
Dynamics of electronic Rydberg wave packets in the presenceof laser-induced core transitionsO. Zobay and G. AlberTheoretische Quantendynamik, Fakult�at f�ur Physik,Universit�at Freiburg, D-79104 Freiburg im Breisgau, GermanyAbstractRecent theoretical work on the dynamics of electronic Rydberg wave packets underthe inuence of laser-induced core transitions is reviewed. The discussion focuses on theintricate interplay between laser-modi�ed electron correlation e�ects, radiative dampingby the ionic core and the time evolution of electronic Rydberg wave packets. Via thestimulated light force this interplay manifests itself also in the atomic center of massmotion. A uni�ed theoretical framework is provided by combining methods of quantumdefect theory, stochastic techniques and semiclassical path expansions.1 IntroductionThe investigation of physical systems which are situated on the border between the micro-scopic and the macroscopic regime is of crucial importance for our understanding of quantummechanics and has therefore received considerable attention both in atomic physics and inquantum optics within the past decades. Due to their large spatial extension in comparisonwith the Bohr radius a0 = 5:3�10�11m, which sets the characteristic length scale for atomicand molecular quantum phenomena, electronic Rydberg systems are well suited for this pur-pose. The interplay between classical and quantum mechanical aspects in their behavior isrevealed in a particular clear and appealing way in explicitly time-dependent settings. Thishas been a main impetus for numerous recent studies on the dynamics of electronic Rydbergwave packets [1]. As a major result it has been demonstrated that far away from the atomicnucleus their time evolution is dominated by classical aspects of the electronic motion underthe inuence of the Coulomb �eld of the positively charged ionic core and possibly of addi-tional external �elds. Quantum aspects manifest themselves mainly in the interference of theprobability amplitudes associated with the classical trajectories. Consequently, semiclassicalmethods have proven successful for an adequate theoretical description of the electronic timeevolution in the spatial region outside the atomic core. Inside the core region, however, thedynamics is dominated by processes which are intrinsically of quantum mechanical nature.An example is provided by the electron correlation e�ects which lead to scattering of a Ryd-berg electron by the core and to autoionization. These e�ects are appropriately described1



1 INTRODUCTION 2within the language of quantum defect theory (QDT) [2, 3, 4].At present, the behavior of Rydberg wave packets is well examined and well understood inmany respects. Experimentally, for example, radially and angularly localized wave packetshave been investigated [5, 6], the phenomenon of quantum mechanical revivals has beendemonstrated [7] and the inuence of external magnetic and electric �elds has been studied[8, 9]. On the theoretical side, semiclassical methods and QDT have been combined in theform of semiclassical path expansions [1, 10, 11] to provide a convenient and exible means forthe description of Rydberg wave packet dynamics. Before this background the purpose of thepresent article consists in demonstrating that the consideration of isolated core excitation(ICE) processes [12] may o�er new perspectives in the study of electronic Rydberg wavepackets. To this end we review some recent theoretical work in which the wave packetdynamics is examined from various physical points of view. The topics discussed includethe coherent modi�cations of wave packet dynamics by laser-modi�ed electron correlatione�ects, the dissipative inuence of spontaneous emission on wave packets and the connectionbetween electronic wave packet dynamics and atomic center-of-mass motion. The purposeof these investigations is twofold: on the one hand, isolated core excitations in intense laser�elds o�er the possibility to study manifestations of laser-modi�ed two-electron correlationsin electronic wave packet dynamics. Thereby, new e�ects may arise which are not observedwith typical electrostatic con�guration interactions [13, 14]. On the other hand, the presentedresults extend previous work on quantum optical applications of atomic systems with a highdensity of states [15, 16, 17]. It is expected that the complex electronic dynamics of suchsystems o�ers new and interesting possibilities in this context.Isolated core excitations constitute a speci�c kind of interaction of a laser �eld witha Rydberg atom. They play an important role as a spectroscopic tool nowadays [18]. Inparticular, ICE processes have been used successfully for systematic studies of highly excitedautoionizing states of two-electron-like atoms. Basically, an ICE process consists in excitingtwo atomic valence electrons in an optical two-step process. At �rst one valence electron isexcited to a Rydberg state with one or several laser pulses. Subsequently, a further laser pulseexcites the other valence electron to an energetically low lying state of the ionic core. TheRydberg electron acts as a spectator and can be a�ected by laser-induced core transitionsof the second, strongly bound core electron only by the process of shakeup. This shakeupof the Rydberg electron is brought about by a di�erence of the quantum defects of the twoRydberg series associated with the almost resonantly coupled core states. Early work on ICEprocesses [18] has concentrated on weak excitations in which the laser-induced transitionsof the strongly bound core electron can be described perturbatively. In contrast to thesestudies, nonperturbative core e�ects have received some attention only relatively recently[19, 20, 21, 22, 23, 24, 25, 26]. In the following we review some of the recent work on such



1 INTRODUCTION 3nonperturbative laser-induced ICE processes and their inuence on electronic Rydberg wavepackets.In Sec. 2 elementary principles of ICE processes and of their theoretical description byquantum defect theory (QDT) are summarized [12, 27, 28]. With the help of the conceptof photon-dressed core channels [19] these theoretical methods are generalized to cases inwhich the inuence of laser-induced transitions of the strongly bound valence electron can-not be described perturbatively. Combining this theoretical treatment with semiclassicalpath representations [1] for the dynamics of the excited Rydberg electron a simple andphysically transparent description of ICE processes in intense laser �elds and their e�ecton electronic Rydberg wave packets is obtained [29]. Various examples are discussed whichdemonstrate the inuence of the resulting laser-modi�ed electron correlations on the dy-namics of electronic Rydberg wave packets. A particularly interesting e�ect of this kind isthe recently studied suppression of autoionization by synchronizing the mean classical orbittime of an electronic Rydberg wave packet with the Rabi period of a resonantly driven ioniccore transition [30].In the context of wave packet dynamics in Rydberg systems the study of dissipativeand stochastic inuences which destroy quantum coherences has not yet received much at-tention. De�nitely, to some extent this may be attributed to the fact that due to the highlevel density of Rydberg systems the solution of the relevant master equations constitutes adi�cult mathematical and numerical problem. In ICE processes such a decohering inuenceon the dynamics of an electronic Rydberg wave packet arises naturally by the radiativedecay of the tightly bound core electron. In Sec. 3 recent results [31] on e�ects of radiativedamping in ICE processes are discussed. It is shown that with the help of a decomposition ofthe relevant master (optical Bloch) equation into N -photon contributions and the applica-tion of semiclassical path representations a practical and physically transparent theoreticaldescription can be developed. On the basis of this theoretical treatment physical insight isobtained into the intricate interplay between laser-modi�ed electron correlation e�ects andthe spontaneous emission of photons by the ionic core which is of a stochastic nature andtends to destroy quantum coherences. Examples are presented which analyze the e�ects theradiative damping of the core transition has on the laser-induced suppression of autoion-ization. Furthermore, the inuence of an electronic Rydberg wave packet on the process ofphoton emission by the ionic core is discussed.Motivated by recent investigations in the �eld of atom optics [32, 33] in Sec. 4 theinuence of intense �eld ICE processes on the atomic center of mass motion is investigated.In general, the large mass di�erence between an atomic nucleus and its electrons implies thatmomentum can be transferred from a laser �eld to the atomic center of mass essentially onlyby excitation of the internal electronic degrees of freedom. The resulting strong correlations



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 4between the internal electronic dynamics of an atom and its center of mass motion o�er thepossibility to deect atoms in a controlled way by an appropriate choice of the electronicexcitation process. For these purposes laser-induced two electron excitation processes andin particular ICE processes might o�er interesting new perspectives. In order to work outmain aspects of the intricate, coherent interplay between laser-modi�ed electron correlatione�ects and their inuence on the atomic center of mass motion the discussion focuses one�ects arising from the stimulated light force [34, 35].2 Isolated core excitation in intense laser �elds2.1 Basic principles of isolated core excitationA laser �eld impinging on a Rydberg atom may interact not only with the Rydberg electronbut also with the residual ionic core. This latter type of interaction usually proceeds in theform of an isolated core excitation (ICE) which is characterized by the fact that the Rydbergelectron does not participate directly in the interaction between laser �eld and core [12, 18].Isolated core excitations have been studied extensively in the alkaline earth elements Mg,Ca, Sr, and Ba as the corresponding singly-charged ions are excited easily with laser �elds inthe optical or near-uv regime. An example for a typical ICE process is shown schematicallyin Fig. 1 for the case of Mg: in a �rst step, the atom is excited from the j3s2i ground state toa Rydberg state j3sndi by a two-photon absorption process. The atom thus consists of theMg+(3s) ionic core and the nd-Rydberg electron which orbits around the nucleus therebykeeping a large distance from it most of the time. By applying a further laser pulse tunedto a resonance of the Mg+ ion, e. g. 3s ! 3p, the core may now be stimulated to make atransition to an excited state. In comparison to the interaction with the core the direct e�ectof the laser �eld on the Rydberg electron, i. e. photoionisation, is negligible. However, thetransition process exerts an indirect inuence onto the electron which is brought about bycorrelation e�ects: as soon as the core is excited the Rydberg electron senses a di�erent shortrange core potential to which it has to accommodate. This means that generally it cannotremain in a stationary state (i. e., it experiences a \shakeup"). Instead, its wave functiontransforms into a superposition state which is obtained essentially by the projection of theinitial Rydberg state jndi onto the Rydberg eigenstates jn0di of the excited channel. Theextent of shakeup, i. e. the amount of change in principal quantum number, depends on howstrongly the alteration of the core potential is felt by the Rydberg electron. A quantitativemeasure for this is given by the di�erence in quantum defects of the two series involved. Ithas to be noted that the excited channel has autoionizing character as it lies far above the�rst ionization threshold.The above discussion suggests to describe isolated core excitation processes by an inter-
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j3s2i 66j3sndi j3pn0di j3s "p(f)iFigure 1: Example of an isolated core excitation process in Mg. After the atom has beenprepared in a j3sndi Rydberg state a further laser pulse excites the core 3s� 3p transition.In the excited core channel autoionization is possible.action operator of the formVICE = �12
21 (j�2i h�1j+ j�1i h�2j)
 1r (1)from which the role of the Rydberg electron as a spectator becomes obvious. In Eq. (1),1r denotes the identity operator for the radial coordinate r of the Rydberg electron, andthe j�ii are the channel wave functions of the two Rydberg series involved. These channelwave functions include the state of the ionic core as well as spin and angular momentumof the Rydberg electron [1, 2]. The Rabi frequency of the core transition is given by 
21 =h�2 jd � ej�1i E and is assumed to be real-valued. Thereby, d denotes the atomic dipoleoperator and E , e are the electric �eld amplitude and polarisation, respectively. From Eq. (1)it follows that the angular momentum of the Rydberg electron is conserved in an ICEtransition. As the two channels have opposite parity, there is no con�guration interactionbetween them. Despite its simplicity the ansatz (1) describes actual ICE processes to a veryhigh degree of accuracy as many experimental and theoretical studies have shown [18].Weak �eld isolated core excitations: So far, investigations involving isolated core excita-tions have mostly been performed in the perturbative regime where the core transition isdriven by a weak laser �eld. Typically, one studies the frequency dependence of the tran-sition rate for excitation of the autoionizing channel 2 from an initially prepared Rydbergstate in channel 1. Thereby, valuable information about the details of the shakeup processis obtained. According to Fermi's golden rule the transition rate is given by the expression



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 6�(!) = 2�j hn1j h�1 jVICE jF"i j2 with the laser frequency !, the initial state jn1i j�1i ofenergy "1 and the excited state jF"i of energy " = "1+! (we use Hartree atomic units with\�h = e = me = 1"). With the help of Eq. (1) and methods of multi-channel quantum defecttheory (MQDT) [2, 3] the determination of the rate is reduced to the calculation of theoverlap integral between Coulomb functions which is discussed below. Finally, one obtains�(!) = 2��
212 �2 ��31 sin2 �(�1 � �2)�2("1 + ! � ")2 (1� e�4�Im�2)je�2�i�2 � e2�i�2 j�2Im�2�1' 2�
212 �2 ��31 sin2 �(�1 � �2)("1 + ! � ")2 Im�2j sin�(�2 + �2)j2 (2)with the complex quantum defect �2 of channel 2 and the e�ective quantum numbers �i ofinitial and �nal state. Thus, the transition rate is essentially given by the product of thesquare of the overlap integral sin�(�1 � �2)=(�("1 + ! � ")) of the radial Rydberg wavefunctions and the density of states je�2�i�2 � e2�i�2 j�2 of the autoionizing Rydberg statesin channel 2. Due to their coupling to the continuum channel these states acquire a �nitespectral width leading to an ionization rate of 2 Im�2=�32 and an ionization probability of4� Im�2 per round trip of the Rydberg electron around the nucleus. In case the real parts ofthe quantum defects of the two channels are equal the energy dependence of overlap integraland density of states implies that only the Rydberg state with n2 = n1 is excited in channel2 (Fig. 2(a)). The e�ect of the ICE transition on the Rydberg electron and thus the shakeupare minimal in this case as the scattering phase is not changed by the excitation. However,in case the quantum defects di�er from each other a larger number of Rydberg states inchannel 2 may be excited which all have a nonvanishing overlap integral with the initialstate (Fig. 2(b)).The overlap integral for Coulomb functions: The overlap integral between Coulomb func-tions plays an important role in the theory of isolated core excitations. In the calculationof the transition rate �(!) of Eq. (2), for example, it is brought into play in the followingway: Describing the ICE interaction in the form of Eq. (1) the determination of �(!) isreduced to the evaluation of the overlap integral of radial Rydberg wave functions. Thisintegral may be split up into two parts corresponding to the radial coordinate r beingsmaller or larger than the ionic core radius rc , respectively. The core radius is of the or-der of a few Bohr radii whereas the entire Rydberg wave function extends over a regionwith a radius of about 3n2=2 Bohr radii. Therefore, the inner integration which would haveto be performed numerically gives only a small contribution which may be neglected to avery good degree of approximation. Outside the core region the radial dependence of thewave functions may be described in the framework of MQDT with the help of Coulombfunctions. In the present case one obtains hr j n1i j�1i = i2(�1)l+1��3=21 Cl(r; "1) j�1i andhr j F"i = iCl(r; ")e�i��2(e�2�i�2 ��22)�1�23 j�2i+F3(r; ") j�3i for r � rc. For the followingit is convenient to introduce Coulomb functions Cl(r; ") of energy " and angular momentum
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Figure 2: Dependence of the transition rate on the di�erence in quantum defects. The upper�gures show the overlap integral of the radial wave functions sin�(�2 � �1)=(�("+ !� "1))(full curves) and the density of states je�2�i�2 � e2�i�2 j�2 (dashed) as a function of �2 � �1for �xed �1 = 50, �1 = 0:0 and �2 = 0:0+ i�0:02 (a), �2 = 0:5+ i�0:02 (b). In the �rst caseone maximum of the density of states coincides with the central maximum of the overlapintegral whereas the other maxima lie in its zeroes: the transition rate � therefore displaysa single maximum as shown in the lower �gure. In the other case the maxima of the densityof states coincide with the local extrema of the overlap integral or lie in the sides of thecentral maximum: several states are excited.l which are de�ned by Cl("; r) = ��l ("; r)ei�� � �+l ("; r)e�i�� (3)with the incoming and outgoing Coulomb functions ��l as given in [1]. The functions Clconverge to zero for r !1 for all complex " except for " real and positive. The symmetricunitary scattering matrix � characterizes the con�guration interaction between the channelsinvolved. In the present case it is a 3�3-matrix with �31 = �32 = 0. The radial wave functionF3(r) in the continuum channel needs not to be speci�ed further in the present context.The essential problem thus consists in the calculation of R1rc dr Cl(r; "2)Cl(r; "1). Consider�rst the case of both "i complex, but not real and positive. The starting point for theevaluation according to Ref. [28] are the identities Cl("i)("j�h)Cl("j) = 0 with (i; j) = (1; 2)and (2,1), respectively. Thereby, h denotes the radial Coulomb operator �12 d2dr2 + l(l+1)2r2 � 1r .Subtracting one of these equations from the other and integrating from rc to 1 one obtains



