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Abstract

Optimal universal entanglement processes are discussed
which entangle two quantum systems in an optimal
way for all possible initial states. It is demonstrated
that the linear character of quantum theory which en-
forces the peaceful coexistence of quantum mechanics
and relativity imposes severe restrictions on the struc-
ture of the resulting optimally entangled states. De-
pending on the dimension of the one-particle Hilbert
space such a universal process generates either a pure
Bell state or mixed entangled states. In the limit of
very large dimensions of the one-particle Hilbert space
the von-Neumann entropy of the optimally entangled
state differs from the one of the maximally mixed two-
particle state by one bit only.

Introduction

Ever since its discovery by Schrödinger [1] the exis-
tence of entanglement between different quantum sys-
tems has been a major puzzling aspect of quantum
theory. If a quantum mechanical many particle sys-
tem is in an entangled state its characteristic physi-
cal properties are distributed over all its subsystems
without being present in any one of them separately.
In the newly emerging science of quantum information
processing [2] these puzzling aspects of quantum the-
ory are recognized as a potentially useful new resource
which might help to perform various tasks of practical
interest more efficiently than it is possible by any other
classical means. Prominent examples in this respect
are applications of entangled states in secret quantum
key distribution (quantum cryptography) and in fast
quantum algorithms (quantum computing).

In view of these developments the natural ques-
tion arises whether it is possible to design universal
quantum processes which entangle two or more quan-
tum systems in an optimal way for all possible ini-
tial states of the separate subsystems. Definitely, pro-
vided the initial states of the subsystems are known
it should always be possible to design a particularly
tailored quantum process which produces any desired
quantum state. However, this becomes less obvious if
one wants to design a universal quantum process which
is independent of possibly unknown input states and
which performs the required task for all possible input

states in the same optimal way. Which constraints are
imposed by the fundamental laws of quantum mechan-
ics on such universal, optimal processes?

Recently, similar questions have been studied ex-
tensively in the context of quantum cloning [3, 4, 5, 6, 7]
where one aims at copying arbitrary quantum states
by a universal quantum process. It has been known for
a long time that this task cannot be performed per-
fectly due to constraints imposed by the linear charac-
ter of quantum theory [8, 9]. According to this linear
character any quantum process has to map the density
operator of the initial state linearly onto the density
operator of the final state. If the relation between the
density operators of initial and final states were not lin-
ear, one could distinguish different unravellings of one
and the same density operator physically. This would
contradict the basic postulate of quantum theory that
the physical state of a quantum system is described
by a density operator and not by any of its possibly
inequivalent unravellings [10]. This linear character of
quantum theory implies, for example, that despite their
nonlocal character it is not possible to use entangled
states for super luminal communication [11]. This so
called no-signaling constraint of quantum theory en-
forces the peaceful coexistence of quantum mechanics
and relativity [12] and imposes severe restrictions on
universal quantum processes [7]. In the context of op-
timal quantum cloning [3, 4, 5, 6, 7] and the universal
NOT gate [13] these constraints have already been in-
vestigated. However, their influence on other universal
quantum processes is still widely unknown.

Motivated by the importance which entangled states
play in the context of quantum information processing
in the following the question is addressed whether it is
possible to design a universal quantum process which
entangles quantum systems in an optimal way. How
can one define such a universal, optimal entanglement
process and which restrictions are imposed by the lin-
ear character of quantum theory? What is the nature
of the class of resulting optimally entangled states?
Answering these questions sheds new light onto the
basic concept of entanglement itself and onto the ques-
tion which types of entangled states can be prepared
by quantum processes in a natural way.
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Optimal Entanglement by
Universal Quantum Processes

How can one define a universal quantum process which
entangles quantum systems in an optimal way for all
possible input states?

In order to put this problem into perspective let
us consider the simplest possible situation, namely a
quantum process which entangles two particles whose
associated Hilbert spaces HN have equal dimensions
of magnitude N . We assume that an arbitrary, pure
input state ρin(m) is entangled with a known reference
state ρref by a general quantum process

P : ρin(m)⊗ ρref → ρout(m) (1)

thereby yielding the two-particle output state ρout(m).
In particular, we are looking for a universal quantum
process which is independent of the input state and
entangles both particles in an optimal way for all pos-
sible, pure input states ρin(m).

