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Destruction of quantum coherence and wave packetdynamics Gernot AlberAbteilung f�ur Quantenphysik, Universit�at Ulm, D-89069 Ulm, Germany(to be published in The Physics and Chemistry of Wave Packets, edited by J.A. Yeazell and T. Uzer (Wiley, N. Y.))The development of short, powerful laser pulses and of sophisticated trap-ping techniques within the last few years has stimulated numerous theoreticaland experimental investigations on the dynamics of wave packets in elementary,material quantum systems. These wave packets are non stationary, spatiallylocalized quantum states which are situated on the border between the micro-scopic and macroscopic domain. A detailed understanding of their dynamics isessential for our conception of quantum mechanics and of its connection withclassical mechanics. So far the interplay between classical and quantum me-chanical aspects of their dynamics have been investigated in Rydberg systems(Alber and Zoller 1991), in molecules (Garraway and Suominen 1995, Sepul-veda and Grossmann 1996), in clusters (Knospe and Schmidt 1996) and in nanostructures (Koch et al. 1996). These studies have concentrated mainly on semi-classical aspects which may be attributed to the smallness of the relevant deBroglie wave lengths. Thereby quantum aspects still manifest themselves ininterferences between probability amplitudes which are associated with variousfamilies of classical trajectories. However, for a comprehensive understanding ofthe emergence of classical behavior also a detailed understanding of the destruc-tion of quantum coherence is required. Typically this destruction of coherencearises from external stochastic forces or environmental inuences which cannotbe suppressed. Though by now many aspects of the coherent dynamics of thesewave packets are understood to a satisfactory degree still scarcely anything isknown about the inuence of destruction of quantum coherence.The main aim of this article is to discuss characteristic physical phenomenawhich govern the destruction of quantum coherence of material wave packets.For systematic investigations on this problem it is advantageous to deal withphysical systems in which wave packets can be prepared and detected in a con-trolled way and in which the mechanisms causing the destruction of quantumcoherence can be inuenced to a large extent. Rydberg atoms (Seaton 1983,Fano and Rau 1986) are paradigms of elementary quantum systems which meetthese requirements. The high level density of Rydberg states close to an ion-ization threshold is particularly convenient for the experimental preparation ofspatially localized electronic wave packets by coherent superposition of energyeigenstates (Alber and Zoller 1991). Furthermore, the dynamics of electronicRydberg wave packets exhibits universal features which apply to atomic andmolecular Rydberg wave packets as well as to Rydberg wave packets in morecomplex systems such as clusters. This dynamical universality might be traced1



back to the fact that almost over its whole classically accessible range the dy-namics of a Rydberg electron is governed by the Coulomb potential of the posi-tively charged ionic core. This universality together with the fact that Rydbergsystems are amenable to a systematic theoretical description with the help ofsemiclassical methods makes them attractive for theoretical investigations. Inrecent years many detailed investigations have been performed concerning var-ious fundamental aspects of the coherent dynamics of Rydberg wave packets,such as the inuence of core scattering processes (Alber 1989, Dando et al. 1995,H�upper et al. 1995), the connection between classical bifurcation phenomenaand quantum dynamics (Beims and Alber 1993, 1996, Main et al. 1994), the in-uence of the stimulated light force on the atomic center of mass motion (Alber1992, Alber and Strunz 1994) or the inuence of electron correlations on wavepacket dynamics in laser-induced two-electron excitation processes (Hanson andLambropoulos 1995, Zobay and Alber 1995, van Druten and Muller 1995).The dynamics of Rydberg electrons is governed by characteristic featureswhich greatly inuence the way in which they can be a�ected by externalstochastic forces or environments. Most notably, Rydberg electrons can beinuenced by laser �elds of moderate intensities and by their statistical proper-ties only in a small region around the atomic nucleus (Giusti and Zoller 1987).Furthermore, Rydberg systems are characterized by unique threshold phenom-ena which result from the in�nitely many bound states and from the continuumstates converging towards an ionization threshold. In addition, radiative decayrates of Rydberg states are so small that in typical situations of current ex-perimental interest the direct inuence of radiative damping can be neglected.However, the dissipative inuence of radiative decay might become signi�cant,if Rydberg systems interact with intense laser �elds. In order to demonstratecharacteristic physical phenomena governing the destruction of quantum co-herence of electronic Rydberg wave packets in the subsequent discussion twostochastic mechanisms will be considered in detail, namely radiative dampingwhich is mediated by electron correlations between a Rydberg wave packet anda resonantly excited, tightly bound core electron and uctuations of laser �elds.The investigation of radiative damping mediated by electron correlation ef-fects is motivated by the recently revived interest in laser-induced two electronexcitation processes (Jones and Bucksbaum 1991, Stapelfeldt et al. 1991, Ro-bicheaux 1993, Grobe and Eberly 1993, Hanson and Lambropoulos 1995, Zobayand Alber 1995, van Druten and Muller 1995). Non-resonant laser-induced exci-tation processes in which two valence electrons of an atom, e.g. an alkaline earthatom, are excited simultaneously have already been playing an important rolein spectroscopy for a long time (Gallagher 1994). Typically thereby one of thevalence electrons is excited into a Rydberg state and the other one into a tightlybound core state. Due to the availability of intense laser light sources recentlyalso cases have become accessible experimentally in which both of these elec-trons are excited resonantly so that the inuence of the laser �eld can no longerbe treated with the help of perturbation theory. The resulting strong modi�ca-2