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 8after an integration by partsZ 1rc dr Cl(r; "2)Cl(r; "1) = W [Cl("2); Cl("1)]1 �W [Cl("2); Cl("1)]rc2("2 � "1) (4)with W [f; g]r the Wronskian of f and g at r. As the functions Cl go to zero for large r,W [Cl("2); Cl("1)]1 vanishes. To determine the Wronskian at rc one makes use of the weakenergy dependence of the functions ��l for small r: the relation W [��l ("); �+l (")]r = 4i=�will hold approximately at r � rc if ��l and �+l are taken at two energies with j"1� "2j � 1.Using the de�nition (3) one thus obtains [27]Z 1rc dr Cl(r; "2)Cl(r; "1) = �4 sin�(�2 � �1)�("2 � "1) : (5)As it would have been expected the integral vanishes whenever j�2��1j is equal to a positiveinteger. The overlap integrals may also be evaluated with continuum wave functions. For "1real and positive one obtainsZ 1rc dr Cl(r; "2)�(�)l (r; "1) = � 2ie�i��1�("1 � "2) : (6)Finally we consider two continuum wave functions S("1) and S("2) ("i > 0) which behaveasymptotically as S("i) ' sl cos(��i)+ cl sin(��i). Thereby, sl and cl denote the real-valuedCoulomb functions of Ref. [1]. The overlap integral for these functions is given byZ 1rc dr S(r; "2)S(r; "1) = �("2 � "1) cos �(�2 � �1) + P 1�("2 � "1) sin�(�2 � �1) (7)with P denoting the principal value. To derive this expression one has to take into accountalso the Wronskian W [S("2); S("1)]1 which is not vanishing in general.As it was mentioned above the ICE method which was introduced by Cooke et al. in1978 [12] has found its main application so far in the frequency-resolved study of highlyexcited autoionizing states in alkaline earth atoms [18]. Its particular advantage stems fromthe fact that it allows one to excite selectively the doubly excited quasi-bound Rydbergstates without simultaneously exciting degenerate continua. In this way the interpretationof optical spectra is greatly facilitated.However, in recent years one could observe a growing interest in the use of the ICEtechnique in time-resolved investigations as well as in questions concerning isolated coreexcitations in the nonperturbative regime. For example, Robicheaux [19] theoretically con-sidered the following problem: two Rydberg series coupled by a continuous laser �eld throughICE are excited from a low-lying bound state with a weak laser �eld. It was predicted thatnonperturbative modi�cations in the resulting photoabsorption spectra could be observedexperimentally as soon as the Rabi frequency of the core transition exceeds the total reso-lution of of the probe laser-atom system. Van Druten and Muller [20, 21] investigated the



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 9excitation of an isolated core transition with an intense fs-pulse and with the atom initiallyprepared in a bound Rydberg state. In their experiment they were able to observe non-perturbative modi�cations of the ionization spectrum as well as the population of Rydbergstates adjacent to the initial one as soon as the maximum induced Rabi frequency becamelarger than the mean orbit frequency of the Rydberg electron.In the work of Wang and Cooke [22] a perturbative short pulse isolated core excitationis used to prepare an autoionizing Rydberg wave packet. Studying the time evolution of thiswave packet they showed that it does not autoionize according to an exponential decay law,but in a sequence of discrete stair steps separated by the orbital period of the wave packet.This is due to the fact that autoionization is mediated by the interaction of the Rydbergelectron with the ionic core and can thus only occur if the wave packet is close to the nucleus.It was shown that the e�ect of stepwise decay may be exploited for the creation of \darkwave packets". A dark wave packet is a spatially localized minimum in the otherwise slowlyvarying probability density of a Rydberg electron which shows a time development similarto a normal wave packet. Story, Duncan, and Gallagher [23] examined experimentally thepossibility of exciting the second valence electron in Mg after preparing the �rst one asa Rydberg wave packet. Contrary to the case of resonant excitation an o�-resonant coreexcitation is only e�ective when the wave packet is close to the nucleus. This is due to thefact that in this case the photon energy has to be partitioned between core and Rydbergelectron which is only possible if both are close together.Recently, a mechanism closely related to isolated core excitation was investigated boththeoretically and experimentally in a number of articles [24]. In these studies, a particularmanifestation of electron correlation e�ects in the multiphoton ionisation of two-electronatoms was worked out which was termed continuum-continuum Autler-Townes splitting:the authors considered the photoelectron spectrum obtained in a setup in which a short andintense laser pulse excites one electron into the continuum thereby simultaneously drivingRabi oscillations of the other. If this core resonance were not excited one would expect a sin-gle maximum in the photoelectron spectrum (neglecting higher-order photon absorptions).However, in the presence of the Rabi-oscillations this maximum splits up into a double-peakstructure with a peak separation equal to the e�ective Rabi frequency. The nature of thise�ect which is due to electron correlations may readily be explained within the picture of\dressed Rydberg channels" described in the next subsection: one can think of the electron tobe simultaneously excited into two fragmentation channels the thresholds of which are sep-arated by the Rabi frequency. Aspects of the multiphoton ionisation of two-electron atomsin which one electron is initially prepared in a Rydberg state are examined in Refs. [25] and[26]. For the case of ionization with a short and intense pulse it is shown that dependingon whether the mean orbit time of the Rydberg electron is shorter or longer than the pulse



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 10duration preferably the outer or the inner electron is excited into the continuum.In view of these investigations it is quite natural to ask how the dynamics of a radialRydberg wave packet is inuenced by the interaction with a residual ionic core in whichRabi oscillations are induced by an intense laser �eld. This question has aroused someinterest in the literature recently and it is this particular aspect of laser-induced electroncorrelation e�ects in two-electron atoms the present article will focus on. The purpose of thissection consists in putting the basics of the problem into perspective, providing an adequateframework for the theoretical description and discussing main features of the coherent wavepacket dynamics. Questions of dissipative inuences and the connection with the atomiccenter of mass motion are deferred to the subsequent sections.2.2 Theoretical description of ICE processes in intense laser �eldsIsolated core excitation processes in intense laser �elds are conveniently described withinthe framework of MQDT. The concept of \dressed Rydberg channels" [19] which later onproves very helpful for a qualitative understanding of various aspects of the wave packetbehavior is thus introduced in a natural way. In order to work out the main features of thederivation most clearly in the following we examine an excitation process in a two-channelsystem (Fig. 3) in which autoionization of the core-excited channel is neglected. However,the discussion may easily be generalized to more complicated N -channel cases.Figure 3: Excitationscheme for the two chan-nel model: (a) bare Ryd-berg series, (b) \dressed"Rydberg series.
An alkaline earth atom is initially prepared in a low lying bound state jgi with energy"g. The atom is situated in a cw{laser �eldE(t) = Ee e�i!t + c.c. (8)which is tuned near resonance with a transition of the positively charged ionic core. Typicallyelectron correlations imply that as long as the atom remains in the initial state jgi this laser�eld is well detuned from any atomic transition. Therefore it has negligible e�ect on theatomic dynamics. But as soon as an outer atomic valence electron is excited to Rydberg



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 11states close to threshold the cw-laser �eld starts to induce transitions between the tworesonantly coupled states of the ionic core which have energies "1 and "2, respectively. Inthe following only intensities I of the laser �eld E(t) are considered which are small incomparison with the atomic unit, i. e. I � 1017 Wcm�2. In this case e�ects of laser-inducedtransitions of the excited Rydberg electron to continuum states well above threshold, whichcould take place in addition to core transitions, are expected to be small and will be neglectedin the following. However, they can be incorporated in the formalism easily with the helpof intensity dependent quantum defects [15].In the following we consider the case in which the valence electron is excited coherentlyto the Rydberg states by a short and weak laser pulseEa(t) = Ea(t)eae�i!at + c.c. ; (9)where Ea(t) is a Gaussian{shaped envelope centered around time ta with pulse duration �a.This implies that a radial electronic Rydberg wave packet is generated by this short laserpulse. The wave packet moves in the Coulomb �eld of the positively charged ionic core.Whenever it penetrates the core region it is shaken up by the Rabi oscillations of the almostresonantly coupled ionic core states. E�ects of this shake{up process on the dynamics ofthe electronic Rydberg wave packet may be probed, for example, by a second time{delayedshort laser pulse (frequency !b, polarization eb, pulse duration �b) which is centered aroundtime tb and which induces transitions to an energetically low lying bound atomic state jfiwith energy "f . Typically this �nal state does not coincide with the inital state jgi. Theinteraction of the atom with both pulses takes place in a region which extends a few Bohrradii around the atomic nucleus only [1, 15, 39]. Therefore the probability of observing afterthe interaction with both laser pulses the atom in the �nal state is large whenever theinitially prepared radial electronic Rydberg wave packet is close to the atomic nucleus. Thedependence of the pump-probe signal on the time delay between both pulses thus yields apicture of the wave packet dynamics. For the sake of simplicity let us assume in the followingthat the envelopes of pump and probe pulse are identical and that "g +!a = "f +!b = �". Itshould be noted that wave packet detection with the phase-sensitive pump-probe detectionscheme [36] which is most frequently used today may also be described within the formalismintroduced below. In this case the quantity jMfg(t)j2 (with f = g) has to be interpreted asthe variance of the measured Rydberg population after pump and probe pulse. This varianceis obtained by altering the delay between both pulses by amounts of the order of severaloptical cycles.In the detection scheme mentioned �rst the probability of observing after the interactionwith both laser pulses the atom in state jfi is given by Pfg(tb � ta) = jMfg(tb � ta)j2 with



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 12[1, 13] Mfg(tb � ta) = � 12�i Z 1+i0�1+i0 d" e�i"(tb�ta) ~E�b ("� �")Tfg(") ~Ea("� �"): (10)This expression is valid in lowest order perturbation theory with respect to pump and probepulse and provided that jtb � taj � �a; �b. The Fourier transforms of the envelope functionsof pump and probe pulse are denoted by~Ek(") = Z 1�1 dt Ek(t)ei"(t�tk) (11)with ~Eb(") = ~Ea(") as stated above. The two-photon transition amplitudeTfg(") = �f ����d � e�b 1"�Hd � ea���� g� ; (12)with d the atomic dipole operator, describes the response of the atom in the intense cw-laser�eld E(t) to pump and probe pulse. Thereby, the Hamiltonian operator H characterizes thedynamics in the excited atomic channels under the inuence of the intense cw-laser �eldE(t). In the dipole and rotating wave approximation it is given byH = H1 +H2 + VICE: (13)The Hamiltonians Hj = (hjj +Vjj(r) + "cj) j�ji h�jj (14)describe the electronic dynamics in the bare atomic channels 1 and 2 in the absence of thecw-laser �eld. The radial Hamiltonian for the Rydberg electron in channel j with angularmomentum lj is given by (hjj +Vjj(r)) with hjj = �12 d2dr2+ lj(lj+1)2r2 � 1r andVjj(r) the short{range potential which describes e�ects of the residual core electrons. Due to the conservationof angular momentum in the ICE transition one has l1 = l2 = l. The channel thresholds inthe RWA are given by "c1 = "1, "c2 = "2 � !. The operator VICE is de�ned in Eq. (1).The main problem in the theoretical description of nonperturbative ICE transitions isthus the determination of the two-photon transition amplitude. This goal may be achievedwith the help of the Dalgarno-Lewis method [37] by solving the inhomogeneous Schr�odingerequation ("�H) j�(")i = d � ea jgi (15)from which the two-photon transition amplitude is obtained by the relationTfg(") = hf jd � e�b j�(")i : (16)The inhomogeneous Schr�odinger equation can be solved with the help of methods of MQDT.For this purpose we adopt an ansatz of the formh
; r j�(")i = Xj=1;2�j(
)F (j)(r; ")=r: (17)