In an N-dimensional Hilbert space an arbitrary in-
put state can always be represented in the form

ρin(m) =
1

N
(1+mijAij) (2)

where the operators Aij (i, j = 1, ..., N) form a basis
for the Lie-Algebra of SUN [14]. (We adopt the usual
convention that one has to sum over all indices which
appear twice .) Explicitly these operators can be rep-
resented by the N ×N matrices

(Aij)
(kl) = δkiδjl − δijδkl/N (k, l = 1, ..., N) (3)

with δij denoting the Kronecker delta-function. These
operators might be viewed as generalizations of the
Pauli spin operators σx, σy and σz to cases with N > 2

and they fulfill the relations Tr{Aij} = 0, A†
ij = Aji.

The characteristic quantity m whose components are
denoted mij (i, j = 1, .., N) might be viewed as a gen-
eralized Bloch vector. For N = 2 the operators Aij

are related to the Pauli spin operators by σz ≡ 2A11 ≡
−2A22, σx+iσy ≡ 2A12 and σx−iσy ≡ 2A21. The self-
adjointness of the density operator ρin(m) implies that
mij = m∗

ji. Furthermore, ρin(m) represents a pure

state only if Tr[ρ2in(m)] = Tr[ρin(m)] = 1 which im-
plies the relation [mijmji − (mii)

2/N ] = N2(1− 1/N).
In a similar way also the two-particle output state of
Eq.(1) can be expressed in terms of these generators of
SUN according to

ρout(m) =
1⊗ 1

N2
+ α

(1)
ij (m)Aij ⊗ 1+ (4)

α
(2)
ij (m)1⊗Aij +Kijrs(m)Aij ⊗Ars.

What are the basic requirements which an optimal,
universal entanglement process P of the general form
of Eq.(1) should fulfill? Definitely the notion of opti-
mal entanglement is not well defined in particular for
mixed states due to the lack of a unique measure of
entanglement [15, 16, 17]. Despite these difficulties it

appears natural to regard the following two conditions
as a minimal set of requirements for an optimal, uni-
versal entanglement process for two particles, namely

Tr2{ρout(m)} = Tr1{ρout(m)} =
1

N
, (5)

S[ρout(m)] = −Tr{ρout(m)ln[ρout(m)]} → minimum

(6)

for all possible input states ρin(m). The first condi-
tion expresses the well know property of pure, two-
particle entangled states that they behave as maxi-
mally mixed states as far as all one-particle properties
are concerned. (Tr1(2) denotes the trace over the state
space of particle 1(2).) The second condition states
that the entangled two-particle output state ρout(m)
should be as pure as possible so that the associated
von-Neumann entropy S[ρout(m)] is minimal. (In Eq.(6)
this entropy is measured in units of Boltzmann’s con-
stant.) Together these two requirements imply that in
the resulting quantum state ρout(m) the quantum in-
formation is distributed over both particles without be-
ing present in each one of the separate particles alone.
If one does not consider both particles together one
looses a maximum amount of information. In this
sense the requirements (5) and (6) characterize opti-
mal entanglement between both particles. In the sub-
sequent treatment it is demonstrated that these two
conditions which concentrate on the information the-
oretic aspects of entanglement characterize uniquely a
universal quantum process which yields entangled two-
particle output states for arbitrary dimensions of the
one-particle Hilbert space HN .