tions of the electron-correlations may give rise to interesting novel phenomena.If the Rydberg electron is prepared in a wave packet state these coherent laser-modi�ed electron correlations may even lead to an almost complete suppressionof autoionization (Hanson and Lambropoulos 1995). In the subsequent discus-sion it will be demonstrated that these coherent e�ects are rather sensitive tothe destruction of coherence which is caused by radiative decay of the tightlybound, excited core electron.Due to the inherent stochastic nature of laser light the investigation of opticalexcitations of atoms or molecules by uctuating laser �elds is one of the centralproblems of laser spectroscopy. So far research on this problem has concen-trated predominantly on laser-induced excitation of isolated energy eigenstates(Agarwal 1976, Dixit et al 1980, Vemuri et al. 1991). By now this special classof excitation processes is understood to a satisfactory degree. Despite thesesuccesses so far scarcely anything is known about the e�ect of laser uctuationson optical excitation processes in which the level density of the resonantly ex-cited states is large and in which wave packets are prepared. A paradigm inthis respect is the laser-induced excitation of Rydberg and continuum statesclose to an ionization threshold which typically leads to the preparation of anelectronic Rydberg wave packet. This physical system is well suited for inves-tigating fundamental aspects of the destruction of quantum coherence on wavepacket dynamics. In the subsequent discussion it will be demonstrated thatthis uctuation-induced destruction of quantum coherence together with thepeculiar threshold phenomena of Rydberg systems leads to a variety of novelphenomena. One of these generic e�ects is stochastic ionization which manifestsitself in a characteristic scenario of non-exponential decays (Alber and Eggers1997).This paper is organized as follows: In section 1 basic theoretical conceptsfor describing the dynamics of Rydberg electrons in laser �elds are summarized.This section focuses on coherent dynamical aspects which can be describedconveniently with the help of semiclassical methods. Within this frameworkquantum aspects manifest themselves in the interference between probabilityamplitudes which are associated with those classical trajectories along whichprobability is transported. In section 2 recent theoretical work on the destruc-tion of quantum coherence in wave packet dynamics is reviewed. Characteristicphenomena are exempli�ed by considering two dissipative mechanisms in detail.In section 2.1 the inuence of radiative damping on laser-induced two-electronexcitation processes is investigated. E�ects of laser uctuations on the dynamicsof electronic Rydberg wave packets are discussed in Sec. 2.2.
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1 Coherent dynamics of Rydberg electrons - gen-eral theoretical conceptsIn this section a brief review of general theoretical concepts is presented whichare useful for the description of the dynamics of Rydberg electrons. Theseconcepts have already been used successfully to describe various aspects of thecoherent dynamics of electronic Rydberg wave packets. Thereby we shall con-centrate mainly on cases of recent experimental and theoretical interest in whicha weakly bound Rydberg electron interacts with a laser �eld and additional weakelectric and/or magnetic �elds (Alber 1989, Dando et al. 1995, H�upper et al.1995, Moser et al. 1997). Throughout this review Hartree atomic units will beused for which e = �h = me = 1 (e and me are the electronic charge and mass,respectively).Rydberg electrons are atomic or molecular electrons whose dynamics is dom-inated by highly excited energy eigenstates close to an ionization threshold. Inthe simplest possible case the energies of these Rydberg states are given by thewell known relation �n = �1=[2(n � �)2] (Seaton 1983, Fano and Rau 1986).Thereby the quantum defect � is approximately energy independent for energiessu�ciently close to the ionization threshold at energy � = 0. In typical opticalexcitation processes only Rydberg states with small values of the angular mo-mentum l are excited, i.e. l � n. These Rydberg states of low angular momentaare essentially de-localized over the whole space which is classically accessible tothem, i.e. (l+1=2)2 < r < 1= j �n j. (r denotes the radial distance of the electronfrom the nucleus measured in units of the Bohr radius a0 = 5:29� 10�11m.)If a Rydberg electron interacts with a laser �eld of moderate intensity andwith a weak, static electric and/or magnetic �eld one can distinguish three char-acteristic spatial regimes:(1) The core region: (0 < r < O(1))It extends a few Bohr radii around the atomic nucleus. Inside this core re-gion Rydberg electrons of low angular momenta which are able to penetrate thiscore region interact with all other atomic core electrons. These interactions leadto characteristic electron correlations e�ects such as autoionization and chan-nel coupling. Quantitatively these e�ects can be described by quantum defectparameters which are approximately energy independent close to an ionizationthreshold (Seaton 1983, Fano 1986, Aymar et al. 1996).If a Rydberg electron of low angular momentum interacts with a laser �eldof moderate intensity, whose electric �eld strength is given byE(t) = E0e�i!t + c:c:; (1)two major e�ects take place. Firstly, the Rydberg electron experiences an inten-sity dependent ponderomotive energy shift of magnitude �!p =j E0 j2 =!2. This4



energy shift is independent of the energy of the Rydberg electron and may thusbe interpreted as an energy shift of the ionization threshold. Secondly, all otherdominant energy exchange processes between a Rydberg electron and the laser�eld are localized within a region typically extending a few Bohr radii aroundthe atomic nucleus. This localization of the electron-laser coupling inside thecore region relies on two su�cient conditions, namely moderate laser intensi-ties and su�ciently high laser frequencies preferably in the optical frequencydomain (Giusti and Zoller 1987). Thereby laser intensities are considered tobe moderate provided the stationary oscillation amplitude �osc of an electronin the laser �eld (in the absence of the Coulomb potential of the ionic core) issigni�cantly less than the extension of the core region, i.e.�osc =j E0 j =!2 � 1: (2)Furthermore, in this context laser frequencies ! are considered to be high, ifthey are much larger than the inverse classical Kepler period Tn of the Rydbergelectron, i.e. !Tn � 1 with Tn = 2�(n��)3. Classically speaking at these highlaser frequencies it is only in a region close to the nucleus that the accelerationof a Rydberg electron is su�ciently large that an appreciable energy exchange ofthe order of �� � ! can take place between the laser �eld and the Rydberg elec-tron (compare also with Eq.(5)). As a consequence the interaction of a Rydbergelectron with a laser �eld of moderate intensity and su�ciently high frequency iscompletely di�erent from its interaction with a microwave �eld whose frequencyis comparable with its classical Kepler frequency 1=Tn. Even if the �eld strengthof such a microwave �eld is small in the sense that �osc � 1, the small frequencyof the microwave �eld implies that energy can be exchanged with the microwave�eld essentially at any distance of the Rydberg electron from the atomic nucleus.(2)The Coulomb region:(O(1) < r < a)Outside the core region the dynamics of a highly excited Rydberg electron isdominated by the 1=r Coulomb potential of the positively charged ionic core. Ifthe Rydberg electron is inuenced by a weak external electric or magnetic �eldthis is only valid for distances of the Rydberg electron from the nucleus whichare smaller than the critical distance a � 1 at which the external potentialsare no longer negligible. If this critical distance is located inside the classicallyaccessible region, i.e. a < 1= j �n j, these external �elds inuence the dynamicsof the Rydberg electron signi�cantly.(3)The asymptotic region: (1� a < r)In the asymptotic region the inuence of weak external �elds is as impor-tant as the Coulomb force originating from the positively charged ionic core. Ingeneral, in this region the resulting dynamics of the Rydberg electron is compli-cated by the fact that its classical dynamics is no longer integrable and exhibits5



signatures of chaos.In each of these characteristic spatial regimes di�erent approximations canbe applied for the dynamical description of the Rydberg electron. All photonabsorption and emission processes and all electron correlation e�ects which takeplace inside the core region have to be described quantum mechanically. As theBohr radius is small in comparison with the extension of the Coulomb regionand of the asymptotic region, outside the core region the dynamics of a Rydbergelectron can be described with the help of semiclassical methods.Starting from these elementary considerations a systematic theoretical de-scription of Rydberg electrons can be developed which is based on a synthesisof semiclassical methods and of concepts of quantum defect theory (Alber 1989,Alber and Zoller 1991). Thereby solutions of the Schr�odinger equation whichare valid inside the core region and at the boundary to the Coulomb region haveto be matched to semiclassical wave functions which are valid in the Coulombregion and in the asymptotic region. The values of the wave function at theborder between the core region and the Coulomb region are determined bythe solution of the Schr�odinger equation inside the core region. Within theframework of quantum defect theory these values are determined by approxi-mately energy independent quantum defect parameters. These quantum defectparameters originate from two di�erent types of interactions, namely electroncorrelation e�ects and laser-induced photon absorption and emission processes.For moderate laser intensities and su�ciently high frequencies these latter typeof processes give rise to intensity dependent quantum defects. Thus, in thesimplest case of a one-channel approximation, for example, these interactionsinside the core region can be characterized by a complex quantum defect of theform (Alber and Zoller 1988) � = �+ i�: (3)The real part of this quantum defect de�nes the energies of the Rydberg electronin the absence of the laser �eld, i.e. �n = �1=[2(n��)2]. The imaginary part �describes the inuence of laser-induced transitions of the Rydberg electron intocontinuum states well above threshold. In lowest order of perturbation theoryit is given by � = � j h� = ! j d �E0 j � = 0i j2 (4)with d denoting the atomic dipole operator. For hydrogen and linearly polar-ized laser light, for example, this imaginary part of the quantum defect can beevaluated approximately with the help of the Bohr correspondence principle.According to this principle the dipole matrix element entering Eq.(4) is approx-imated by a Fourier coe�cient of the classical trajectory of a Rydberg electron
6