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 13The channel coordinates 
 represent the coordinates of the core electrons and the angu-lar momentum and spin of the excited Rydberg valence electron. The radial part of thewave function of the excited Rydberg valence electron in channel j is denoted by F (j)(r; ").Projection of Eq. (15) onto the normalized channel states j�ji yieldsf"� [h+ "c +V(r)� 12
21]gF(r; ") = D(r) (18)The 2 � 2 matrices h, V, "c and 
21 are obtained in an obvious way from Eqs. (14) and(1). The components of the column vector F(r; ") are the radial wave functions of theRydberg valence electron F (j)(r; "). The laser{induced coupling between state jgi and theexcited channels is described by the column vector D(r) with matrix elements Dj(r) =r R d
��j(
)d � ea h
; rj gi. In the excitation scheme under consideration the coupling be-tween jgi and channel 2 may be neglected (D2(r) = 0). We can assume Vj(r) ' 0 andD1(r) ' 0 for r greater than the core radius rc. In the close-coupling equations (18) thelaser-induced interaction between both channels appears as a long-range interaction inde-pendent of the radial coordinate r of the Rydberg valence electron.In order to determine the two-photon transition amplitude we subject Eq. (18) to theorthogonal transformation O =  cos' � sin'sin' cos' ! (19)which is de�ned by the eigenvalue relationOT ("c � 12
21)O = ~"c: (20)The 2 � 2 matrix O describes the transformation between the bare core channel statesj�ji and the corresponding photon-dressed core channel states [19]. The diagonal matrix~"c de�nes the dressed energies of the ionic core. Explicitly these dressed energies are givenby (~"c)11 � ~"c1 = "c1 � 12
21 tan' and (~"c)22 � ~"c2 = "c2 + 12
21 cot'. The correspondingrotation angle ' is de�ned by the relation tan(2') = 
21=� with the detuning � = "c2�"c1.Applying this transformation to the inhomogeneous Schr�odinger equation (18) yieldsf" � [h+ ~"c + ~V(r)]g~F(r; ") = ~D(r) (21)with the transformed con�guration interaction matrix ~V(r) = OTV(r)O. The correspond-ing transformed state vector of the Rydberg valence electron and the transformed dipole-couplings are given by ~F(r; ") = OTF(r; ") and ~D(r) = OTD(r), respectively.Eq. (21) shows that as far as the dressed channels are concerned the long-range couplingcontained in Eq. (18) causes two e�ects: on the one hand, it leads to an energy shift of theionization thresholds which is due to the ac-Stark splitting of the dressed ionic core states.This shift { together with the form (31) of the photoionization dipole matrix elements { is



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 14also the reason for the appearance of the continuum-continuum Autler-Townes splitting [38].On the other hand, a short-range coupling is induced between the dressed channels whichis described by the transformed con�guration interaction ~V(r). Outside the ionic core, i. e.for r � rc, this coupling vanishes and the Rydberg electron dynamics is described by thepure diagonal Coulomb hamiltonian. Eq. (21) is thus of a form amenable to an analysisby the methods of MQDT. In particular, it follows that formally a two-channel Rydbergsystem with (laser-induced) short-ranged con�guration interaction may be associated withEq. (21) (Fig. 3(b)). This Rydberg system is characterized by a 2 � 2 scattering matrix~� and, furthermore, by photoionization and -recombination dipole matrix elements ~D(�)geaand ~D(+)feb which describe the coupling to the low lying bound states jgi and jfi [4]. Thesequantities are smooth functions of energy across any threshold [2, 39]. From Refs. [1, 13] itfollows that the two-photon transition amplitude for the transformed system which is equalto the transition amplitude for the original one is given byTfg(") = T (s)fg + 2�i ~D(+)feb(e�2�i ~� � ~�)�1 ~D(�)gea : (22)The diagonal 2� 2 matrix e�2�i ~� has elements(e�2�i ~� )jj = expf�2�i[2(~"cj � ")]�1=2g: (23)The smooth part of the transition amplitude can be partitioned into T (s)fg = T (s)fg;nr +i� ~D(+)feb ~�� ~D(�)gea . It can be shown that the non-resonant part T (s)fg;nr does not enter intoactual calculations of Mfg [34].It remains to determine the analytical form of the dressed scattering matrix ~� andthe dressed energy-normalized dipole matrix elements. For this purpose we consider thehomogeneous Schr�odinger equation in the absence of the intense cw-laser �eld, i. e.f"� [h+ "c +V(r)]gF (+)(r; ") = 0: (24)As V12(r) = V21(r) � 0 this equation has a 2�2 fundamental system of energy-normalizedregular solutions of the formF (+)(r; ") = 12 [��(r; ")� �+(r; ")�] for r � rc (25)with � =  e2�i�1 00 e2�i�2 ! (26)and F (+)12 (r; ") = F (+)21 (r; ") = 0 for 0 � r < 1. The quantum defects of the undressedRydberg series are given by �j and ��(") denote the 2 � 2 diagonal matrices of incomingand outgoing Coulomb functions [��(")]jj = ��("� "cj).



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 15Following the arguments of Robicheaux [19] in terms of these solutions an approximatefundamental system of regular solutions of the homogeneous part of Eq. (21) for the energyregion above both thresholds is given by~F (+)jk (r; ") = Xi;l=1;2OTjiF (+)il (r; "+ "ci � ~"cj)Olk (27)with ~F (+)jk the j{th vector component of the k{th solution (j; k = 1; 2). The insertion of thisansatz into the left hand side of Eqs. (21) yields("� hjj � ~"cj) ~F (+)jk (r; ")� Xm=1;2 ~V(r)jm ~F (+)mk (r; ") =2Xl;m;n;p=1OTjm[V(r)O]mlOTln[F (+)np (r; "+ "cm � ~"cj)�F (+)np (r; "+ "cn � ~"cl)]Opk: (28)Thereby, one takes into account that the angular momenta of the Rydberg electron in bothchannels coincide. For r > rc the right hand side of Eq. (28) vanishes because outsidethe core region the core potentials V(r) vanish. For r � rc the di�erence between thesolutions F (+)np (r; " + "cm � ~"cj) and F (+)np (r; " + "cn � ~"cl) can be estimated semiclassicallyto be of the order of (r3=2c maxfj�j ; j
21jg) [39]. For typical core radii of a few Bohr radiiand laser intensities I much less than the atomic unit of intensity, i. e. I � 1017 Wcm�2,this di�erence is thus vanishingly small. On the other hand, the short-range potentialsbehave as Vij(r) ' �(Z � 1)�ij=r + aij + o(1) for small r with Z the nuclear charge andaij constants of the order of the atomic unit. However, a short calculation shows that thedivergent contributions �(Z � 1)�ij=r compensate so that the right hand side of Eq. (28)is everywhere small. Therefore, to a good degree of approximation a fundamental system ofregular solutions of the homogeneous part of of Eq. (21) is given by Eq. (27).The functions ~F (+) behave asymptotically as~F (+)jk (r; ") ' �jk��l (r; "� ~"cj) + �+l (r; "� ~"cj)~�jk: (29)with ~� = OT�O: (30)Eq. (30) thus yields the dressed scattering matrix. From the de�nition of the photoionizationdipole matrix elements D(�) = �~� R10 drF (+) y(r)D(r) it follows that~D(�)gea = OTD(�)gea (31)and, correspondingly, ~D(+)feb = D(+)febO: (32)In the particular excitation scheme of Fig. 3 the 2-components of the bare dipole matrixelements are equal to zero. Inserting Eqs. (30){(32) into Eq. (22) yields the �nal expression



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 16for the two-photon transition amplitude. The validity of this result may also be checkednumerically [29].Eqs. (30){(32) show that the laser-induced coupling of the bare core states is transferredin a simple way to the Rydberg channels: the dressed eigenstates of the core are obtainedfrom the bare ones by the orthogonal transformation (�1;�2)O = (~�1; ~�2). This connectionis conveyed directly to the scattering matrix and the dipole matrix elements. By an appro-priate choice of the parameters which characterize this laser{induced coupling, i. e. detuning� and Rabi frequency 
21, \unusual" scattering matrices which have large o�-diagonal el-ements may be realized. This aspect is further investigated in the following subsection. Asecond e�ect of the laser-induced coupling consists in shifting the energies of the channelthresholds to the values of the dressed core states. These shifts are taken into account inthe diagonal matrix e�2�i ~� .Perturbative theoretical descriptions of ICE transitions are recovered in the limit j'j �j
21=2�j � 1 [19, 29]. For example, assume that the core-excited Rydberg series is slightlycoupled to a continuum channel and consider the following typical situation from energy-resolved spectroscopy: A �rst weak cw-laser with amplitude E1 and frequency !1 excitesthe initial state jgi almost resonantly to a Rydberg state jn1i in channel 1. A secondweak cw{laser couples jn1i to states j�2i in the autoionizing channel 2 with energies "�2 ="2 � 1=(2�22 ). Modeling the autoionizing character of the Rydberg series in channel 2 bya complex quantum defect �2 the depletion rate � of the initial state jgi is given by� = �2 jE1j2 Im Tgg("g+!1) according to Fermi's Golden rule. For this quantity one obtainsfrom Eq. (22) in the limit j'j � j
21=2�j � 1 and Im�2 � 1� = ( 2�2(
1=2)2sin2 �(�1 + �1))(�
212 �2 Im�2jsin�(�2 + �2)j2 sin2 �(�1 � �2)�2 ) ; (33)with the Rabi frequency of the transition jgi ! jn1i denoted by 
1. Thereby the e�ectivequantum number �1 is related to the excited energy in channel 1 by "g +!1 = "1� 1=(2�21 ).In Eq. (33) the �rst term in curly brackets can be interpretated as the probability of (almostresonant) excitation of the bound Rydberg state jn1i from the initial state jgi. The secondterm describes one{photon excitation of the autoionizing channel states j�2i from the boundRydberg state jn1i in accordance with Eq. (2).It should be noted that the above description may easily be generalized to multichanneltransition processes in which the initial state is excited into a group of Coulomb fragmenta-tion (free) channels which may be coupled to further free channels by electron correlationsand by laser{induced excitations of the ionic core [19, 29]. Thereby the laser{induced exci-tations of the core can arise from one or several cw{laser �elds. In particular, Eqs. (22) and(30){(32) remain valid if the matrix O is interpreted as the transformation matrix betweenthe bare and dressed core states in the N -channel system. Another extension of the formal-



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 17ism concerning wave packet preparation by power broadening is described in Ref. [29]. Inthis case the ICE-coupled Rydberg series are excited from the initial state by an intensecw-laser �eld. A wave packet will be generated if the state jgi is depleted on a time scaleshort in comparison with the mean wave packet orbit time [15].2.3 Electronic Rydberg wave packet dynamics under the inuence oflaser-induced core transitionsIn this subsection the theoretical results derived above are used to examine various aspectsof the dynamics of electronic Rydberg wave packets under the inuence of isolated coreexcitations. In the �rst part the technique of semiclassical path expansions is used to discusshow the e�ects of electron correlations and laser-�eld intensity are reected in the short-timebehavior of the pump-probe signal. Subsequently a kind of synchronization between wavepacket and core dynamics is described which is obtained by choosing the wave packet orbittime equal to an integer multiple of the core Rabi period [30]. In this way the autoionizationof the Rydberg electron is e�ectively inhibited. Finally it is shown that the investigation ofthe dressed eigenenergies of the atom in the laser �eld yields an alternative approach to thequalitative understanding of the wave packet dynamics.2.3.1 Short-time behavior of the pump-probe signalIn order to work out the e�ects of laser-induced core excitation on the wave packet dynamicsmost clearly we consider in the following again the excitation scheme of Fig. 3 in whichautoionization may formally be taken into account with the help of complex quantum defects.These ICE e�ects are conveniently analyzed by representing the pump-probe probability inthe form of a semiclassical path expansion [1]. For this purpose we insert expression (22)into Eq. (10) and expand the inverse matrix as a geometric series. Thus the probability ofobserving the atom in state jfi after the interaction with both short laser pulses is given byPfg(tb � ta) =���� Z 1+i0�1+i0 d" e�i"(tb�ta) ~E�a("� �") ~D(+)feb 1XM=1(e2�i ~� ~�)M�1e2�i ~� ~D(�)gea ~Ea("� �")����2 (34)as long as j tb � taj � �a; �b.Eq. (34) conveys the following picture for the wave packet evolution: after the initialshort pulse excitation (characterized by the photoionization amplitudes ~D(�)gea) only thosefractions of the radial electronic Rydberg wave packet which are excited into closed dressedchannels will return again to the core region and therefore contribute to Pfg(tb�ta). On eachcomplete orbital round trip such a fraction acquires a phase of e2�i~�jj . Thereby, the quantity2�~�jj is the classical action which a Rydberg electron of energy (" � ~"ci) < 0 accumulates



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 18during one period of motion along a purely radial Kepler orbit with zero angular momentum.Each time a fraction of the radial electronic Rydberg wave packet returns to the core regionit may be scattered into the other dressed channel. This scattering process is described bythe dressed scattering matrix ~�. If autoionization is present the moduli of the eigenvaluesof ~� are less than 1 so that at every scattering event some parts of the wave functionare lost into the continuum. The action of the probe pulse is characterized by the factor~E�a ("� �") ~D(+)feb . According to this interpretation of Eq. (34) the M{th summand of the seriesdescribes the contribution to the pump{probe signal which is associated with the M{threturn of the excited Rydberg electron to the core region.In the dressed channel picture the e�ect of the cw-laser �eld on the wave packet dynamicsis thus described by the modi�cation of the quantities ~�, ~D(�)gea and ~D(+)feb on the one handand by the shift of the thresholds ~"c;i on the other hand. Therefore, the most importantparameters which determine the behavior of the wave packet are (1) the ratio between theRabi period TRabi = 2�=
21 of the ionic core and the wave packet orbit time Torb and(2) the di�erence of the quantum defects of the bare Rydberg series which determines theextent of the shakeup. The associated e�ects become manifest already in the short-timebehavior of the pump-probe signal (i. e. for pump-probe delays of the order of several orbittimes) and are exhibited in the following for two extreme cases. Thereby, wave packetsare considered with a mean excited quantum number of ��1 = [2("c1 � �")]�1=2 = 80, i. e.Torb = 2���31 = 77:8 ps, the laser �eld is tuned to the core resonance (� = 0, ' = �=4),and autoionization is neglected. The envelopes of the pump and probe pulses are givenby Ea(t) = E(0)a exp ��4(ln 2)(t� ta(b))2=�2� with a pulse length of � = 0:3 Torb. Furtherexamples are discussed in Refs. [29] and [34].

