localized in different regions of phase space.

4. Conclusions

The wavepacket dynamics of the rotational degrees of freedom of a C60 molecule in its
electronic and vibrational ground state have been investigated. Due to the icosahedral
symmetry of this ground state this dynamics exhibits a rich scenario of quantum coherence
phenomena. For sufficiently short times the dynamics is dominated by the underlying
classical dynamics in phase space. On longer time scales the dynamics is dominated by
characteristic coherence phenomena such as fractional revivals, quantum tunnelling and the
resulting appearance of cat-like states. The time scales on which these phenomena start to
appear depend strongly on whether the initial quantum state is localized near a minimum, near
a maximum or close to a saddle point of the relevant classical energy surface.
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