of energy � = 0 (Landau and Lifshitz 1975), i.e.h� = ! j d �E0 j � = 0i = 12� Z 1�1 dtei!tx(t) �E0 = 62=32�p3�(2=3)!�5=3 j E0 j :(5)(�(x) = R10 duux�1e�u denotes the Euler gamma function.) Thereby x(t)describes the parabolic classical trajectory of an electron which moves in theCoulomb �eld of the nucleus with energy � = 0. Consistent with the previ-ous qualitative discussion the !�5=3-dependence in Eq.(5) demonstrates thatthe dominant contribution to this dipole matrix element originates from a spa-tial region around the nucleus with a size of the order of rc � !�2=3. Thischaracteristic size rc is the distance a classical electron of (asymptotic) energy� = 0 can depart from the nucleus during the relevant photon absorption timetphoton � 1=!.In the Coulomb and asymptotic region the quantum mechanical state canbe determined semi classically. In order to make these ideas more precise let usconsider the general form of the semiclassical solution of the time independentSchr�odinger equation which is valid in the Coulomb and asymptotic region. Ithas the general form (Maslov and Fedoriuk 1981, Delos 1986) (�;x) = Xj '(�;yj)s J(0;yj)j J(tj ;yj) jei[Sj(tj ;yj)��j(tj)�=2]: (6)This wave function is determined by two di�erent types of quantities, namelythe probability amplitude '(�;y) of �nding the electron at position y on theboundary between the core region and the Coulomb region and by quantitieswhich describe the classical motion of the Rydberg electron outside the coreregion (compare with Fig. 1). The probability amplitude '(�;y) is determinedby the quantum defect parameters which describe the electron correlations andthe electron-laser interaction inside the core region. According to Eq.(6) theprobability amplitude  (�;x) of �nding the electron at position x outside thecore region is also determined by properties of all those classical trajectories jwhich start at the boundary between the core region and the Coulomb regionat position y and reach the �nal point x at any `time' t. In this context thevariable t represents a curve parameter and not a physical time. Together withthe initial positions y the curve parameter t constitutes a global coordinatesystem for the family of classical trajectories which leave the core region andwhich form a Lagrangian manifold (Maslov and Fedoriuk 1981, Delos 1986).The important classical properties of trajectory j which determine  (�;x) are:1. its classical action (eikonal) Sj(tj ;yj),2. the determinant of its Jacobi �eldJ(tj ;yj) = dx1 ^ dx2 ^ dx3dt ^ dy1 ^ dy2 jj7



which characterizes its stability properties, and3. its Maslov index �j(tj) which characterizes the number of conjugate pointsand their multiplicity.According to this general theoretical approach it is apparent that Rydbergsystems di�er from one another only as far as their dynamics inside the coreregion is concerned. This part of the dynamics can be described generally bya few quantum defect parameters. Thus Rydberg systems exhibit universalbehavior and the quantum defect parameters characterize the associated uni-versality classes. Furthermore, the semiclassical analysis of the dynamics of theRydberg electron in the Coulomb region and in the asymptotic region impliesthat probability amplitudes describing atomic transitions between an initial anda �nal state can be represented as a sum of contributions which are associatedwith all possible classical paths (including their multiple returns) which connectthe regions of support of the initial and the �nal state. In particular, if the dom-inant contribution of a transition amplitude originates from the core region, forexample, it is all classical paths which start and end inside the core region whichare relevant for the theoretical description. On the basis of this combination ofmethods of quantum defect theory with semiclassical path representations forrelevant quantum mechanical transition amplitudes many aspects of the coher-ent dynamics of electronic Rydberg wave packets have already been describedsuccessfully (Beims and Alber 1993, 1996, Alber et al. 1994, Zobay and Alber1998).2 Dissipative dynamics of electronic Rydbergwave packetsSo far in the context of wave packet dynamics of material particles the investiga-tion of dissipative and stochastic inuences which destroy quantum coherencehas not received much attention. De�nitely, to some extent this may be at-tributed to the complications arising from the high level densities which haveto be taken into account for a proper theoretical description of wave packetdynamics. In general they turn the solution of master equations for the relevantdensity operator into a di�cult mathematical and numerical problem. Elec-tronic wave packets in Rydberg systems are an extreme example of this kinddue to their almost macroscopic size and the in�nitely high level density of Ry-dberg states at an ionization threshold. In the subsequent discussion it will bedemonstrated that a combination of the semiclassical methods discussed in Sec.1 together with stochastic simulation methods constitutes a powerful theoreticalapproach for describing many aspects of the destruction of quantum coherencein wave packet dynamics. In addition, this theoretical approach o�ers insightinto the intricate interplay between the semiclassical aspects of the dynamics of8



a Rydberg electron outside the core region and its coupling to the radiation �eldinside the core region. In the subsequent sections two types of physical processeswill be discussed in detail by which this coupling to the radiation �eld can de-stroy the quantum coherence of an electronic wave packet, namely spontaneousemission of photons and the intrinsic uctuations of a laser �eld. Motivatedby the recent interest in laser-induced two-electron excitation processes, in Sec.2.1 characteristic e�ects of radiative damping are explored which are mediatedby the correlation between an electronic Rydberg wave packet and a resonantlyexcited, tightly bound core electron. In Sec. 2.2 it is demonstrated that as aresult of the peculiar threshold properties of Rydberg systems the destructionof quantum coherence which is brought about by a uctuating laser �eld givesrise to a variety of novel phenomena.2.1 Radiative damping mediated by electron correlationsDue to the long radiative life times of Rydberg states (radiative life times scaleas (n��)3 (Gallagher 1994)) the direct inuence of spontaneously emitted pho-tons is negligible under typical laboratory situations. However, destruction ofquantum coherence originating from radiative damping might become signi�-cant in cases in which more than one atomic or molecular electron is excitedresonantly by a laser �eld. In such cases the inuence of a photon which isemitted spontaneously by one of these excited electrons can inuence anotherexcited Rydberg electron via electron correlation e�ects. Isolated core excitation(ICE) processes (Cooke et al. 1978) are a particular class of laser-induced two-electron excitation processes which has received considerable attention recently.In the following it is demonstrated that in these types of excitation processesthe dissipative inuence of radiative damping mediated by electron correlationsmay inuence the dynamics of electronic wave packets signi�cantly.ICE excitation processes have been studied extensively in the alkaline earthelements as the corresponding singly-charged ions are excited easily with laser�elds in the optical or near-uv regime. In Fig. 2 a typical laser-induced ICEprocess is shown schematically for a magnesium atom. In a �rst step, the atomis excited from its j3s2i ground state to a Rydberg state j3sndi by two-photonexcitation. After this excitation process the atom consists of the Mg+(3s) ioniccore and the nd-Rydberg electron which tends to be located at large distancesfrom the core. By applying a second laser pulse tuned to a resonance of the Mg+ion the remaining core electron is excited, e.g. to the 3p-state of the ionic core.The direct inuence of the laser �eld on the highly excited Rydberg electronis usually negligible in comparison to its interaction with the second, tightlybound valence electron. But the laser �eld inuences the Rydberg electron in-directly by electron correlation e�ects. Immediately after the core transitionthe Rydberg electron experiences a "shakeup" by the di�erent short-range corepotential to which it has to accommodate. A quantitative measure for the de-gree of this shakeup is given by the di�erence between the quantum defects of9