Conditions (5) and (6) imply that an optimal ρout(m)
can always be found by the covariant ansatz

ρout(Rm) = U(R)⊗ U(R)ρout(m)U †(R)⊗ U †(R)

(7)

for all possible R ∈ SUN . Eq.(7) states that the set
of possible two-particle output states ρout(m) forms
a representation of the group SUN × SUN thus en-
suring that the von-Neumann entropy is the same for
all possible input states ρin(m). Thereby R ∈ SUN

represents the particular unitary transformation with
matrix elements Rijkl which transforms a given in-
put state ρin(m) into an arbitrary other input state
ρin(m

′) according to the transformation law m′
ij =

Rijklmkl. In fact, as conditions (5) and (6) are in-
dependent of the input state, the optimal output state
can even be found by the more restrictive invariant
ansatz ρout(Rm) = ρout(m) for all possible R ∈ SUN .
This ansatz is a special case of the covariant relation of
Eq.(7). However, as we want to investigate universal
quantum processes also in a more general context we
do not want to impose this more restrictive invariance
condition already from the very beginning. Further-
more, as conditions (5) and (6) are also invariant under
permutations of the particles an optimal ρout(m) also
has to be permutation invariant.



Apart from the covariance condition of Eq.(7) any
quantum process also has to be compatible with the
linearity of quantum mechanics. This linearity implies
that ρout(m) has to be a linear function of the gen-
eralized Bloch vector m which characterizes the input

state. Thus the characteristic quantities α
(1)
ij (m), α

(2)
ij (m)

and Kijrs(m) of Eq.(4) all have to be linear functions
of m. This linear dependence guarantees that differ-
ent unravellings of the same input state yield the same
output state after application of the universal quantum
process so that this process cannot distinguish between
different unravellings of ρin(m).

Both the covariance condition of Eq.(7) and the lin-
earity constraint impose severe restrictions on general
universal quantum processes of the form of Eq.(4).

Covariant and linear universal
quantum processes

What is the structure of general covariant and linear
quantum processes which result in a two-particle out-
put state which is invariant under permutations of both
particles? Answering this question will yield a unified
theoretical description for a general class of universal
quantum processes which include both universal opti-
mal quantum cloning and universal optimal entangle-
ment as special cases.

The covariance condition of Eq.(7) can be imple-
mented easily by observing that only a tensor product
of the form S = Aij ⊗Aji transforms as a scalar under
SUN × SUN , i.e. U(R) ⊗ U(R)SU†(R) ⊗ U

†(R) =
S. Similarly, it is straightforward to demonstrate that
only tensor products of the formVil = Aij⊗Ajl orV

†
il

transform like generalized vectors under SUN × SUN ,
i.e. U(R) ⊗ U(R)VilU

†(R) ⊗ U
†(R) = VkmRkmil.

Thus the most general two-particle quantum process
which is covariant, linear in m and invariant under
permutations of both particles is of the form

ρout(m) =
1⊗ 1

N2
+ αmijAij ⊗ 1+

αmij1⊗Aij + CAij ⊗Aji +

βmilAij ⊗Ajl + βmliAji ⊗Alj (8)

and is characterized uniquely by the real-valued pa-
rameters α, β and C. These characteristic parameters
have to be restricted to their physical domain which is
defined by the requirement that ρout(m) is a density
operator and must have non-negative eigen values with
Tr[ρout(m)] = 1.

In order to obtain insight into the physical con-
tents of the class of universal, covariant and linear
quantum processes which is described by Eq.(8) let
us investigate the structure of ρout(m) more explicitly.
Due to the covariance condition we can restrict our-
selves to a pure input state with mij = Nδi1δj1 with-
out loss of generality. Introducing an orthogonal basis
{|1〉, ..., |N〉} in the N-dimensional one-particle Hilbert
space HN in which state |1〉 denotes the input state,
i.e. ρin(m = m11e11) = |1〉〈1|, one obtains from Eq.(8)

the expression

ρout(m = m11e11) =M11|11〉〈11|+
N
∑

j=2

|jj〉〈jj|(M23 + C) +

N
∑

j=2

{|1j〉〈1j|M12 + |1j〉〈j1|(C + βm11) +

|j1〉〈1j|(C + βm11) + |j1〉〈j1|M12}+
N
∑

i<j=2

{|ij〉〈ij|M23 + |ij〉〈ji|C +

|ji〉〈ij|C + |ji〉〈ji|M23} (9)

with

M23 = 1/N2 − 2αm11/N − C/N + 2βm11/N
2,

M12 = M23 + αm11 − 2βm11/N,

M11 = 1/N2 + 2αm11(1− 1/N) + C(1− 1/N) +

2βm11(1− 1/N)2.