Figure 4: Scaled pump-probe probability ~Pfg = Pfg=jD(+)feb; 1D(�)gea; 1 ~E(0) 2a � j2 as a function ofthe time delay tb � ta (in units of Torb) for (a) �1 = �1 = 0:0, TRabi = 4Torb, and (b)�1 = 0:0, �1 = 0:5, TRabi = 0:081Torb. The other parameter values are � = 0, ��1 = 80,Torb = 77:8 ps and � = 0:3Torb. The dashed curve in Fig. 4(a) shows the pump-probe signalin the absence of laser-induced core coupling (
21 = 0).



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 19(a) Weak core excitation (TRabi � Torb) and minimum shakeup (�2 � �1 = 0:0): Forequal quantum defects of the bare Rydberg series the dressed scattering matrix ~� is amultiple of the unit matrix. This implies that after the initial excitation which occurs withequal amplitude into both dressed channels the two fractions of the prepared wave packetare not scattered by the laser-excited core but remain in their respective dressed channelin the course of the time evolution. Furthermore, if the core excitation is weak the dressedthresholds are only slightly shifted so that the two wave packet fractions have almost equalorbit times and return to the core simultaneously. However, the slight energy shift leads toa di�erence in the phases which the wave packet fractions accumulate during one completeround trip around the nucleus. It is approximately equal to �S = Torb j
21j. Therefore,even a weak core excitation is clearly manifest in the pump-probe signal in the form ofinterference e�ects: the phase di�erence leads to a modulation of the magnitude of therecurrence peaks in the pump-probe probability with an envelope function approximatelygiven by cos2 [j
21j(t2 � t1)]. These modulations reect the Rabi oscillations of the ioniccore: whenever the core is in (bare) state 2 or 1 the overlap between the Rydberg wavepacket and state jfi (and therefore the pump{probe probability) vanishes or is maximal.This behavior is exempli�ed in Fig. 4(a) for the case of TRabi = 4 Torb. For the sake ofcomparison the dashed curve shows the time evolution of Pfg(tb � ta) in the absence oflaser-induced core transitions, i. e. for 
21 = 0.(b) Strong core excitation (TRabi � Torb) and maximum shakeup (�2 � �1 = 0:5): For�2 � �1 = 0:5 the dressed scattering matrix is given by~� = e2�i�1ei�  0 11 0 ! :Therefore the shakeup of the Rydberg electron caused by the laser-induced core transitions isso e�ective that at each return to the core region the two fractions of the electronic Rydbergwave packet which evolve in the dressed channels are scattered from one channel into theother with a probability of unity. This scattering mechanism is clearly visible in Fig. 4(b)in which a case of strong laser-induced core coupling with TRabi = 0:081 Torb is shown.Such a Rabi period implies a larger separation of the thresholds of the dressed channelsand thus a signi�cant di�erence in the orbit times of the wave packet fractions which areprepared initially in the dressed channels. At odd multiples of Torb, e. g. at the �rst return,two-peaked maxima are observed which represent the temporally separated returns of thetwo fractions. However, at each return to the core region the faster part of the wave packetis scattered into the dressed channel with the longer return time and vice versa. Therefore ateven multiples of Torb both fractions reach the core simultaneously and their contributionsto the pump-probe probability add constructively giving rise to one-peaked large maxima.For an intermediate di�erence in quantum defects the wave packet is split up into a



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 20rapidly growing number of fractions in the course of its successive returns to the nucleus.This is due to the fact that in this case both diagonal and o�-diagonal elements of thedressed scattering matrix are non-vanishing. For weak core excitations the semiclassicalpath representation is still useful to predict the relative heights of the successive recurrencepeaks in the pump-probe signal in an simple way [34]. For stronger excitations the behaviorof the pump-probe signal is conveniently discussed with the help of other methods whichare discussed subsequently.A few remarks should be made as to the experimental realization of the discussed pump-probe scheme and the observability of the e�ects described so far. A real alkaline earth atomconstitutes a complicated multi-channel system. However, it is possible to realize to a gooddegree of approximation a two-channel system with respect to the ICE transition by per-forming all excitations with circularly polarized light and making use of the selection rulesfor angular momentum [21, 40]. Couplings to further channels then arise only through con-�guration interactions which can be taken into account in the present context by a complexquantum defect �2. Typical values for Im �2 lie in the range between 10�3 and 10�1 [41].Numerical calculations show that for Im �2 � 0:01 only minor quantitative modi�cations inthe short-time behavior of the pump-probe signal appear while the characteristic qualitativefeatures are left unchanged [29].Di�erences in quantum defects actually observed for ICE transitions lie in the wholerange between 0.0 and 0.5 (e. g., the transition Sr 5snd ! 5p1=2nd comes rather close to0.5 [12]). As the value of the core dipole matrix is typically of the order of 1 au one expectslaser intensities of about 10 kW/cm2 to drive the core transition with Torb = TRabi for��1 = 80. This intensity scales with ���61 . The relevant wavelengths lie in the range between250 and 450 nm. It suggests itself to realize the core transition with a ns-pulse which isswitched on before the pump pulse arrives and switched o� after the probe pulse. Pulsesof this kind which reach the necessary intensity without being too tightly focused may beproduced nowadays. In view of this discussion the observation of the described e�ects shouldbe feasible with presently available means. Work in this direction is already in progress [42].2.3.2 Synchronization of wave packet and core dynamicsIf one synchronizes the dynamics of the ionic core and the wave packet a long-time stabi-lization of the Rydberg electron against autoionization can be achieved. This e�ect may beunderstood as follows: when the wave packet is excited by the short laser pulse the core is es-sentially in the ground state j�1i. If the wave packet orbit time is chosen equal to a multipleof the Rabi period of the core the Rydberg electron will encounter a de-excited core at eachof its returns to the nucleus. Therefore, the wave packet is scattered from the excited core(i.e. core state j�2i) only to a very small extent, the e�ects of shakeup and autoionization are



2 ISOLATED CORE EXCITATION IN INTENSE LASER FIELDS 21thus minimal and the wave packet behaves as if it would propagate in a single-channel sys-tem with a de-excited core [19]. Hanson and Lambropoulos [30] worked out the signi�canceof this e�ect for the creation of slowly autoionizing non-dispersing wave packets. Dispersionis inhibited because the Rabi-oscillating core works as a quantum-mechanical shutter whiche�ectively cuts o� the tails of the wave packet which arrive at the nucleus out of phase.Formally, this stabilization e�ect is explained within the framework of Sec. 2.2 as follows[19]: one considers the time-independent transition amplitude Tfg(") in the vicinity of ener-gies "m for which ~�11("m)� ~�22("m) = m with m 2 Z. To a good degree of approximationthis condition is equivalent to Torb = jmjTRabi. For energies " with j"� "mj � j"� "m�1j itfollows that e2�i ~� ' e2�i�̂1 � e2�i�̂ with �̂ = [2("̂� ")]�1=2. Thereby, one can choose "̂ = ~"c1or "̂ = ~"c2. Inserting this approximation for e2�i ~� into the expression for Tfg one obtainsTfg(") ' T (s)fg + 2�iD(+)feb(e�2�i�̂ � �)�1D(�)gea : (35)This expression is (apart from the substitution of the bare channel thresholds by "̂) identicalto the transition amplitude for the system in the absence of ICE-coupling with the wavepacket excited in the j�1i-channel.In Fig. 5 two examples for this e�ect are depicted. In Figs. 5(a),(b) two pump-probesignals are compared for a non-autoionizing two-channel system with intermediate shakeup(�2��1 = 0:25) and �xed Rabi frequency, but di�erent mean excited energies �". In Fig. 5(b),where Torb = 4TRabi was chosen, the pump-probe signal shows a very regular behaviorwhich is typically observed in one-channel systems. Shifting �" such that Torb = 4:5TRabithe signal acquires an appearance which looks very complicated at �rst sight but whichis amenable to further analysis within the dressed energy approach. In Figs. 5(c),(d) theinuence on the wave packet autoionization is illustrated which was worked out in Ref. [30].In the �gures a two-channel system with �1 = 0:0 and �2 = 0:0 + i 0:1 is considered. ForTorb = 0:87Torb (Fig. 5(c)) the dynamics of core and wave packet are not synchronized, thewave packet also encounters the core in the excited state at its returns to the nucleus andtherefore autoionizes very rapidly. If the laser intensity is changed such that Torb = TRabiautoionization is e�ectively suppressed.2.3.3 Dressed state energies and wave packet dynamicsThe method of semiclassical path expansion is particularly useful to obtain a qualitativeunderstanding of the wave packet dynamics in the short-time domain, i.e. for times up toseveral multiples of Torb where the number of relevant recurrence contributions is su�cientlylow. An alternative approach is provided by studying the behavior of the eigenenergies ~"nof the dressed states, i.e. the solutions to the equationdet(e�2�i ~� � ~�) = 0: (36)
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Figure 5: Synchronization of core and wave packet dynamics. Parameter values of Figs. (a)and (b): �1 = 0:0, �2 = 0:25, 
21 = 7:81 � 10�6 au, � = 0, � = 23:3 ps, and ��1 = 83 (a),��1 = 80 (b), i.e. Torb = 4:47TRabi (a), Torb = 4:0TRabi (b). Parameter values of Figs. (c)and (d): �1 = 0:0, �2 = 0:0 + i 0:1, ��1 = 80, � and � as above, and 
21 = 1:70 � 10�6 au(Torb = 0:87TRabi) (c), 
21 = 1:95 � 10�6 au (Torb = 1:0TRabi) (d).In Fig. 6 these dressed energies are shown as a function of the laser-induced core couplingstrength 
21 for various di�erences of the quantum defects �1 and �2 and resonant laser-induced core coupling � = 0.Fig. 6(a) displays the case �1 = �2. This spectrum can be understood within the pictureof two independent dressed channels which was also used for the discussion of the wavepacket dynamics pertaining to this case (cf. Fig. 4(a)). The dressed eigenstates are given byj~ni ���~�1(2)E = 2�1=2(jni j�1i � jni j�2i) and can thus be assigned unambiguously to one ofthe dressed channels. Their eigenenergies ~"n = �1=2(n � �1)2 � 12
21 exhibit directly theac{Stark splitting of the core states. The spectrum is therefore divided into two groups oflinearly ascending and descending energy levels which intersect each other without avoidedcrossings. At the crossing points the di�erence ~�11(") � ~�22(") is an integer. Fig. 6(a) thusshows from another point of view that the excitation by a short laser pulse leads two thecreation of two wave packet fractions which evolve independently from each other and whichhave di�erent orbit times if 
21 is large enough.For a di�erence in quantum defects of �2 � �1 = 0:25 (Fig. 6(b)) the main feature of
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Figure 6: Eigenenergies of dressed Rydberg states (relative to the \bare" threshold "c1)as a function of 
21 for resonant coupling � = 0 and (a) �1 = �2 = 0:0, (b) �1 = 0:0,�2 = 0:25, (c) �1 = 0:0, �2 = 0:5. The vertical line in (b) indicates the energy region with
21 = 3:91� 10�6 au and ~�11(")� ~�22(") ' 2 which is examined more closely in Fig. 7.the preceding diagram, namely the two groups of linearly ascending and descending energylevels, is still clearly recognizable. However, due to the channel mixing which is caused bythe radiative core coupling the energy levels show well-pronounced avoided crossings. Theaforementioned main feature of the �rst two diagrams vanishes completely if the di�erencein quantum defects is increased to �2 � �1 = 0:5 (Fig. 6(c)). In this case the interactionbetween the dressed channels becomes so strong that the individual eigenstates cannotbe assigned to one of the dressed channels. For 
21 = 0 each state has approximatelyequal distance in energy to both its neighbours. Due to the level repulsion it tends to keepthis maximum separation to both sides also when the coupling strength 
21 is increased.This explains the almost horizontal direction of the curves for small values of 
21. Forlarge enough values of 
21, however, all levels are gradually pushed downwards becausethey must always stay below the lower threshold of the Rydberg series which has energy"c1� 12 j
21j. Fig. 6(c) also gives an alternative explanation for the dynamical behavior shownin Fig. 4(b). As neighboring levels are separated by 1=2 � 1=�3 , approximately, an electronicRydberg wave packet should regain its initial shape at multiples of 2� Torb. This explainsthe well pronounced recurrence peaks which appear at even multiples of Torb in Fig. 4(b).To explain the synchronization e�ect of Sec. 2.3.2 within the dressed states approach, inFig. 7(a) the moduli jc~nj of the residues of the two-photon amplitude Tfg(") are depicted forthe case �2 � �1 = 0:25 and 
21 = 3:91� 10�6 au. These residues essentially determine theamplitudes for excitation of the dressed states by the short laser pulse. If the mean excitedquantum number ��1 is chosen such that the condition of synchronization Torb = jmjTRabi isful�lled the eigenstates possess either predominantly j�1i or j�2i character, i.e. either largeor small excitation probability. The states with large excitation probability are separatednearly equidistantly by an amount of ���31 so that the excited wave packet behaves in a
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Figure 7: (a): Moduli jc~nj of the residues of Tfg(") for �1 = 0:0, �2 = 0:25, � = 0, and
21 = 3:91� 10�6 as a function of the ratio between wave packet orbit time 2�(Re ~�n)3 andthe Rabi period. The quantities jc~nj give a measure for the excitation probabilities of thedressed states. In the vicinity of an avoided crossing (e.g. Torb = 2TRabi) only approximatelyequidistant states are excited which is indicated by the uppermost \comb". Far from theavoided crossing two \one-channel like" wave packets are excited (the \teeth" of each combare separated nearly equidistantly; however, this distance di�ers for the two combs). (b):Autoionization rates per orbit PT = �2(Im ~"n)2�(Re ~�n)3 for �2 = 0:25 + i 0:01 (�) and�2 = 0:0 + i 0:01 (2).way similar to the one-channel case. For eigenenergies with ~�11(~"n) � ~�22(~"n) ' m + 12which are far away from the avoided crossings the spectrum displays a behavior similarto a system with equal quantum defects (cf. Fig. 6(b)). Thus, the individual eigenstatesmay approximately be assigned to a particular dressed channel. Correspondingly, all thesestates have nearly the same excitation probability. This means that an excitation in thisregion essentially creates two independently evolving wave packet fractions similar to thecase without shakeup. Pump-probe signals like the one of Fig. 5(c) may therefore be thoughtof as arising from the interference of the contributions of the two fractions. The behavior ofeach of these contributions is regular as in the one-channel case.Furthermore, it is interesting to study the behavior of the autoionization rates of thedressed eigenstates which is depicted in Fig. 7(b) for a case with parameters identical toFig. 7(a) except that now Im �2 = 0:01. Away from the avoided crossings the states haveapproximately equal autoionization rates. In the vicinity of the crossings the weakly excitedstates carry nearly the whole probability of ionization as they have j�2i character. Thestrongly excited states ionize slowly. This splitting appears also in the case Re (�2��1) = 0:0but is less pronounced [20].