the two channels associated with the 3s and the 3p-states of the ionic core. Theearly work on ICE spectroscopy of alkaline earth elements has concentrated onnon-resonant core transitions which can be described in lowest order of pertur-bation theory with respect to the laser �eld (Gallagher 1994). Non-perturbativee�ects of laser �elds have become of interest only recently in connection withthe development of powerful tunable laser sources (Jones and Bucksbaum 1991,Stapelfeldt et al. 1991, Robicheaux 1993, Grobe and Eberly 1993). They areparticularly important in resonant core excitation processes in which one of thelaser �elds induces Rabi oscillations of the ionic core. A variety of new coher-ent e�ects have been predicted theoretically in this context (Robicheaux 1993,Hanson and Lambropoulos 1995, Zobay and Alber 1995, van Druten and Muller1995) which rely on the coherent interplay between the Rabi oscillations of theionic core and the dynamics of an electronic Rydberg wave packet which is inu-enced by these Rabi oscillations through the resulting shakeup processes (For areview on these theoretical developments see Zobay and Alber 1998). However,due to the possibility of spontaneous emission of photons by the resonantly ex-cited core electron all these e�ects are expected to be particularly sensitive tothe resulting destruction of quantum coherence.In order to investigate these dissipative e�ects in detail let us consider atypical laser-induced two-electron excitation process in an alkaline earth atomas represented in Fig. 3. It is assumed that the atom is prepared initially inits ground state jgi. The atom is situated in a cw-laser �eld whose electric �eldstrength is given by E(t) = Eee�i!t + c:c: and which is tuned near resonancewith a transition of the positively charged ionic core. Typically electron corre-lations imply that as long as the atom remains in its initial state jgi this laser�eld is well detuned from any atomic transition. Thus the laser �eld has negli-gible e�ect on the atomic dynamics. But as soon as an outer valence electron isexcited to Rydberg state close to an ionization threshold the cw-laser �eld startsto induce transitions between the two resonantly coupled states of the ionic corewhich have energies �1 and �2, respectively. Let us concentrate on a case in whichone of the valence electrons is excited coherently to Rydberg states by a shortand weak laser pulse with electric �eld strength Ea(t) = Ea(t)eae�i!at + c:c:(Typically the pulse envelope Ea(t) will be modeled by a Gaussian shape cen-tered around time ta with pulse duration �a). Thus a radial electronic Rydbergwave packet is prepared by this short laser pulse (Alber and Zoller 1991). Thiswave packet moves in the Coulomb �eld of the positively charged ionic core.Whenever it penetrates the core region it is shaken up by the Rabi oscillationsof the resonantly driven core. Furthermore, whenever the core emits a photonspontaneously this emission process will disrupt the relative phases of the elec-tronic wave packet and will thus destroy quantum coherence. The dynamics ofthis electronic wave packet under the inuence of the Rabi oscillations of theionic core can be investigated by typical pump-probe experiments, for example.For the theoretical description of the resulting destruction of quantum coher-ence one has to solve the corresponding optical Bloch equation for the density10



operator of the two atomic valence electrons. In the case depicted in Fig. 3, forexample, the optical Bloch equation is given by (Zobay and Alber 1996)_�(t) = �i[H; �(t)] + 12f[L; �(t)Ly] + [L�(t); Ly]g: (7)Thereby the HamiltonianH = Xi;j=1;::;3Hi;j + VICE (8)characterizes the coherent part of the dynamics. The dynamics of the valenceelectrons is described by the HamiltonianHi;j = (hjj�ij +Vij + �cj�ij)j�iih�j j (9)with hjj = �12 d2dr2 + lj(lj + 1)2r2 � 1r : (10)The short-range potential Vij describes electron-correlation e�ects originatingfrom the residual core electrons (Aymar et al. 1996). In ICE transitions theangular momentum l of the excited Rydberg electron is conserved to a gooddegree of approximation, i.e. l1 = l2 = l (Gallagher 1994). In the rotating waveapproximation the channel thresholds �cj are given by �c1 = �1, �c2 = �2 � !,�c3 = �3 � !. The operatorVICE = �12
(j�2ih�1j+ j�1ih�2j)
 1r (11)describes the laser-induced core transitions between the core states j �1i andj �2i and 
 is the Rabi frequency originating from the cw-laser �eld. The oper-ator 1r denotes the identity operator for the radial coordinate of the Rydbergelectron. Thus the role of the Rydberg electron as a spectator becomes obviousfrom Eq.(11).The stochastic part of the dynamics of the density operator �(t) is describedby the Lindblad operator L = p�j�1ih�2j 
 1r (12)which characterizes the radiative decay of the ionic core from its excited stateto its ground state by spontaneous emission of photons with rate �.Due to the high level density of Rydberg states close to an ionization thresh-old and due to the presence of the adjacent electron continuum usually severeproblems arise, if one tries to solve the optical Bloch equation (7) numerically byexpanding the density operator �(t) into a basis set of atomic energy eigenfunc-tions. Many of these problems can be circumvented successfully by combiningthe semiclassical methods as discussed in Sec. 1 with stochastic simulation11



methods (Zobay and Alber 1996). Besides numerical advantages this approachgives also direct insight into the classical aspects of the dynamics of the Rydbergelectron and the destruction of quantum coherence caused by the radiative decayof the core. Thereby the density operator is represented by a (�ctitious) ensem-ble of pure states which are associated with de�nite numbers of spontaneouslyemitted photons (Mollow 1975), i.e.�(t) = 1XN=0 �(N)(t); (13)with the N -photon contributions�(N)(t) = Z t0 dtN Z tN0 dtN�1 � � � Z t20 dt1j (tjtN ; :::; t1)ih (tjtN ; :::; t1)j:The time evolution of the N -photon states j (tjtN ; :::; t1)i is given byj (tjtN ; :::; t1)i = e�iHeff (t�tN )�(t� tN )Le�iHeff (tN�tN�1)�(tN � tN�1)L � � �Le�iHeff t1�(t1)j (t = 0)i (14)with the e�ective (non-Hermitian) HamiltonianHe� = H � i2LyL: (15)(�(x) is the unit step function.) The physical interpretation of Eq.(14) isstraight forward. With each emission of a photon at one of the N randomemission times t1 � t2 � ::: � tN the quantum state 'jumps' into a new stateby application of the Lindblad operator of Eq.(12). Between two successivejumps the state evolves according to the Hamiltonian of Eq.(15). Thus the de-composition of Eq.(13) may also be interpreted as an unraveling of the densityoperator into contributions associated with all possible quantum jumps. Thisdecomposition of the density operator �(t) o�ers signi�cant advantages in casesin which the number of spontaneously emitted photons is small or in whichthe evaluation of the relevant pure states can be simpli�ed by the application ofsemiclassical methods. In particular, it is possible to derive general semiclassicalpath representations for the N -photon states of the optical Bloch equation (7).Thus all physical observables of interest can be expressed as a sum of probabilityamplitudes which are associated with repeated returns of a Rydberg electron tothe ionic core. During its motion under the inuence of the Coulomb potentialof the ionic core photons may be emitted spontaneously by the laser-excitedcore at any position of the Rydberg electron along its path. These photon emis-sion processes disrupt the coherent quantum mechanical time evolution of theRydberg electron.As an example, let us consider a coherent process which has received consid-erable attention recently, namely laser-induced stabilization against autoioniza-tion (Hanson and Lambropoulos 1995). This e�ect is based on a synchronization12