The non-negativity of ρout(m) implies the constraints
M23 ≥ |C|, M12 ≥ |C + βm11|, M23 + C ≥ 0 and
M11 ≥ 0.

The two-particle output states of Eqs.(8) or (9)
characterize all possible permutation invariant, covari-
ant, linear mappings. They describe in a unified way
the restrictions which are imposed by the linearity of
quantum mechanics on universal quantum processes
which treat both particles in a symmetric way. The
universality of these processes guarantees that they
fulfill any additional conditions for all possible input
states. The general covariance condition of Eq.(7) im-
plies that these additional conditions need not be in-
variant under unitary transformations. They may very
well depend on properties of the initial input state.

As a special case of such a universal quantum pro-
cess let us consider optimal cloning of pure states [3,
4, 5, 6, 7]. In this case one is looking for a mapping
P of the form of Eq.(1) which fulfills the additional
constraint

Tr{ρin(m)⊗ ρin(m)ρout(m)} → maximum (10)

for all possible input states ρin(m). This constraint
involves the input state explicitly and it is equivalent
to maximizing M11 in Eq.(9). Physically speaking this
condition imposes the constraint that the output state
ρout(m) should be as close as possible to the ideally
cloned state ρin(m)⊗ ρin(m). It is straightforward to
work out the optimal parameters which satisfy Eq.(10),
namely 2αm11 = (N+2)/[N(N+1)], βm11 = 1/[2N+
2], C = 0. Inserting these parameters into Eq.(9) one
realizes that optimal cloning can be achieved only im-
perfectly with a probability of P11 ≡ M11 = 2/(N +
1) < 1. With a probability of 1−P11 = (N−1)/(N+1)
in this process also an unavoidable maximally mixed
state is generated which involves all possible Bell states
of the form |ψ1j〉(+) = (|1j〉+|j1〉)/

√
2 with equal prob-

abilities. Thereby state |j〉 can be any of the (N − 1)



basis states which are orthogonal to the pure input
state ρin(m = m11e11). Thus the two-particle output
state of the universal, optimal quantum cloning process
is given by

ρout(m = m11e11) = P11|11〉〈11|+
(1− P11)

N − 1

N
∑

j=2

|ψ1j〉(+) (+)〈ψ1j |. (11)

Nature of the universal, optimally
entangled two-particle states

What is the nature of the entangled states which are
produced by the optimal entanglement process charac-
terized by the covariant and linear map of Eq.(9) and
by conditions (5) and (6)?

Let us first of all determine the values of the char-
acteristic parameters α, β and C of this universal, op-
timal entanglement process. Condition (5) implies that
α = 0. Minimizing the von-Neumann entropy S[ρout(m)]
implies that we have to determine the remaining pa-
rameters β and C in such a way that the number of
eigen values of magnitude zero is as large as possible.
The physical region of the two remaining parameters
C and βm11 is indicated in Fig. 1 by the black area.
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Figure 1: Schematic representation of the physical region
of the parameters y = C and x = βm11 (black) for α = 0
and N = 3. It is determined by the requirement that
ρout(m) has to be non-negative. Each straight line indi-
cates the parameter values for which one of the eigen val-
ues of ρout(m) is zero. The grey dot indicates the condition
for optimal, universal entanglement. It is the only point in
which three types of eigen values of ρout(m) are zero simul-
taneously.

From Fig. 1 it is straightforward to show that the con-
dition of minimal entropy is fulfilled for β = 0 and
C = −1/[N(N − 1)]. This implies that ρout(m) trans-
forms indeed as a scalar under SUN ×SUN as we have
already anticipated earlier. Thus the two-particle out-
put state which is produced by the optimal, universal
entanglement process is independent of the input state

ρin(m) and is given by

ρout(m) =
2!

N(N − 1)

N
∑

i<j=1

|ψij〉(−) (−)〈ψij |.