3 ICE AND SPONTANEOUS PHOTON EMISSION 253 Spontaneous emission of photons by isolated-core excitedtwo-electron atomsIn this section it is investigated how ICE processes are inuenced by radiative dampingof the laser-excited ionic core. Spontaneous emission of photons by the ionic core tends todestroy quantum coherences of an electronic Rydberg wave packet via electron correlatione�ects. Vice versa the dynamics of an electronic Rydberg wave packet may also inuence theprocess of photon emission by the tightly bound core electron. So far in the context of wavepacket dynamics in Rydberg systems the problem of destruction of quantum coherence bydissipative and stochastic inuences has not received much attention. To a large extent thismight be traced back to the fact that due to the high level density of Rydberg systems thesolution of the relevant master equations constitutes a di�cult mathematical and numericalproblem. The purpose of the subsequent section is twofold, namely(1) to obtain physical insight into the intricate interplay between laser-modi�ed electroncorrelation e�ects, the spontaneous emission of photons by a laser-excited ionic core and thesemiclassical aspects of the dynamics of an excited Rydberg electron and(2) to present an adequate theoretical approach which is capable of dealing with the di�-culties arising from the description of dissipative phenomena in Rydberg systems close to aphotoionization threshold.It will be demonstrated that a decomposition of the relevant master equation into N -photon contributions and the application of semiclassical path representations yield a prac-tical and physically transparent theoretical description. In the context of laser-induced sta-bilization against autoionization, which has been studied in detail in Sec. 2.3.2, it will beshown that the destruction of quantum coherence by radiative damping of the ionic coremay lead to signi�cant physical e�ects. This may happen even in cases in which charac-teristic autoionization rates are much larger than radiative decay rates of the ionic core.Finally, the inuence of the dynamics of an electronic Rydberg wave packet on the processof photon emission by the ionic core is investigated. For this purpose the time dependenceof the intensity correlation function of the spontaneously emitted photons is investigated[43].3.1 Optical Bloch equations and semiclassical N-photon transition ampli-tudesIn order to put the problem into perspective let us consider a typical laser-induced two-electron excitation process as shown in Fig. 8 schematically. An electronic Rydberg wavepacket is prepared by a short and weak laser pulse Ea(t). Simultaneously the ionic core isexcited almost resonantly by a cw-laser �eld E(t). The dynamics of the electronic Rydbergwave packet under the inuence of the Rabi oscillations of the ionic core can be investi-



3 ICE AND SPONTANEOUS PHOTON EMISSION 26gated for example by a pump-probe type setup as discussed in detail in Sec. 2.2. A majordi�erence to the case already discussed in Sec. 2.2 (compare with Fig. 3) is the possibilityof spontaneous emission of photons by the laser-excited ionic core. E�ects of autoionizationoriginating from the excited core channel are taken into account by a third (open) continuumchannel as indicated in Fig. 8. Figure 8: Three-channel excitation scheme including spon-taneous emission processes and autoionization.
For the theoretical description of this ICE process in the presence of radiative dampingof the ionic core the master equation_�(t) = �i[H; �(t)] + 12f[L; �(t)Ly] + [L�(t); Ly]g (37)has to be solved for the reduced density operator of the laser-excited atom. Thereby theinitially unoccupied modes of the radiation �eld, into which a photon can be emitted spon-taneously by the ionic core, have been traced out [44]. The Hamiltonian H describes thecoherent part of the atomic two-electron excitation process and is de�ned by the correspond-ing three-channel generalization of Eqs. (1), (13) and (14). The stochastic part of the atomicdynamics is described by the Lindblad operatorL = p� j�1ih�2j (38)which characterizes the radiative decay of the ionic core from state j�2i to state j�1i byspontaneous emission of photons with rate �. Due to the very long lifetimes of Rydbergstates radiative decay of the excited Rydberg electron can be neglected.A straightforward way of solving the optical Bloch equation (37) numerically is ob-tained by expanding the density operator �(t) into a basis set of operators constructed fromthe atomic energy eigenfunctions. However, this approach is only feasible as long as thenumber of signi�cantly contributing energy eigenstates is su�ciently small. In particular,severe problems arise in cases in which Rydberg states are excited directly at the ionizationthreshold. An alternative theoretical approach for solving this master equation was proposedoriginally by Mollow [44]. It is based on a representation of the density operator in termsof a (�ctitious) ensemble of pure states which are associated with de�nite numbers of spon-taneously emitted photons. The dynamics of these pure states can be determined with the



3 ICE AND SPONTANEOUS PHOTON EMISSION 27help of semiclassical methods which have already proven useful for the dynamical descrip-tion of Rydberg electrons and their threshold phenomena. Such a semiclassical pure stateapproach yields direct physical insight into the classical aspects of the dynamics of Rydbergelectrons and the destruction of quantum coherence which is caused by the radiative decayof the ionic core. From a practical point of view this theoretical approach is expected to beparticularly useful in cases in which the number of spontaneously emitted photons is small.Furthermore, this way all e�ects arising from the in�nitely many Rydberg states convergingto the ionization threshold and the adjacent electron continua can be taken into accountproperly.The starting point for Mollow's approach [44] is the decomposition of the reduced atomicdensity operator of Eq. (37) into contributions which are associated with the spontaneousemission of exactly N photons, i.e.�(t) = 1XN=0 �(N)(t): (39)The N -photon contribution �(n)(t) can be represented as a mixture of pure N -photon states,i.e. �(N)(t) = Z t0 dtN Z tN0 dtN�1 � � � Z t20 dt1 j (tjtN ; :::; t1)ih (tjtN ; :::; t1)j: (40)These N -photon states j (tjtN ; :::; t1)i are determined by (random) jump times t1 � t2 �::: � tN � t. Their time evolution is given byj (tjtN ; :::t1)i = e�iHeff (t�tN )�(t� tN )Le�iHeff (tN�tN�1)�(tN � tN�1)L : : :Le�iHeff t1�(t1)j (t = 0)i (41)with the e�ective (non-Hermitian) HamiltonianHeff = H � i2LyL: (42)This decomposition of the atomic density operator o�ers signi�cant advantages in cases inwhich the number of spontaneously emitted photons is small or the evaluation of the relevantpure states can be simpli�ed by the application of semiclassical methods, for example. Inparticular, for the master equation (37) it is possible to derive semiclassical path represen-tations for the N -photon pure states j (tjtN ; :::; t1)i [31]. This way it is possible to expressall physical observables of interest as a sum of probability amplitudes which are associatedwith repeated returns of a Rydberg electron to the ionic core. During its motion under theinuence of the Coulomb potential of the ionic core photons may be emitted spontaneouslyby the laser-excited core at any position of the Rydberg electron along its classical path.These photon emission processes disrupt the coherent quantum mechanical time evolutionof the Rydberg electron.



3 ICE AND SPONTANEOUS PHOTON EMISSION 28In order to clarify these ideas let us consider a pump-probe experiment of the type shownin Fig. 8 which has already been discussed in Sec. 2.2 in the absence of radiative dampingof the ionic core. From the master equation (37) it can be shown [31] that the pump-probetransition probability in the presence of radiative damping of the ionic core is given byPfg(tb � ta) = 1XN=0 Z tb�ta0 dtN Z tN0 dtN�1::: Z t20 dt1 jA(N)gf (tb � tajtN ; :::; t1)j2: (43)Thereby A(N)gf (tb � tajtN ; :::; t1) denotes the conditional probability amplitude of observingthe electronic Rydberg wave packet in �nal state jfi after the time delay (tb�ta) provided theionic core has emitted exactly N photons spontaneously at times t1 � t2 � ::: � tN . Similarto Eq. (10) the time dependent N -photon transition amplitudes A(N)gf (tjtN ; :::; t1) can berelated to associated time-independent N -photon transition amplitudes T (N)fg ("N+1; :::; "1)by A(N)gf (tjtN ; :::; t1) = � i2��N+1 Z 1+i0�1+i0 d"N+1::: Z 1+i0�1+i0 d"1 e�i"N+1(t�tN )�:::�i"1t1~E�b ("N+1 � �")T (N)fg ("N+1; :::; "1) ~Ea("1 � �"): (44)The zero-photon amplitude T (0)fg ("1) is de�ned by Eq. (22). However, in view of the non-Hermitian e�ective Hamiltonian of Eq. (42) the (bare) threshold energy of the excited chan-nel "c2 becomes complex according to the replacement "c2 ! "c2 � i�=2. This has to betaken into account in the de�nition (20) of the transformation matrix O and the thresholdsof the dressed channels. The time-independent one-photon amplitude is given byT (1)fg ("2; "1) = 2�i ~D(+)feb 1XM2=0 1XM1=0(e2�i ~�2 ~�)M2 ~S2;1(~�e2�i ~�1)M1 ~D(�)gea (45)with ~S2;1 = Z T0 d� e2�i ~�2(1��=T )(e�i�=2 ~L)e2�i ~�1�=T (46)and T = (tb � ta)=(M2 +M1 + 1).The one-photon amplitude of Eq. (45) can be interpreted physically in a straightforwardway: After the initial excitation by the short laser pulse which is characterized by the dipolematrix elements ~D(�)gea those fractions of the electronic Rydberg wave packet which areexcited into closed photon-dressed channels perform repeated orbital round trips around thenucleus. On each complete round trip in one of the photon-dressed channels j the Rydbergelectron acquires a phase of magnitude (2�~�1)jj. The quantity (2�~�1)jj is equal to theclassical action of motion along a purely radial Kepler orbit with zero angular momentumand energy " � ~"cj < 0. At each return to the ionic core the Rydberg electron can bescattered into other dressed channels by laser-modi�ed electron correlation e�ects which are



3 ICE AND SPONTANEOUS PHOTON EMISSION 29characterized by the scattering matrix ~� of Eq. (30). However, during any of the orbitalround trips of the Rydberg electron the ionic core can emit a photon spontaneously. Theassociated probability amplitude is described by the quantity ~S2;1. According to Eq. (46)the photon emission by the ionic core may take place at any time � with 0 � � � T betweentwo successive returns of the Rydberg electron to the core. At time � the Rydberg electronhas acquired a phase of magnitude (2�~�1�=T ). The disruption of quantum coherence bythe spontaneous emission process is described by the action of the Lindblad operator ~L =OTLO. In addition, this photon emission is accompanied by a phase change of magnitude(��=2). After the photon emission process the Rydberg electron accumulates an additionalphase of magnitude [(2�~�2(1��=T )] during its subsequent return to the core. As the photonemission process can take place at any time between two successive returns of the Rydbergelectron to the core the amplitudes associated with all possible values of the e�ective photonemission time � have to be added coherently as described by Eq. (46).Semiclassical path representations analogous to Eq. (45)can be derived for all N -photontransition amplitudes with N � 2 [31]. However, thereby it has to be taken into accountthat during a round trip of the Rydberg electron around the nucleus an arbitrary numberof photons n with 0 � n � N can be emitted spontaneously by the ionic core.3.2 Stabilization against autoionization and radiative decay of the ioniccoreIn a typical ICE process as shown in Fig. 8 the mean autoionization rate of the excited Ryd-berg electron is given by ��� = 2 Im�2=��3. Therefore, as long as the Rydberg electron is notexcited very close to threshold and its angular momentum is not too large its autoionizationrate ��� is typically much larger than the radiative damping rate of the core transition �.Under these circumstances the inuence of radiative damping of the ionic core is usuallynegligible. Thus, typical pump-probe experiments are described to a very good degree ofapproximation by the corresponding zero-photon transition amplitude because the atom willautoionize with high probability before the �rst spontaneous photon can be emitted by theionic core.Nevertheless, under certain circumstances the dynamics of an electronic Rydberg wavepacket can be a�ected by the radiative decay of the ionic core considerably. In particular,the coherent mechanism of stabilization against autoionization which has been proposedoriginally by Hanson and Lambropoulos [30] and which has been discussed in Sec. 2.3.2is expected to be sensitive against the destruction of quantum coherence which is broughtabout by spontaneous emission of photons by the ionic core. Laser-induced stabilizationagainst autoionization is achieved by synchronizing the (mean) period of the laser-preparedelectronic Rydberg wave packet Torb with the Rabi-period of the resonantly driven core



3 ICE AND SPONTANEOUS PHOTON EMISSION 30transition TRabi, i.e., Torb has to be equal to an integer multiple of TRabi. Thus, provided theelectronic Rydberg wave packet is prepared initially in channel 1, i.e., with the core in itsground state j�1i, with each of its returns to atomic nucleus it will �nd the ionic core in itsground state j�1i. As autoionization of a Rydberg electron can take place only inside thecore region [2, 3] this implies that the e�ective autoionization rate of the excited Rydbergwave packet will become much smaller than ��� (compare with Fig. 5(d)). However, in thepresence of radiative decay of the ionic core this physical picture is changed completely. Inthe simplest case of synchronization, i.e. for Torb = TRabi, the �rst photon will be emittedspontaneously by the ionic core most probably at a time (m + 1=2)TRabi , m 2 N, whenthe electronic Rydberg wave packet is close to the outer turning point of its classical Keplerorbit. The spontaneous emission of a photon reduces the excited core to its ground state j�1i.Therefore, at the subsequent returns of the electronic Rydberg wave packet to the atomicnucleus at times (m + n)Torb, n 2 N, the ionic core will be in its excited state so that theRydberg electron will autoionize on a time scale of the order of 1=��� . Thus, the laser-inducedstabilization against autoionization will be destroyed. Typically ��� � � so that the Rydbergelectron will autoionize with high probability long before the core can emit a second photonspontaneously. Consequently, it is expected that the inuence of the radiative dampingon this coherent stabilization phenomenon can be described approximately by taking intoaccount only the zero- and one-photon amplitudes of the relevant transition amplitudes.