between the dynamics of the ionic core, which performs Rabi oscillations, andthe dynamics of a laser-prepared electronic wave packet. This e�ect may beunderstood as follows: At the time of the preparation of the electronic Rydbergwave packet by the short laser pulse the core is in its ground state. If the meanKepler period Torb = 2�(�2�)�3=2 (� is the mean excited energy of the Rydbergelectron) of this wave packet is chosen equal to a multiple of the Rabi periodTRabi = 2�=
 of the core, the Rydberg electron will encounter the core in theground state at each of its subsequent returns to the nucleus. As autoionizationof a Rydberg electron can take place only inside the core region (Seaton 1983,Fano and Rau 1986, Aymar et al 1996), this implies that the e�ective autoion-ization rate of the electronic wave packet will become much smaller than theautoionization rate of the mean excited Rydberg state �n in the absence of thelaser �eld. In addition, it has been demonstrated (Hanson and Lambropoulos1995) that this suppression of autoionization is also accompanied by a reduc-tion of dispersion of the electronic wave packet. This suppression of dispersion isbrought about by the Rabi-oscillating core which acts like a quantum-mechanicalshutter and e�ectively cuts o� the tails of the wave packet which arrive at thenucleus out of phase with small probability. As this stabilization against au-toionization is based on the coherent interplay between electron correlations andlaser-induced Rabi oscillations it is expected to be particularly sensitive againstthe destruction of quantum coherence due to spontaneous emission of photonsby the ionic core.In the presence of radiative decay of the ionic core the physical picture ischanged signi�cantly. In the simplest case of synchronization, i.e. for Torb =TRabi, the �rst photon will be emitted spontaneously by the ionic core mostprobably at a time (M +1=2)TRabi (with M denoting any integer) because thenthe core is in its excited state with high probability. Due to the synchronizationat these times the electronic Rydberg wave packet is close to the outer turningpoint of its Kepler orbit. The spontaneous emission of a photon reduces theexcited core to its ground state. Therefore, at the subsequent return of theelectronic wave packet to the core at time (M + 1)Torb the ionic core will bein its excited state so that the Rydberg electron will autoionize on a time scaleof the order of 1=�n. Thus, the laser-induced stabilization against autoioniza-tion will be destroyed. Typically, �n � � so that the Rydberg electron willautoionize with high probability long before the core can emit a second photonspontaneously. Consequently, it is expected that the inuence of the radiativedamping on this coherent stabilization phenomenon can be described approx-imately by taking into account only the zero-and one-photon contributions ofthe density operator �(t).The inuence of radiative damping described above manifests itself clearlyin the time-dependent autoionization rate (t) into channel three, for example,which results from the dynamics of the electronic Rydberg wave packet. An ex-perimental technique for measuring (t) has been developed recently (Lankhui-jzen and Noordam 1996). This time-dependent ionization rate (t) can be13



decomposed into N -photon contributions with the help of semiclassical pathrepresentations, i.e. (t) = 1XN=0 Z t0 dtN � � � Z t20 dt1(N)(t): (16)It is expected that the zero- and one-photon contributions (Zobay and Alber1996)(0)(t) = 12� (1� e�4�Im�2) j Z 1+i0�1+i0 d�1e�i�1t(0; 1; 0)O 1XM1=0(ei2�~�1 ~�)M1 �ei2�~�1 ~D(�)gea ~Ea(�1 � �) j2;(1)(t) = ( 12� )3(1� e�4�Im�2) j Z 1+i0�1+i0 d�1d�2e�i�2(t�t1)e�i�1t1(0; 1; 0)O�1XM2=0(ei2�~�2 ~�)M2 ~S(M2;M1)2;1 1XM1=0(~�ei2�~�1)M1 ~D(�)gea ~Ea(�1 � �) j2 (17)are dominant. In Eqs.(17) the laser-induced excitation by the short laser pulseis characterized by the Fourier transform of the pulse envelope~Ea(��) = Z 1�1 dtEa(t)ei��(t�ta) (18)and by the (3 � 1)-column vector ~D(�)gea whose components are the energy nor-malized photoionization dipole matrix elements (Seaton 1983) into channelsone, two and three. The dynamics of the Rydberg electron under the inuenceof the Rabi oscillations of the ionic core are described by the (3 � 3) scat-tering matrix ~� and by the (3� 3) diagonal matrix ei2�~� with matrix elements(ei2�~�)jj = e2i�[2(~�cj��)]�1=2�(~�cj��) (j = 1; 2; 3). All matrices and column vec-tors with a tilde refer to the basis of photon-dressed core states j~�ji (j = 1; 2; 3)(Robicheaux 1993, Zobay and Alber 1995). These dressed channel states arerelated to the corresponding bare states j�ji by the orthogonal transformationO which diagonalizes the laser-induced core coupling, i.e.OT [�c � i�=2j�2ih�2j � 12
(j�2ih�1j+ j�1ih�2j)]O = ~�c: (19)Thereby the diagonal matrix ~�c (�c) contains the energies of the dressed (bare)core states. Thus the relations ~D(�)gea = OTD(�)gea and ~� = OT�O hold with thebare photoionization dipole matrix elements D(�)gea and with the bare scatteringmatrix � = 0@ e2�i�1 0 00 e2�i�2 �230 �32 �33 1A : (20)14