(12)

In general, ρout(m) is a maximally disordered mixture
of all possible anti-symmetric Bell states

|ψij〉(−) =
1√
2
(|ij〉 − |ji〉) (13)

which can be formed by two possible basis states |i〉 and
|j〉 of the N-dimensional one-particle Hilbert spaceHN .
The number of these anti-symmetric Bell states is given
by [N(N−1)/2!] =

(

N

2

)

. It is interesting to realize that
it is only the anti-symmetric Bell states which appear
in this optimal, universal entanglement process. This is
understandable from the fact that these Bell states are
the only ones which are invariant under arbitrary uni-
tary transformations. This invariance property guar-
antees that one obtains entangled output states for all
possible input states so that the resulting entanglement
process is universal. The other three two-particle Bell
states, namely

|ψij〉(+) =
1√
2
(|ij〉+ |ji〉),

|Φij〉(±) =
1√
2
(|ii〉 ± |jj〉), (14)

do not have this invariance property. If they appeared
in the two-particle output state, it would always be
possible to find a particular input state which produces
a separable, non-entangled output state. Thus such
a quantum process would not fulfill the universality
requirement.

For the case of universal optimal entanglement of
a qubit, i.e. for N = 2, there is only one possible
anti-symmetric Bell state, namely |ψ12〉(−). Thus in
this particular case the universal entanglement process
of Eq.(12) produces the pure two-particle output state
ρout(m) = |ψ12〉(−) (−)〈ψ12| which is known to violate
Bell inequalities maximally [10]. For all higher val-
ues of the dimension of the Hilbert space HN the two-
particle output state is mixed. Nevertheless according
to condition (6) the von-Neumann entropy of all possi-
ble output states is always as small as possible within
the linearity constraints imposed by quantum theory.
Furthermore, it is straightforward to show that all out-
put states are not separable as their partial transposes
have at least one negative eigen value [18] of magnitude
λ = −1/[N(N − 1)] < 0.

How do these optimal, universal two-particle out-
put states behave for high values of the dimension of
the one-particle Hilbert space HN? In general the von-
Neumann entropy of the two-particle output state is
given by

S[ρout(m)] = ln

(

N

2

)

= ln[N(N − 1)]− ln[2!]. (15)



For N ≫ 1 this entropy approaches the value
S[ρout(m)] → ln[N2] − ln[2!]. Thereby ln[N2] is the
entropy of the maximally disordered two-particle state
ρmax = 1 ⊗ 1/N2. Thus, in the limit of large dimen-
sions of the Hilbert space HN the entropies of ρmax

and of ρout(m) differ by one bit only . This shows that
in the limit of large N these universal, optimally en-
tangled states are located very close to the maximally
mixed state ρmax from the information theoretic point
of view. They are very fragile with respect to any dis-
turbances. Loosing one bit of information only changes
them to a maximally mixed state ρmax. Nevertheless,
it is worth pointing out that this does not necessarily
imply that these states are also close to ρmax in state
space. In order to characterize the distance of a mixed
quantum state ρ from the maximally mixed one in state
space one usually decomposes ρ according to

ρ = (1− ǫ)1/d+ ǫρ1 (16)

with a suitably chosen density operator ρ1 (with
Tr[ρ1] = 1) and with d denoting the dimension of the
relevant Hilbert space. The quantity ǫmight be consid-
ered as characterizing the separation of ρ from the max-
imally mixed state. Mixed states which are close to the
maximally mixed one in the sense that 0 ≤ ǫ ≪ 1 are
of particular interest for quantum information process-
ing in high-temperature nuclear magnetic resonance
[19, 20, 21]. In this context Braunstein et al. [22]
have shown recently that in systems consisting of n-
qubits with d = 2n one can always find a sufficiently
small neighborhood around the maximally mixed state
with ǫ = O(4−n) within which all states are separa-
ble. In view of this result it is of interest to work out
also the distance of the universal, optimally entangled
states of Eq.(12) from the maximally mixed state ρmax

in state space. As many of the possible N2 eigen val-
ues of ρout(m) are zero these states are characterized
by ǫ = 1. Thus, despite their closeness to ρmax as far
as the von-Neumann entropy is concerned, these latter
states are well separated from ρmax in state space for
all possible values of the dimension of the Hilbert space
HN .
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