Figure 9: Wave packet evolution under the condition of period matching of orbit time andRabi period in the presence of spontaneous emission: Scaled pump-probe signal ~Pfg =Pfg=jD(+)febE(0)b D(�)geaE(0)a � j2 (full curve) and contributions ~P (N)fg , N = 0 (dotted), 1 (dashed),for TRabi = Torb, �Torb = 1=10, ��1 = 136 (Torb = 382 ps), � = 0, � = 0:3Torb and �1 = 0:0,�2 = 0:051 + i 0:1 (a); �2 = 0:051 + i � 0:0 (b). The chain-dashed curve shows the sum~P (0)fg + ~P (1)fg . The inset in Fig. 9(b) displays the global decay of the pump-probe signal on atime scale approximately given by 1=�.



3 ICE AND SPONTANEOUS PHOTON EMISSION 31In Fig. 9(a) the pump-probe transition probability of the ICE process of Fig. 8 is shown asa function of the time delay between pump- and probe pulses (full curves). The parameterschosen are: Torb = TRabi, �1 = 0:0, �2 = 0:051 + i 0:1, �Torb = 0:1, ��1 = 136. Initiallythe electronic Rydberg wave packet is prepared by a short laser pulse in channel 1. Thedotted and dashed curves depict the zero- and one-photon contributions. The full curve hasbeen evaluated by solving the corresponding optical Bloch equations (37) numerically in theenergy representation. The decay of the pump-probe signal on a time scale of the order of 1=�as well as the quality of approximating the pump-probe signal by its zero- and one-photoncontributions are apparent. For the sake of comparison Fig. 9(b) shows the pump-probesignal and the zero- and one-photon contributions in the absence of autoionisation. It isapparent that in this case photon contributions with higher values of N become relevantsoon.From the experimental point of view it might be di�cult to observe the inuence ofradiative damping of the core transition on laser-induced stabilization against autoionizationin a pump-probe experiment. As typically 1=�� Torb the decrease of the pump-probe signalcan be observed only for su�ciently long observation times. Furthermore, over these longtime scales also other experimental disturbances might lead to a decrease of the pump-probe signal. However, it is expected that the e�ective time dependent ionization rate (t),which is close to zero in the absence of spontaneous emission of photons by the ionic core,should be much more sensitive to the decohering e�ects of radiative damping of the core.An experimental technique for measuring the time dependence of ionization rates has beendeveloped recently by Lankhuijzen and Noordam [45].For the three-channel problem shown in Fig. 8 the time-dependent autoionization rate(t) can be decomposed into its N -photon contributions with the help of the theoreticalmethods disussed in Sec. 3.1, i.e.(t) = 1XN=0 Z t0 dtN � � � Z t20 dt1(N)(tjtN ; :::; t1): (47)Using the notation of Sec. 2 the corresponding zero- and one-photon contributions are givenby [31](0)(t) = 12� (1� e�4� Im�2)�����Z 1+i0�1+i0 d"1e�i"1t(0; 1; 0)O(1 � e2�i ~�1 ~�)�1e2�i ~�1 ~D(�)gea ~Ea("1 � �")����2 ;(1)(tjt1) = � 12��3 (1� e�4� Im�2) ����Z 1+i0�1+i0 d"2d"1e�i"2(t�t1)�i"1t1�(0; 1; 0)O(1 � e2�i ~�2 ~�)�1~S2;1(1 � ~�e2�i ~�1)�1 ~D(�)gea ~Ea("1 � �")����2 : (48)These quantities are very similar to the zero- and one-photon amplitudes of the pump-probe
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Figure 10: Autoionization under the condition of period matching of orbit time and Rabiperiod in the presence of spontaneous emission for parameters TRabi = Torb, �Torb = 1=118,��1 = 73 (Torb = 59 ps), �1 = 0:0, �2 = 0:50 + i 0:10, � = 0:4Torb, � = 0. Fig. 10(a):total scaled autoionization rate ~ = Torb�=jD(�)ge1E(0)1 j2 as obtained from the optical Blochequations (full curve), total rate for � = 0 (dotted). Figs. 10(b) and (c): 0- and 1-photoncontributions ~(0) and ~(1). Inset in Fig. 10(c): conditional autoionization rate (1)(tjt1 =20:5Torb).transitions probability discussed in Sec. 3.1. The only major di�erence is the replacementof ~D(+)feb ~Eb("2� �") by (0; 1; 0)O reecting the fact that no probe pulse is applied to the atom



3 ICE AND SPONTANEOUS PHOTON EMISSION 33and that it is only channel 2 which can autoionize. In Eqs. (48) the bare scattering matrixis given by ~� = 0B@ e2i��1 0 00 e2i��2 �230 �32 �33 1CA : (49)Furthermore, in Eq. (48) it is understood implicitly that the e�ective quantum number ofthe open channel 3 has to be set equal to i1.In Fig. 10 the time evolution of the autoionization rate (t) is shown together with thecorresponding zero- and one-photon contributions. The parameters chosen, i.e. ��1 = 7ns =118Torb and ��1 = 73, �1 = 0:0, �2 = 0:50 + i 0:10, correspond to typical values realizablein alkaline earth atoms [46]. The comparison of (t) with the corresponding quantity in theabsence of radiative damping (dotted curve of Fig. 10(a)) demonstrates that the inuenceof the spontaneous photon emission is signi�cant already at interaction times of the orderof Torb. With the help of the zero- and one-photon contributions of Eqs. (48) this inuencecan be analyzed in detail. The zero-photon rate (Fig. 10(b)) vanishes at integer multiplesof the mean classical orbit time Torb because at these times the ionic core is in its groundstate j�1i. The maxima of Fig. 10(b) are due to fractions of the electronic Rydberg wavepacket which are close to the atomic nucleus at times when the Rabi oscillating core is inits excited state j�2i. These times are approximately given by (m+ 12)Torb, m 2 N. Revivale�ects are also visible. They take place at interaction times of the order of 25Torb. The one-photon rate of Fig. 10(c) exhibits maxima and minima at times mTorb and (m+ 12)Torb. Themaxima at integer multiples of Torb reect the fact that the photon is emitted spontaneouslyby the ionic core most probably when the electronic Rydberg wave packet is close to itsouter turning point. Thus whenever the Rydberg electron returns to the atomic nucleusthe ionic core is excited so that the Rydberg electron autoionizes with high probability(compare inset in Fig. 10(c)). In the example considered in Fig. 10 the sum of zero- andone-photon contributions is indistinguishable from the corresponding numerical solution ofthe full optical Bloch equations.3.3 Electronic Rydberg wave packets and photon emission by the ioniccoreIn laser-induced two-electron excitation processes of the type shown in Fig. 8 radiative decaynot only modi�es the time evolution of an electronic Rydberg wave packet but vice versa thedynamics of the Rydberg electron can also a�ect the properties of the spontaneous photonsemitted by the laser-excited core electron. This inuence is expected to be particularlysigni�cant in cases where the electron correlation e�ects produced by the radiative coretransitions, i.e. the shakeup, are large.One way to describe the characteristics of the spontaneously emitted photons theoret-



3 ICE AND SPONTANEOUS PHOTON EMISSION 34ically consists of applying the quantum-regression theorem [44] to the the optical Blochequations of Sec. 3.1. Thus, in principle all correlation functions of the spontaneously gen-erated electromagnetic �eld can be evaluated. However, numerical problems may arise dueto the presence of the ionization thresholds if Rydberg states are excited su�ciently close tothreshold. Again, under such circumstances semiclassical path representations of the relevantN -photon transition amplitudes of the type discussed in Sec. 3.1 might be a useful theoret-ical alternative. In the subsequent examples the inuence of the dynamics of an electronicRydberg wave packet on the radiative decay of the strongly bound core electron via electroncorrelation e�ects is discussed. All presented numerical examples have been obtained byapplying the quantum-regression theorem and solving the relevant master equation in theenergy representation. This is possible as in the subsequent examples the energies of thesigni�cantly excited Rydberg states are all located su�ciently well below threshold.A characteristic quantity of the electromagnetic �eld generated by spontaneous emis-sion of photons by the laser-excited ionic core is the intensity-intensity correlation func-tion. This quantity is directly proportional to the atomic two-time correlation functionG(2)(t1; t1 +�t) = h�(+)(t1)�(+)(t1 +�t)�(�)(t1 +�t)�(�)(t1)i [44] (h:i indicates the sta-tistical mean value and �(�)(t) is the value of the transition operator j�1ih�2j at time t inthe Heisenberg picture). This correlation function can be evaluated from the optical Blochequations with the help of the quantum-regression theorem. In order to examine the inu-ence of the dynamics of the Rydberg electron on the photon emission process by the corewe consider a situation which has already been studied before in Sec. 3.2. We assume thata short laser pulse prepares an electronic Rydberg wave packet at time t = 0 in the pres-ence of a cw-laser �eld which excites the ionic core resonantly. Afterwards the probabilityof observing two spontaneously emitted photons at times t1 and t1 + �t is investigated.However, we also assume that this two-time correlation function is measured provided thatthe Rydberg electron has not been ionized in the time interval of observation (0; t1+�t). Ifthe ionized electron were not observed simultaneously with the spontaneously emitted pho-tons, the two-time correlation function G(2)(t1; t1+�t) would not only contain informationabout electron correlation e�ects but also information about the trivial Rabi oscillations ofthe ionic core after the excited Rydberg electron has been ionized. The experimental realiza-tion of such a coincidence experiment involving ionized electron and spontaneously emittedphotons may not be easy. Nevertheless for the sake of a complete theoretical understandingof the intricate interplay between electron correlation e�ects and spontaneous emission ofphotons in ICE processes this discussion is of interest.In Fig. 11 the dependence of the correlation function G(2)(t1; t1+�t) on the time delay�t is shown. The emission time of the �rst photon is chosen equal to the mean radiativedamping time, i.e. t1 = ��1 = 5Torb. Fig. 11(a) applies to equal quantum defects of the



3 ICE AND SPONTANEOUS PHOTON EMISSION 35resonantly coupled core channels, i.e. �1 = Re�2, whereas Fig. 11(b) corresponds to the caseof maximal shakeup, i.e. �1 = Re�2 + 0:5. For the full curves autoionization is neglected,in the dotted curves it is taken into account with Im�2 = 0:01. In order to suppress e�ectsof autoionization in these latter cases as much as possible the mean classical orbit time ofthe electronic Rydberg wave packet is synchronized with the Rabi period of the ionic core,i.e. Torb = 4TRabi. It is apparent (and easily proved mathematically) that in the absenceof electron correlation e�ects (Fig. 11(a)) the time dependence of the two-time correlationfunction G(2)(t1; t1 +�t) exhibits the same behavior as in the case of a resonantly driven
(a)

(b)0 10 20 30 40
∆t=t2-t1 / Torb

0.0

0.1

0.2

0.3

0.4

0.5

G(2)
 (t 1,t 1+∆

t) 0 1
0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40
∆t=t2-t1 / Torb

0.0

0.1

0.2

0.3

0.4

0.5

G(2)
 (t 1,t 1+∆

t) 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

Figure 11: Second-order correlation functionG(2)(t1; t1+�t) for parameter values t1 = 5Torb,��1 = 171, �Torb = 1=5, TRabi = 0:25Torb, � = 0, �1 = 0:0 and Re �2 = 0:0 (a), Re�2 = 0:5 (b). Full curves: Im �2 = 0:0, dotted curves: Im �2 = 0:01. The insets show thedetailed behavior of the correlation function for small �t. In the lower inset the wave packetrecurrences are marked by arrows.



4 ICE AND ATOMIC CENTER-OF-MASS MOTION 36two-level system. Thus, the time evolution of the excited electronic Rydberg wave packetdoes not inuence the characteristics of the photon emission by the second, strongly boundvalence electron. The dotted curve indicates that autoionization leads to a global decreaseof the observable signal. As soon as the quantum defects of both resonantly coupled corechannels are no longer equal the excited electronic Rydberg wave packet exerts a muchstronger inuence on the dynamics of the core valence electron. This inuence of electroncorrelation e�ects on the process of photon emission is apparent from Fig. 11(b). Though inthis case the positions of the maxima and minima of G(2)(t1; t1+�t) are still determined bythe Rabi period of the ionic core the periodic motion of the electronic Rydberg wave packetleads to a modulation of these structures. These modulations are well recognizable in theinset of Fig. 11(b). There they are marked by arrows which appear at integer multiples ofTorb. Around �t = 14Torb and �t = 28Torb e�ects of fractional revivals of the electronicRydberg wave packet are clearly visible (��1 = 171 ! Trev=Torb = 23 ��1 = 114). Againautoionization of the excited Rydberg electron leads to an overall decrease of the detectablesignal.4 Isolated core excitation and atomic center-of-mass motion4.1 IntroductionThe manipulation of the atomic center of mass motion with the help of light forces isone of the central topics of current research in quantum optics [32]. A main characteristicof the light forces is the fact that the momentum exchange between light �eld and atomproceeds essentially only by the excitation of the internal electronic degrees of freedom.This is due to the large mass di�erence between the atomic nucleus and the electrons. Theresulting strong laser-induced correlation between the electronic dynamics of the atom andits center of mass motion o�ers the possibility of controlling the atomic motion in a widevariety of ways. Furthermore, it allows to examine the internal laser-modi�ed electronicdynamics by observing the external degrees of freedom. In recent years major advanceshave been achieved especially with regard to the �rst of these aspects, e.g. in the techniquesof cooling and trapping of atoms [47, 48] or in atomic beam manipulation with atom opticalinstruments [33].So far, most investigations on the mechanical e�ects of light on atoms have been con-cerned with atomic few-level systems. However, it was shown recently in a number of articles[16, 49, 50] that systems with a high density of states such as Rydberg atoms may o�er newand interesting perspectives in the context of atom optics. In these studies schemes foratomic beam deection were investigated in which the coherent momentum transfer from astanding-wave laser �eld to the atom depends strongly on whether the laser �eld excites anisolated or a large number of Rydberg states. In the former case the momentum exchange



4 ICE AND ATOMIC CENTER-OF-MASS MOTION 37is dominated by the wave aspects of the electronic dynamics, in the latter case by parti-cle aspects of the Rydberg electron. So far investigations concentrated on laser excitationprocesses which involve a single valence electron only.It is therefore natural to extend these studies to the case of laser-induced two-electronexcitation processes and to examine their particular manifestations in the atomic centerof mass motion. In view of the theoretical results summarized in Secs. 2 and 3 it suggestsitself to turn to isolated core excitation processes �rst. In order to work out main aspects ofthe problem in a clear way we focus in the following on e�ects of the stimulated lightforce exerted on an atomic beam which traverses a standing light �eld. In the schemeunder consideration the standing wave �eld drives the core transition, at the same time,however, the momentum transfer from the �eld to the atomic center of mass is modi�edby a previously excited Rydberg wave packet, which orbits around the core, and by theensuing electron correlation e�ects, i.e. shakeup processes. To analyze these modi�cationsin a convenient way a theoretical description of the atomic momentum distribution afterleaving the standing wave is developed in Sec. 4.2. Thereby, the atomic motion is treatedin the Raman-Nath approximation and the relevant transition amplitudes are expressed interms of a semiclassical path expansion. In Sec. 4.3 this description is used to discuss basicphysical e�ects electron correlations have on the center-of-mass motion. Aspects of possibleexperimental realizations are mentioned briey.4.2 Theoretical description of laser deection by isolated core excitationIn order to present the main ideas most clearly in the following we discuss an idealizedmodel problem which is depicted in Figs. 12 and 13. An alkaline earth atom with mass Mand well de�ned initial momentum Pin of its center of mass traverses a standing laser �eldat right angles. The standing wave will be approximated to be of rectangular shape withwidth L, i. e. E(R; t) = �(z)�(L� z)E(x)e e�i!t + c.c. (50)with ! the light frequency, e the polarization andE(x) = E0 sin (kx) (51)the �eld envelope. The atomic center of mass position will be denoted by R = (x; y; z). Themodulus of the wave vector is given by k.Initially, at t = 0 immediately before entering the standing wave, the atom is prepared inan energetically low lying bound electronic state jgi with energy "g. The standing wave �eldis assumed to be tuned in resonance with a transition of the ionic core from its ground state(energy "1) to an excited state (energy "2). Due to electron correlation e�ects, in general,the standing laser �eld will be well detuned from any excited state of the neutral atom.