The quantum defects of the bare channels one and two are denoted �j . Thesechannels have opposite parity and cannot be coupled by electron correlatione�ects. The matrix elements �23 and �32 characterize the con�guration inter-action between channels 2 and 3 which results in autoionization of channel 2.The autoionization rate of a Rydberg state of channel 2 with principal quan-tum number n is related to the imaginary part of the quantum defect �2 by�n = 2Im(�2)=[n�Re(�2)]3.Eqs.(17) are examples of semiclassical path representations for the zero- andone-photon ionization rates (0)(t) and (1)(t). Their physical interpretationis straight forward: After the initial excitation by the short laser pulse thosefractions of the electronic Rydberg wave packet which are excited into closedphoton-dressed core channels return to the core region periodically. The integersM1 andM2 count the numbers of these returns. Between two successive returnsthe Rydberg electron acquires a phase of magnitude (2�~�)jj while moving inthe photon-dressed core channel j. This phase equals the classical action ofmotion along a purely radial Kepler orbit with zero angular momentum andenergy �� ~�cj < 0. Entering the core region the Rydberg electron is scatteredinto other photon-dressed core channels by laser-modi�ed electron correlatione�ects which are described by the scattering matrix ~�. The ionic core can emita photon spontaneously at any time during the motion of the Rydberg electron.Quantitatively this photon emission process is described the the quantity~S(M2;M1)2;1 = Z TM1;M20 d�e2i�~�2(1��=TM1;M2 )(e�i�=2~L)e2i�~�1�=TM1;M2 (21)in Eqs.(17) with TM1;M2 = t=(M1+M2+1). According to Eq.(21) this sponta-neous photon emission by the ionic core can take place at any time � betweentwo successive returns of the Rydberg electron to the core region. At time �the Rydberg electron has acquired a phase of magnitude (2�~�)jj�=TM1;M2 inchannel j. The disruption of the phase of the Rydberg electron by this spon-taneous emission process is described by the action of the Lindblad operator~L = OTLO. It also leads to a phase change of magnitude (�=2). After thecompletion of the photon emission process the Rydberg electron acquires an ad-ditional phase of magnitude (2�~�)jj(1� �=TM1;M2) in the photon-dressed corechannel j until it reaches the core region again.A representative time evolution of the autoionization rate (t) is shown inFig. 4. The full curve in Fig. 4a has been obtained by numerical solution ofthe optical Bloch equation (7) with the help of a conventional basis expansionin atomic energy eigenstates. The corresponding zero- and one-photon contri-butions are also presented in Figs. 4b and 4c. In Fig. 4 the sum of zero-and one-photon contributions are not plotted as they are indistinguishable fromthe numerical result (full curve in Fig.4a). The chosen parameters representtypical values realizable in alkaline earth experiments. The comparison of (t)(full curve of Fig.4a) with the corresponding result in the absence of radiative15



damping (dotted curve in Fig.4a) demonstrates that the inuence of radiativedamping is already signi�cant at interaction times of the order of Torb. Withthe help of the zero- and one-photon contributions of Eq.(17) the dissipativeinuence of radiative damping can be analyzed in detail. As apparent fromFig. 4b, the zero-photon rate vanishes at integer multiples of the mean Keplerperiod Torb because at these times the core is in its ground state. The maximaof Fig. 4b at times (M + 1=2)Torb originate from fractions of the electronicwave packet which are close to the core at times when the core is in its excitedstate. Also visible are typical revival e�ects at times of the order of 25Torb.The one-photon rate of Fig. 4c exhibits maxima and minima at times MTorband (M + 1=2)Torb. These maxima indicate that the photon is emitted by theionic core most probably whenever the Rydberg electron is close to the outerturning point of its classical Kepler orbit. Thus, the core will be in its excitedstate when the Rydberg electron returns to the nucleus so that autoionizationwill take place with a high probability.2.2 Electronic wave packets in uctuating laser �eldsThe main aim of this section is to discuss characteristic e�ects which governthe dynamics of a Rydberg electron in an intense and uctuating laser �eld.It is demonstrated that for moderate laser intensities (compare with Sec. 1Eq.(2)) a variety of novel, non-perturbative e�ects appear which inuence thelong time behavior of Rydberg electrons signi�cantly. A generic consequenceof the interplay between the peculiar threshold phenomena of Rydberg systemsand the destruction of quantum coherence due to laser uctuations is stochasticionization (Alber and Eggers 1997). It is demonstrated that this process alsoimplies an upper time limit on the applicability of two-level approximations evenin cases in which all characteristic frequencies, i.e. Rabi frequencies and laserbandwidths, are small in comparison with the Kepler frequency of a resonantlyexcited Rydberg electron.Nowadays laser uctuations can be controlled to such a degree that it ispossible to realize various theoretical models of laser radiation in the labora-tory (Vemuri et al. 1991). One of the most elementary theoretical models oflaser radiation is the phase di�usion model (PDM) (Haken 1970). It describesapproximately the electric �eld produced by an ideal single mode laser which isoperated well above the laser threshold. Thereby the electric �eld of a laser isrepresented by a classical, stochastic process with well stabilized amplitude anda uctuating phase, i.e. E(t) = E0ei�(t)e�i!t + c:c: : (22)The uctuations of the phase �(t) are modeled by a real-valued Wiener process(Kl�oden and Platen 1992), i.e.Md�(t) = 0; [d�(t)]2 = 2bdt (23)16



Thereby M indicates the mean over the statistical ensemble. The PDM impliesa Lorentzian spectrum of the laser radiation with bandwidth b.In order to investigate the inuence of laser uctuations on the optical ex-citation of Rydberg states close to an ionization threshold let us consider thesimplest possible case, namely one-photon excitation from a tightly bound ini-tial state jgi with energy �g. In the dipole and rotating wave approximation theHamiltonian which describes this excitation process is given byH(�(t)) = �g jgihgj+Xn �njnihnj �Xn (jnihgjhnjdjgi � E0ei�(t)e�i!t + h:c:): (24)In Eq.(24) the index n refers to Rydberg and continuum states. The energies ofthe excited Rydberg states are denoted �n and d is the atomic dipole operator.Let us assume for the sake of simplicity that the excited Rydberg and continuumstates can be described with the help of quantum defect theory in a one channelapproximation (Seaton 1983). Thus they are characterized by an approximatelyenergy independent quantum defect � = �+ i�. As has been explained in Sec.1 (Eq.(4)) the imaginary part � describes photon absorption from the highlyexcited Rydberg states to continuum states well above threshold.For the description of non-perturbative aspects of this laser excitation pro-cess one has to solve the time dependent Schr�odinger equation with the stochas-tic Hamiltonian (24) (interpreted as a stochastic di�erential equation of the Itotype (Kl�oden and Platen 1992)) together with the stochastic di�erential equa-tion for the phase (23). It is the simultaneous presence of the Coulomb thresholdwith its in�nitely many bound states and the continuum on the one hand andthe laser uctuations on the other hand which makes this solution a highly non-trivial task. Nevertheless, for the case of the PDM the resulting mathematicaland numerical problems can be circumvented successfully (Alber and Eggers1997). Thus even analytical results can be derived in the limit of long interac-tion times which is dominated by stochastic ionization of the Rydberg electron.Thus, let us start from the equation of motion for the mean values �nn0(t) =Mhn j  (t)ih (t) j n0i, �ng(t) = [�gn(t)]� = Me�i�(t)hn j  (t)ih (t) j gi and�gg(t) = M j hg j  (t)i j2 which can be combined to form a density operator�(t) (Agarwal 1976). From Eqs. (23) and (24) it can be shown that this densityoperator ful�lls the master equationddt�(t) = �i[Hmod; �(t)] + 12f[L; �(t)Ly] + [L�(t); Ly]g: (25)Thereby the modi�ed Hamiltonian Hmod � H(�(t) � 0) describes laser inducedexcitation of Rydberg states close to threshold in the absence of phase uctu-ations. The destruction of quantum coherence which is brought about by thelaser uctuations is characterized by the Lindblad operatorL = p2bjgihgj: (26)17