4 ICE AND ATOMIC CENTER-OF-MASS MOTION 38Figure 12: Setup for the model problem.After the atom has entered the standingwave �eld E(t), the short pulse Ea(t) is ap-plied. By exciting the Rydberg wave packetthe pulse triggers the Rabi oscillations ofthe core and thereby the momentum trans-fer to the atomic center of mass.
Thus, the light force exerted on the atom is negligible. After entering the standing wave theatom is exposed to a short (running wave) laser pulseEa(t) = Ea(t)ea ei(kay�!at) + c.c. (52)with polarisation ea and frequency !a which propagates with wave vector kaey along they-direction perpendicular to the incoming atom and the standing wave �eld. This choice ofdirection of propagation implies that the short pulse transfers at most one unit of photonmomentum kaey to the atom. The pulse envelope is centered around time t0 and is takento be of the form Ea(t) = E(0)a exp[�4(ln 2)(t� t0)2=�2] (53)with the pulse duration � short in comparison with the time of ight of the atom throughthe standing laser �eld. The pulse is supposed to couple the ground state jgi to high lyingRydberg states close to the �rst photoionization threshold. If � is small in comparison withthe classical orbit time of these states, the short pulse creates an electronic Rydberg wavepacket. In addition, however, the standing wave �eld will excite the ionic core resonantly assoon as the electronic wave packet is prepared. The subsequent Rabi oscillations of the ioniccore will transfer momentum from the standing wave laser �eld to the atomic center of masscoherently by the stimulated light force. Contrary to the well known case of a resonantlycoupled two-level system, this momentum transfer will be inuenced by the dynamics ofthe electronic Rydberg wave packet via electron correlation e�ects, namely shakeup andautoionization. Thus when leaving the standing wave laser �eld the momentum distributionof the atom's center of mass will contain information about the dynamics of the Rydbergelectron and the electron correlation e�ects during the interaction with the laser �eld.The momentum distribution consists of three parts: if the atom was not excited by theshort pulse, it leaves the standing wave essentially undeected. If a Rydberg wave packetwas created, the atom may leave the laser �eld with the core either in the ground or inthe excited state. In the latter case the atom autoionizes quickly and the resulting ion is



4 ICE AND ATOMIC CENTER-OF-MASS MOTION 39Figure 13: Excitation scheme forthe internal atomic dynamics: (a)bare Rydberg series, (b) \dressed"Rydberg series.
removed easily by an electric �eld. Therefore, a natural observable which contains informa-tion about the inuence of the electron correlation e�ects on the center of mass motion isthe momentum distribution of atoms which leave the standing wave with their core in theground state. Further insights can be obtained if the measurement of the momentum distri-bution is performed state-selectively with respect to the Rydberg electron, e. g. by meansof ramped �eld ionization [18].The interplay between laser-modi�ed electron correlation e�ects and the atomic center ofmass motion is exhibited in a particularly transparent way in the case of fast atoms. Atomsare considered to be fast if their kinetic energy is much larger than the electronic interactionenergy with the exciting laser �elds and if their deection inside the laser �eld is small incomparison with the wave length of the standing wave. These conditions imply that inside thelaser �eld the atomic center of mass moves with constant velocity vin = jPjin=M on a straightline trajectory perpendicular to the standing wave laser �eld. Under these conditions theEikonal [51] and Raman-Nath [32] approximations can be used in the theoretical description.The state hxj (T )i of an atom, which has crossed the standing wave laser �eld at positionx with an e�ective interaction time of T = L=vin� t0, may then be represented in the formhxj (T )i = a(T )g (x)jgi +Xn a(T )n;1 (x)jn; 1ij�1i+Xm a(T )m;2(x)jm; 2ij�2i (54)(thereby, the two-channel excitation scheme of Fig. 13 has been used and the summationsrefer to both Rydberg and continuum states). In the spirit of the Eikonal and Raman-Nathapproximation the probability amplitudes in the initial state jgi, i.e. a(T )g (x), and in theexcited Rydberg states of channels 1 and 2, i.e. a(T )n;1 (x) and a(T )m;2(x), are determined bysolving the time dependent Schr�odinger equation with HamiltonianH(x) = Hatom + VICE(x) + Vpump(t): (55)In the two-channel approximation the atomic Hamiltonian is given byHatom = "gjgihgj + Xj=1;2(hjj +Vjj(r) + "cj)j�jih�j j (56)



4 ICE AND ATOMIC CENTER-OF-MASS MOTION 40(cf. Eqs. (13) and (14)). The coupling of channels 1 and 2 due to the laser-induced core exci-tation is described by the operator VICE(x) de�ned according to Eq. (1) with the position-dependent, real-valued Rabi frequency
21(x) = 2 h�2jd � e j�1i E(x): (57)The interaction of the atom with the short laser pulse which leads to the creation of theRydberg wave packet is described by the operatorVpump(t) = �d � eaEa(t)e�i!at + h.c. : (58)For the sake of simplicity it is assumed that the pulse is su�ciently weak so that its e�ecton the atomic dynamics can be described in perturbation theory. In this case it is found [52]a(T )n;1 (x) = ie�i�"t0hn; 1jh�1je�iH0(x)T ~Ea(H0(x)� �")d � eajgi (59)with the mean excited energy �" = "g + !a. The Fourier transform ~Ea(") of the short pulseenvelope is de�ned in Eq. (11) and H0(x) = Hatom + VICE(x).The probability amplitude of observing after its ight through the standing wave �eld adeected atom in state jn; 1ij�1i with transverse momentum px is given by [32]a(T )n;1 (px) = 1� Z �0 dx a(T )n;1 (x)e�ipxx (60)with � = 2�=k the wavelength of the standing wave. Eq. (60) shows how the state selectiveatomic transition amplitude a(T )n;1 (x) acts as a di�raction grating for the atomic center ofmass motion. In order to exhibit clearly the inuence of the electronic Rydberg wave packeton the atomic di�raction process it is convenient to express the transition amplitude in theform of a semiclassical path representation. It is given by [34]a(T )n;1 (x) = (�1)l+12� 1XM=0 Z 1+i0�1+i0 d" e�i"T ��3=2n � (61)�ei��nw(x)� e�i��nw(x)e2�i ~�(x)� (~�(x)e2�i ~�(x))M ~D(�)gea(x) ~Ea("� �"):In Eq. (61) l denotes the angular momentum of the Rydberg electron. The quantities ~�(x),~�(x) and ~D(�)gea(x) characterize the excited Rydberg series in the presence of the continuouslaser �eld E(R; t) coupling the two channels. They refer to the description of the systemin terms of the picture of dressed core states. Their de�nitions follow immediately fromEqs. (23), (30) and (31) of Sec. 2.2. Thereby, one has to take into account that the trans-formation matrix O between the dressed channels as well as the channel thresholds ~"cj nowdepend on the position coordinate x due to the position-dependence of the Rabi frequency
21. Explicitly, they are determined by the relationOT (x) "c1 �12
21(x)�12
21(x) "c2 !O(x) = ~"c(x): (62)



4 ICE AND ATOMIC CENTER-OF-MASS MOTION 41The column vector w in Eq. (61) has components wi(x) = O1i(x)=("n;1 � "c1 � "+ ~"cj(x)).If the frequency ! of the standing wave �eld is tuned in resonance with the core transition,~�(x) and ~D(�)gea(x) become independent of x. The e�ective quantum number of the Rydbergstate jn; 1ij�1i is denoted by �n = n � �1. Inserting Eq. (61) into Eq. (60) yields thesemiclassical path representation for the transverse momentum distribution.The physical interpretation of Eq. (61) follows directly from the discussion of Sec. 2.2.TheM -th member of the sum in can be assigned to a process in which the Rydberg electronperforms M complete orbital round trips around the nucleus after the initial excitation bythe pump �eld. On each complete round trip in the dressed channel j the Rydberg electronacquires a phase of magnitude 2�~�jj(x) which is equal to the classical action of motionalong a purely radial Kepler orbit with zero angular momentum and energy "� ~"cj(x) < 0.Between two round trips the Rydberg electron may be scattered by the Rabi-oscillatingionic core. This process is described by the scattering matrix ~�(x). During the (M + 1)-thround trip the atom leaves the standing wave �eld and the state of the Rydberg electronis projected onto the bare Rydberg states jn; 1ij�1i. This projection is described by the�rst bracketed term in the second line of Eq. (61). Finally, the spatial dependence of theprobability amplitudes a(T )n;1 (x) determines the momentum distribution of the deected atomsaccording to Eq. (60). One should note the formal similarity between Eq. (61) and theexpressions (45) and (46) (after performing the integration over � in Eq. (46)) for thetime-independent transition amplitude T (1)fg pertaining to a pump-probe process with anintermediate spontaneous photon emission. This similarity is due to the fact that the atom'sleaving the standing wave as well as the spontaneous photon emission are described as eventsof negligible duration which may occur at every instant during the round trip of the wavepacket around the core.4.3 Electron correlation e�ects and atomic momentum distributionsIn this subsection we examine the physical implications of the theoretical description whichwas given for atomic laser deection by laser-induced core transitions in Sec. 4.2. For the sakeof clarity the discussion is again restricted to the two-channel excitation scheme depicted inFig. 13. This is justi�ed as long as one is interested in interaction times between atom andstanding wave which are of the order of several wave packet orbit times. In this case e�ectsof autoionization are expected to be small [29] (see also Sec. 2.3). However, these e�ects aswell as direct photoionization of the Rydberg electron could easily be incorporated into theformalism with the help of complex and intensity-dependent quantum defects [15]. In viewof typical values for spontaneous lifetimes the inuence of spontaneous emission processes(which would be more di�cult to take into account) may also be neglected.More attention must be paid to the question of how to realize the scheme for beam



4 ICE AND ATOMIC CENTER-OF-MASS MOTION 42deection shown in Fig. 12 experimentally. If one used a cw-laser to create the standingwave, then the laser beam would have to be focused onto a diameter of the order of 10�7m to achieve an interaction time of 100 ps (' Torb) for a beam velocity of 1000 m=s. InRef. [35] it was argued that this and other di�culties could be circumvented by realizingthe standing wave with the help of two counter-propagating short laser pulses. As soon asthese pulses overlap and create the standing wave the short pump pulse is applied. Thisexperimental setup which should produce essentially the same momentum distributions asthe theoretical model of Sec. 4.2 would o�er several advantages: �rst of all, it would not benecessary that only a single atom interacts with the pump pulse and the standing wave at atime. Instead, one can use an atomic beam of higher intensity as the atom-laser interactiontime is only determined by the timing and the temporal pro�le of the three short pulses andnot by the atomic position and velocity. For the same reason the experiment should alsobe rather insensitive to the longitudinal velocity spread of the beam. Furthermore the useof short pulses allows to achieve high �eld intensities easily and it would not be necessaryto focus the pulses tightly. In view of the rapid progress in the �eld of manufacturing andmanipulating short pulses [53] an actual realization of this setup appears to be within reachin the near future.In the following numerical examples the inuence is examined which the laser-inducedelectron correlations exert on the momentum transfer between laser �eld and atom forvarious degrees of shakeup. Thereby, resonant core excitation (� = "c2 � "c1 = 0) and aRydberg wave packet with mean quantum number ��1 = [2("c1 � �")]�1=2 = 80 and �1 = 0:0are considered. The duration � of the short pulse is equal to 0:3 Torb with Torb = 2���31 = 77:8ps unless otherwise stated. The form (51) of the envelope of the standing wave �eld impliesthat the distribution of transverse momenta px of an atom leaving the interaction regionwith its core in the ground state contains only components equal to even multiples of thephoton momentum k. This momentum distribution is symmetric with respect to px = 0. Inthe following examples only the part of the momentum distribution with px � 0 is shown.For the sake of clarity it is depicted in the form of a continuous curve instead of discretepoints at even multiples of k.Minimum shakeup correlations, i.e. �2 � �1 = 0:0: In this case the dressed scatteringmatrix is a multiple of the unit matrix, i.e. ~�(x) = e2i��11. Even though no core scatteringtakes place between the dressed Rydberg series the momentum transfer to the atomic centerof mass is determined by the characteristics of the electronic wave packet prepared. Todiscuss this momentum transfer it is convenient to sum up the geometric series in Eq. (61)which yields for the position-dependent probability amplitudea(T )n;1 (x) = (�1)l d"g2�3=2n [e�i~"n;+(x)T ~Ea(~"n;+(x)� �") + e�i~"n;�(x)T ~Ea(~"n;�(x)� �")]: (63)