On the basis of this master equation Fourier representations can be developed forthe density matrix elements whose kernels can be determined explicitly with thehelp of quantum defect theory. Thus all complications arising from the Coulombthreshold are taken into account properly. These Fourier representations areuseful for numerical calculations of averaged transition probabilities which arehighly accurate even in the limit of long interaction times. Furthermore, theserepresentations are convenient starting points for the derivation of analyticalresults. Thus, the averaged initial state probability �gg(t), for example, is givenby (Alber and Eggers 1997)�gg(t) = 1XN=0 12� Z 1+i0�1+i0 dze�iztAgg(z)[2bAgg(z)]N =12� Z 1+i0�1+i0 dze�iztAgg(z)[1� 2bAgg(z)]�1 (27)withAgg(z) = U(z) + U�(�z); (28)U(z) = f�C1(z) + C2(z) +i XRe~�n<0[1� ddz��(z1 � z)]�1[z1 � �+ ib��(z1)]�1 jz1=z+~��ng�(z)and with C1(z) = 12�(z + 2ib) lnz � �+ i(b+ =2)��+ i(=2� b) ;C2(z) = 12�[z + i( + 2b)] lnz � �+ i(b+ =2)��+ i(=2 + b) : (29)In the spirit of the discussion of Sec. 2.1. (compare with Eq.(13)) �gg(t) isrepresented as a sum of contributions of all possible quantum jumps N whichcan be induced by the Lindblad operator of Eq.(26). According to Eq.(27)these contributions give rise to a geometric series which can be summed easily.The sum appearing in Eq.(28) extends over all dressed states ~�n of the e�ectiveHamiltonian He� = Hmod � iLyL=2. The mean excited energy is given by � =�g+!+�! with �! denoting the relative quadratic Stark shift between the initialstate j gi and the ponderomotive shift of the excited Rydberg states (comparewith the general discussion in Sec. 1). Besides the threshold contributions C1(z)and C2(z) the characteristic kernel Agg(z) is determined by the (resonant partof the ) self energy of the initial state jgi, i.e.�(z) = Xn j hnjd � E0jgi j2z � �n = �i2 � i 1XM=1(ei2�(�2z)�1=2�)M : (30)18



This self energy is characterized by the laser-induced depletion rate = 2� j h� = 0jd �E0jgi j2 (31)of the initial state jgi and by the scattering matrix element� = ei2�� (32)which describes all e�ects arising from scattering of the Rydberg electron by theionic core and from photon absorption (compare with Eq.(3)). The sum overM in Eq.(30) originates from the multiple returns of the Rydberg electron tothe core region where the dominant contribution to the self energy comes from.With each of these returns the Rydberg electron of energy z < 0 accumulates aphase of magnitude 2�(�2z)�1=2 and with each traversal of the core region itaccumulates a (complex) phase of magnitude 2�� due to scattering by the coreand due to photon absorption. The laser-induced depletion rate , the imaginarypart of the quantum defect � and the second order Stark shift �! describe theinuence of the laser �eld on the Rydberg electron. As these quantities dependon the laser intensity they are not a�ected by phase uctuations of the laser�eld.Master equations of the form of Eq.(25) with a self adjoint Lindblad opera-tor are of general interest as phenomenological models of continuous quantummeasurement processes (Braginsky and Khalili 1992). In this context Eq.(25)would model excitation of Rydberg and continuum states close to an ionizationthreshold by a classical, deterministic laser �eld in the presence of continuousmeasurement of the initial state j gi. Thereby the inverse bandwidth 1=b woulddetermine the mean time between successive measurements.Some qualitative aspects of the time evolution of an excited Rydberg electronunder the inuence of a uctuating laser �eld are apparent from the contourplots of Figs. 5 and 6 which refer to one-photon excitation of a hydrogen atom bylinearly polarized laser light with jgi = j2si. It is assumed that Rydberg statesaround n = (�2�)�1=2 = 80 are excited. According to the general discussionin Sec. 1 (compare with Eq.(4)) the laser-induced transitions from the excitedRydberg states to continuum states well above threshold are described by animaginary quantum defect with � = 0:00375.In Fig. 5a both the bandwidth of the laser �eld b and the �eld-induced de-pletion rate  of state j gi are assumed to be small in comparison with the meanlevel spacing of the excited Rydberg states, i.e. b;  � n�3. Thus, one may betempted to think that this excitation process can be described well within theframework of a two-level approximation in which only states j2si and j80pi aretaken into account. However, Fig. 5a demonstrates that this expectation isonly valid for su�ciently small interaction times. Indeed, the early stages of theexcitation process are dominated by Rabi oscillations of the electron betweenthe initial and the resonantly excited state. These Rabi oscillations are dampedby the uctuating laser �eld. An equilibrium is attained for interaction times19



t � 1=b for which all coherence between the two resonantly coupled states isnegligibly small and for which �gg(t) � �nn(t) � 1=2. This characteristic, wellknown two-level behavior is exempli�ed in Fig. 5a by the stationary proba-bility distribution of the excited Rydberg state. (The probability distributionof state jgi which is localized in a region of a few Bohr radii around the nu-cleus is not visible on the radial scale of Fig. 5a). Fig. 5a indicates that forinteraction times which are larger than a critical time t1 this simple pictureof the two-level approximation breaks down and the probability distributionof the excited Rydberg electron starts to spread towards larger distances fromthe core. (here t1 � 5 � 105T with T = 2�n3 denoting the mean classical or-bit time). Simultaneously the probability distribution becomes more and morespatially de-localized with all nodes disappearing. In order to obtain a moredetailed understanding of this di�usion-like process the time evolutions of theinitial state probability and of the ionization probability are shown in Fig.5b .From Fig.5b it is apparent that this spatial spreading of the Rydberg electronis connected with a di�usion in energy space towards the ionization thresh-old. At interaction times t � tc � 7 � 109T the Rydberg electron has reachedthe ionization threshold and the ionization probability Pion(t) rises signi�cantlyfrom a negligibly small value to a value close to unity. Simultaneously the initialstate probability Pgg(t) starts to decrease faster. This stochastic di�usion of theRydberg electron which eventually leads to ionization is a characteristic phe-nomenon brought about by the uctuations of the exciting laser �eld. With thehelp of the theoretical approach presented above this characteristic stochasticionization process can be analyzed in detail. Thus it can be shown (Alber andEggers 1997) that the di�usion of the Rydberg electron towards the ionizationthreshold starts at time t1 = 8�bT (33)and eventually leads to stochastic ionization at interaction times t � tc withtc = 4�p27b [ (�2 + 3(b2 + 2=4)=4)3=2�2 + b2 + 2=4 ]1=2: (34)The time evolution of Pgg(t) is approximately given byPgg(t) = 2p� [2bT ]�1=2t�1=2 (35)for t1 < t < tc and crosses over to the power lawPgg(t) = ( + 2b)2(2b'=�)2 [ b�3(5=3)27�(�2 + b2 + 2=4) ]1=3t�5=3 (36)for interaction times t > tc. The variable ' characterizes the distance of themean excited energy � from the ionization threshold and is determined by the20



relation �� + i(b + =2) = Rei' (0 � ' < �). At times t � tc the ionizationprobability rises according to the power lawPion(t) = 1� ��(2=3)( + 2b)6b' [ b�(�2 + b2 + 2=4) ]1=3t�2=3: (37)These approximate time evolutions are indicated by the dashed curves in Fig.5b. The analytical results of Eqs.(33) and (34) explicitly show how the criti-cal times t1 and tc for the breakdown of the two-level approximation and forstochastic ionization depend on the characteristic parameters of the problem,namely the mean excited energy �, the laser bandwidth b and the laser-induceddepletion rate of the initial state .In Fig. 6 both the laser bandwidth and the laser-induced depletion rate ofthe initial state jgi are larger than the mean level spacing n�3 of the excitedRydberg states. As in this case the initial state is depleted by the laser �eldin a time which is small in comparison with the mean Kepler period of theexcited Rydberg states, i.e. 1= � T = 2�n3, an electronic Rydberg wavepacket is prepared by power broadening (Alber and Zoller 1988). The initialstage of the preparation of this electronic wave packet by power broadeningmanifests itself in an approximately exponential decay of Pgg(t) with rate .The repeated returns of fractions of this wave packet to the core region give riseto recombination maxima of Pgg(t) which occur roughly at multiples of the meanKepler period T . In the absence of laser uctuations the non-perturbative timeevolution of such an electronic wave packet under the inuence of a laser �eld isalready well understood. In the completely coherent case with each return to thecore region a fraction of the electronic wave packet can be scattered resonantlyin the presence of the laser �eld by stimulated emission and reabsorption of alaser photon accompanied by an electronic transition to the initial state jgi andback again. This emission and reabsorption process of a laser photon causesa time delay of the electronic wave packet of the order of 1= with respect toun-scattered fractions of the electronic wave packet. These repeated scatteringprocesses lead to a splitting of the original wave packet into many partiallyoverlapping fractions. In the completely coherent case the interference of theseoverlapping fractions inside the core region eventually give rise to a complicatedtime dependence of Pgg(t) (Alber and Zoller 1991).Characteristic qualitative aspects of the time evolution of an electronic wavepacket in the presence of laser uctuations are apparent from Fig. 6a. Clearly,the initial stages of the time evolution are dominated by the preparation of theelectronic wave packet and by its repeated returns to the core region. However,at su�ciently long interaction times eventually the spatially localized electronicwave packet starts to spread out uniformly over the whole classically accessibleregion. Furthermore, this classical region starts to grow monotonically withincreasing interaction time. Characteristic quantitative details of this time evo-lution are apparent from Fig. 6b. For su�ciently small interaction times thefamiliar recombination maxima of the repeated returns of the electronic wave21



packet to the core region are clearly visible. However, as the coherence time ofthe laser �eld is small in comparison with the mean Kepler period, i.e. 1=b� T ,interferences between probability amplitudes which are associated with repeatedreturns to the core region are destroyed. Thus the details of the early stagesof the time evolution of this electronic wave packet appear to be much simplerthan in the completely coherent case. As a consequence of the di�usion of theelectronic wave packet at longer interaction times the recombination maxima ofPgg(t) disappear and merge into the power law of Eq.(35). At interaction timeslarger than tc stochastic ionization of the Rydberg electron becomes signi�cantand the power law decay of Pgg(t) crosses over to the decay law of Eq.(36). Si-multaneously the ionization probability rises to a value close to unity accordingto the approximate power law of Eq.(37).In general stochastic ionization originating from laser uctuations will com-pete with other coherent ionization mechanisms such as autoionization. As aconsequence a number of new interesting phenomena are expected to arise whichare not yet explored. In order to obtain �rst insights into basic aspects of thiscompetition let us generalize our previous model to one-photon excitation of anautoionizing Rydberg series (Eggers and Alber 1998). Thus, it will be assumedthat the laser excited autoionizing Rydberg series can be described within theframework of quantum defect theory in a two-channel approximation. In par-ticular, let us concentrate on a case in which the uctuating laser �eld excitesRydberg states close to an ionization threshold of an excited state of the ioniccore (channel one) which can autoionize into channel two. For simplicity letus assume that direct excitation of channel two from the initial state jgi is notpossible and that the e�ectively excited energy interval (�� b; �+ b) also coverscontinuum states of channel one. The early stages of this ionization processwill be governed by an exponential decay of the initial state jgi with the laser-induced depletion rate , by autoionization of the excited Rydberg states ofchannel one into channel two, and by direct laser-induced ionization into thecontinuum states of channel one. As long as stochastic ionization is negligible,i.e. for interaction times t with 1= < t < tc, this ionization process will reach ametastable regime. Thereby the probability of ionizing into channel one is sim-ply determined by the part of the e�ectively excited energy interval (�� b; �+ b)which is located above the ionization threshold, �1, of channel one. However,as soon as t > tc it is expected that the branching ratio between channels oneand two is changed. For interaction times t > tc all Rydberg states whose au-toionization lifetimes exceed the stochastic ionization time, i.e. 1=�n > tc (�nis the autoionization rate of Rydberg state jn; 1i), will no longer autoionize intochannel two but will eventually ionize stochastically into channel one. Thusfor interaction times t > tc it is expected that the probability of ionizing intochannel one is determined by the part of the e�ectively excited energy inter-val (� � b; � + b) which is located above an energy of the order of �1 � 1=tc.Thus stochastic ionization is expected to lead to an e�ective lowering of theionization threshold �1 of channel one. This manifestation of the competition22
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Figure 1: Schematic representation of the characteristic spatial regions whichdetermine the dynamics of a Rydberg electron. Some classical trajectories whichare relevant for the semiclassical wave function are also indicated.Figure 2: Schematic representation of a laser-induced isolated core excitationprocess in Mg. After initial preparation in a j3sndi Rydberg state a second laserpulse excites the core 3s ! 3p transition. The Rydberg states of the excitedcore autoionize.Figure 3: Three-channel excitation scheme including spontaneous emission pro-cess and autoionization.Figure 4: Autoionization and resonant excitation of the core under the condi-tion of period matching , i.e. Torb = TRabi. The parameters are ��1 = 7ns,�1 = [�2(� � �c1)]�1=2 = 73 (Torb = 59ps), �1 = 0:0, �2 = 0:5 + i0:1,�a = 0:4Torb with Ea(t) = E(0)a e�4(t�ta)2ln=�2a . Fig. 4a: Scaled ionization rate~(t) = (t)Torb�a= j D(�)geaE(0)a j2 as obtained from the optical Bloch equations(full curve); Figs. 4b and 4c: Scaled zero- and one-photon contributions ~(0)(t)and ~(1)(t). (Reprinted from Zobay and Alber (1996), copyright 1998 by theAmercian Physical Society)Figure 5: Excitation of an isolated Rydberg state: Radial contour plot (a) andPgg(t), Pion(t) (b) as a function of the interaction time t in units of the meanKepler period T . The parameters are n = (�2�)�1=2 = 80 (T = 78ps), T =0:1, bT = 0:01. Various approximate asymptotic time dependences are alsoindicated, namely Eq.(35) (short dashed) and Eqs.(36) and (37) (long dashed).Figure 6: Excitation of an electronic Rydberg wave packet by laser-inducedpower broadening: Radial contour plot (a) and Pgg(t), Pion(t) (b) as a functionof the interaction time t in units of the mean Kepler period T . The parametersare n = (�2�)�1=2 = 80 (T = 78ps), T = 10:0, bT = 10:0. Various approx-imate asymptotic time dependences are also indicated, namely Eq.(35) (shortdashed) and Eqs.(36) and (37) (long dashed). t = 10:0, bT = 10:0.Figure 7: Competition between autoionization and stochastic ionization: Timeevolution of Pgg(t) and of the ionization probabilites into channels one and twoPion�ch1(t) and Pion�ch2(t). The parameters are n = �1 + (�2�)�1=2 = 80,�1 = 0:1, T = 1:0, bT = 300:0, �n = 2�(n� �1)�3=� with � = 10�5 a.u. .25
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