4 ICE AND ATOMIC CENTER-OF-MASS MOTION 43This way the probability amplitude is expressed in terms of the contributions of the twodressed states jn;�i = 1p2(jn; 1i � jn; 2i) in the standing wave �eld pertaining to the twobare states jn; 1(2)i. Their energies are given by ~"n;�(x) = "c1� 12
21(x). The dipole matrixelement between the initial state jgi and an energy-normalized continuum state j"i in thebare channel 1 is denoted by d"g. According to Eq. (63) one can distinguish three limitingcases:

Figure 14: The relation between the maximum induced Rabi frequency 
21;max, the excitedenergy range ��1 and the distance between adjacent bare Rydberg states ���31 = 2�=Torbdetermines the characteristics of the momentum distribution in the case of equal quantumdefects. This interplay is indicated by displaying the laser pulse shape ~Ea and the relevantexcited dressed states energies ~"n as a function of 
21 for the cases (a), (b) and (c) discussedin the text.(a) 1=� � 
21;max: The energy spread 1=� of the prepared wave packet is much largerthan the maximum Rabi frequency 
21;max. In this case one may approximate ~Ea(~"n;+(x)��") � ~Ea(~"n;�(x)� �") � ~Ea("n;1� �") (cf. Fig. 14(a)). Therefore the deection pattern is almostindistinguishable from the well-known one of a fast two-level atom which enters a standingwave �eld (of rectangular shape) in its ground state and interacts with it for a time T [32]. Asan example, in Fig. 15(a) the state-selective momentum distribution P (T )n;1 (px) = ja(T )n;1 (px)j2and the total distribution P (T )1 (px) = Pn1 P (T )n;1 (px) summed over all Rydberg states areshown for TRabi = 0:1Torb > � = 0:03Torb. They display the rapid oscillations familiar fromthe above-mentioned two-level case. The distributions P (T )n;1 (px) di�er from each other onlyby a multiplicative constant which is due to the energy dependence of the envelope function~Ea(").(b) 1=� � 
21;max < 2�=Torb: This condition implies that in general only at mostone pair of dressed states belonging to a certain principal quantum number n is excited(Fig. 14(b)). The momentum distribution could also be obtained from a pure two-levelsystem which is excited correspondingly from a low-lying state. However, due to the strongposition dependence of the excitation amplitudes ~Ea(~"n;�(x) � �") interesting e�ects may



4 ICE AND ATOMIC CENTER-OF-MASS MOTION 44be observed. If one chooses, for example, �" equal to the energy of a bare Rydberg state,i.e. �" = "n;1, then the atom is excited to the two dressed Rydberg states jn;�i only inthe vicinity of the �eld nodes. There the induced light force (and thus the deection) islarge while the excitation in regions of weak induced light force is suppressed. In this wayan e�cient beam splitter is realized (Fig. 15(b)). The maximum momentum transferred isapproximately given by jpxjmax = k
21;maxT =2.

Figure 15: State-selective momentum distributions P (T )n;1 = ja(T )n;1 j2 and total momentumdistributions P (T )1 = Pn P (T )n;1 (both in units of j(D(�)gea)1E(0)a j2�) for �1 = �2 = 0:0, �� = 80,� = 0 and (a) T = 2:5Torb, TRabi;min = 0:1Torb, � = 0:03Torb; (b) T = 6:0Torb, TRabi;min =1:0Torb, � = 2:0Torb; (c) T = 2:5Torb, TRabi;min = 0:1Torb, � = 0:3Torb.(c) 1=� � 
21;max and 
21;max > 2�=Torb: Due to the second condition a number ofdressed states with di�erent principal quantum numbers n are excited signi�cantly and,as expressed by the �rst condition, their excitation amplitudes vary strongly with position(Fig. 14(c)). The resulting momentum distribution cannot be obtained with a two-levelsystem and thus reects the presence of the Rydberg wave packet. Fig. 15(c) shows thatthe atomic deection is indeed selective with respect to the Rydberg states. Dressed statesof principal quantum number n with j"n;1 � �"j < 1=� are excited only in the vicinity ofthe �eld nodes and are deected strongly as described in case (b). States with 
21;max >j"n;1 � �"j > 1=� are excited only in regions of weak stimulated light force and are thereforeless deected.Maximum shakeup correlations, i.e. �2��1 = 0:5: In this case the corresponding dressedscattering matrix is given by~�(x) = e2i�(�1+�2)  0 11 0 ! : (64)It is independent of the position x at which the atom crosses the standing wave �eld becauseof the resonant character of the excitation. With each return to the core region the fractions



4 ICE AND ATOMIC CENTER-OF-MASS MOTION 45of the initially prepared electronic Rydberg wave packet which propagate in the photondressed core channels are scattered from one channel into the other one with a probabilityof unity. This extreme case of core scattering inuences the momentum distribution of adi�racted atom signi�cantly. In this context it is particularly interesting to study the widthof the momentum distribution as a function of the interaction time between standing wave�eld and atom. This question is conveniently examined with the help of the semiclassicalpath expansion for the transverse momentum distribution given by Eqs. (60) and (61). Theresults of the analysis which is detailed in Ref. [35] and which is based on a stationary phaseevaluation of the semiclassical path expansion may be summarized as follows:(1) at interaction times equal to a small odd multiple of Torb, i.e. T = (2N + 1)Torbwith integer values of N up to about 5, to a good degree of approximation the maximumtransferred momentum jpxjmax is given byjpxjmax = 12k
21;maxTorb: (65)This value is independent of N . Like in the case of vanishing shakeup the maximum mo-mentum originates from atoms which cross the standing wave at the �eld nodes.(2) at interaction times equal to a small even multiple of Torb the relationjpxjmax = 38k
221;maxT �Torb2� �2=3 : (66)holds. This result also applies to the case of large interaction times, irrespective of whetherthe number of returns is even or odd. The maximum transverse momentum of Eq. (66) growslinearly with T . It is associated with atoms which cross the standing wave at positions withsin(2kx) = 0 at which the electric �eld strength does not vanish.For interaction times T up to the order of several Torb and maximum Rabi frequenciescomparable to the mean excited level spacing ���31 Eqs. (65) and (66) imply that the max-imum momentum transferred at odd multiples of Torb is signi�cantly larger than the onetransferred at even multiples. The transverse momentum distribution is thus of oscillatingwidth with respect to the interaction time. The laser-induced scattering process betweenthe electronic Rydberg wave packet and the excited core electron causes the time evolutionof the momentum transfer from the standing wave laser �eld to the atom to be reversed ateach return of the wave packet to the core. For larger interaction times the oscillations inthe width of the distribution are gradually washed out. The core scatterings then manifestthemselves in the fact that the maximum momentum transferred is much smaller than itwould be in the absence of shakeup.These characteristic features are exempli�ed in Fig. 16 where total momentum distribu-tions P (T )1 (px) are depicted for TRabi;min = 0:2Torb and di�erent values of interaction timeswith the standing laser �eld. Figs. 16(a,c,e,g) on the one hand and Figs. 16(b,d,f,h) on the
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Figure 16: Total momentum distribution P (T )1 (px) for parameters �1 = 0:0, �2 = 0:5,TRabi;min = 0:2Torb and various interaction times T (other parameter values as given in thetext).other hand illustrate the oscillation of the width of the momentum distribution as a functionof the interaction time. They also con�rm the more detailed predictions of Eqs. (65) and



4 ICE AND ATOMIC CENTER-OF-MASS MOTION 47(66) as they show jpxjmax to be approximately constant for odd multiples of Torb while itincreases proportional to T at even multiples. The corresponding proportionality constantand the width of the distribution at odd multiples of Torb are also in good quantitativeagreement with the values inferred from Eqs. (65) and (66). Figs. 16(i) and (j) con�rm thevalidity of Eq. (66) at large interaction times.Intermediate shakeup correlations, i.e. 0:0 < �2 � �1 < 0:5: For an intermediate di�er-ence in quantum defects the dressed scattering matrix can be decomposed into a diagonaland an o�-diagonal part, i.e. ~� = ~�diag + ~�off . This decomposition reects the fact that ateach return to the nucleus the Rydberg wave packet may either be scattered between thedressed channels (~�off ) or not (~�diag). As the foregoing discussion has shown both processeshave completely di�erent e�ects on the momentum transfer from the standing wave �eld tothe atomic center of mass. As long as the core has not experienced a scattering of the wavepacket between the dressed channels the momentum distribution grows linearly with time.However, as soon as such a scattering has taken place the momentum transfer is \reversed"and the momentum distribution begins to shrink. Subsequent scattering events lead to fur-ther characteristic modi�cations in the momentum transfer. As the events of scattering andnon-scattering are superposed quantum mechanically, the momentum distribution consistsof a superposition of the various distinct deection patterns arising from the di�erent \scat-tering histories". Therefore, the internal dynamics of the atom which is determined by theinteraction between the Rydberg wave packet and the ionic core is reected in detail in themomentum distribution of the atomic center of mass motion.The quantitive analysis of these kinds of processes may be accomplished easily with thehelp of Eqs. (60) and (61). As an example Fig. 17(a) shows the momentum distribution foran atom with �2��1 = 0:20 and interaction time T = 1:7Torb. In this case only theM = 1-term in Eq. (61) contributes signi�cantly to the probability amplitude. The momentumdistribution consists essentially of two distinct peaks around px � 0 and px � 50 k. Usingthe decomposition of the dressed scattering matrix the inner peak can be attributed toatoms in which the wave packet fractions have experienced a scattering between the dressedchannels at their �rst return to the nucleus. The outer peak corresponds to atoms withunscattered wave packet fractions (Fig. 17(b)). Thus, the internal dynamics is mappedonto the momentum distribution in a clear way. Figs. 17(c), (d) show the analysis of amore complicated deection pattern at time T = 2:5Torb, where M = 2 is dominant, interms of the di�erent histories connected with two wave packet returns to the core. In thisexample, a time of approximately 0:5Torb has elapsed since the second return. The widthof the contribution pertaining to atoms which have experienced no scatterings of the wavepacket fractions between the dressed channels (�) continues to grow linearly with T . Thedistribution corresponding to a scattering at the second return (4), on the other hand, has
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Figure 17: (a): M = 1-contribution P (M=1)1 (as evaluated from Eqs. (60) and (61)) to thetotal momentum distribution P (T )1 for parameters �1 = 0:0, �2 = 0:2, TRabi = 0:1Torb andinteraction time T = 1:7Torb (other parameters as given in the text). (b): Contributionsto P (M=1)1 from atoms in which the Rydberg wave packet has been scattered between thedressed channels at the �rst return to the core (�, evaluated by replacing ~� by ~�off inEq. (61)) and atoms in which the wave packet leave the core unscattered (�, evaluated with~�diag). (c): same as (a) for M = 2 and T = 2:5Torb. (d): Contributions to P (M=2)1 fromatoms in which the wave packet has been scattered between the dressed channels twice (�),only at the �rst return (�), only at the second return (4), neither at the �rst nor the secondreturn (�).begun to shrink due to the \reversal" e�ect. The distributions for scattering at the �rstreturn (�, �) are both rather narrow because the corresponding atoms did not possess anytransverse momentum at the time of the second return of the wave packet. However, theirwidth increases with growing interaction time.In Ref. [35] it is shown that the notion of the \reversal e�ect" may be cast into a moreprecise form. To this end, one considers the maximum transverse momentum jpxjmax of acontribution to the momentum distribution which is characterized by a given sequence ofscattering and non-scattering events in the course of the wave packet's returns to the core. Aset of rules can then be constructed with the help of which jpxjmax may be determined. Theserules allow one to analyze complex structures in the momentum distribution quantitativelyin a simple way. Furthermore, they con�rm the idea which was put forward above that after acore scattering the momentum distribution will shrink (grow) as a function of the interaction



5 SUMMARY AND OUTLOOK 49time T if it has been growing (shrinking) before. If the wave packet does not experience acore scattering at its return to the nucleus the momentum distribution continues to grow orto shrink, respectively.5 Summary and outlookIsolated core excitation processes o�er interesting possibilities for investigating electron cor-relation e�ects and their modi�cation by intense laser �elds. In this article recent theoreticalwork on this problem has been reviewed. The presentation focused on time-dependent man-ifestations of such ICE-modi�ed correlation e�ects in connection with the dynamics of anelectronic Rydberg wave packet. It was shown that for this purpose the nonperturbative ICEprocesses and the electron dynamics can be described in a physically transparent way by acombination of quantum defect theory, semiclassical and stochastic methods. Thus a uni�edtheoretical understanding of various aspects of laser-modi�ed electron correlation e�ects inICE processes is obtained. In this review three aspects have been discussed in detail, namelyICE processes in intense laser �elds, ICE processes and radiative damping of the ionic coreand ICE processes and the inuence of the resulting stimulated light force on the atomiccenter of mass motion. The common framework for these topics was provided by an excita-tion scheme in which after preparing the Rydberg wave packet the ionic core is resonantlydriven by an intense laser �eld. It was shown that via the electron correlation e�ects theRydberg electron may be used as a sensitive probe for the time evolution of the ionic core.Vice versa, the external laser manipulation of the core allows for a coherent control of theRydberg wave packet. Laser-induced suppression of autoionization provides an importantexample in this respect. In addition, this e�ect is very well suited for the study of processeswhich destroy the coherence of the atomic system, in particular spontaneous photon emis-sion of the core. The entanglement between wave packet and core dynamics is also reectedin the atomic center of mass motion. In conclusion, the examples presented demonstrate therichness of quantum-optical phenomena which may be exhibited by core-excited Rydbergsystem.There are various directions into which the work presented in this article may be ex-tended. For example, wave packet dynamics under the combined inuence of isolated coreexcitation and external static �elds should lead to new and interesting e�ects. This way itwould be possible to manipulate the electron dynamics both inside and outside the coreregion at the same time. Furthermore, one can consider more complicated excitation pro-cesses of the inner electron by which it is excited into coherent superpositions of several corestates. Ultimately, this would lead to studies on the correlated dynamics of two electronicwave packets. The pursuit of this direction will allow one to study the transition from dy-namical cases in which the problem can be described within the framework of ICE models
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