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Rydberg electrons in intense fluctuating laser fields

G. Alber and B. Eggers
Fakultät für Physik, Albert-Ludwigs-Universita¨t, D-79104 Freiburg im Breisgau, Germany

~Received 10 January 1997!

The influence of laser fluctuations on the optical excitation of Rydberg and continuum states close to a
photoionization threshold is investigated within the framework of the phase diffusion model. Theoretical
methods are developed for solving the relevant master equation of the atomic density operator which is
averaged over the laser fluctuations. In the long-time limit this laser-induced excitation process exhibits non-
exponential decay. This nonexponential time dependence reflects the fluctuation-induced diffusion of the
Rydberg electron toward the ionization threshold.@S1050-2947~97!06006-X#

PACS number~s!: 42.50.Ct, 42.50.Hz
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I. INTRODUCTION

The dynamics of quantum systems under the influenc
stochastic external forces is a major field of current phys
interest@1#. An example which is of particular relevance
laser spectroscopy is the optical excitation of atomic or m
lecular systems by fluctuating laser fields. In recent ye
research in this context has concentrated mainly on ques
concerning the influence of laser fluctuations on reson
possibly nonperturbative excitation of isolated energy eig
states. By now the dynamics of these types of processe
fairly well understood@2#. However, still almost nothing is
known about the influence of laser fluctuations on the opt
excitation of atomic or molecular systems under conditio
in which the level density of the resonantly excited state
large. A main intention of this paper is the exploration of th
latter problem in Rydberg atoms.

Rydberg atoms are paradigms of physical systems wi
high level density. The dynamics of a Rydberg electron i
laser field is dominated by two main characteristic prop
ties, namely,~1! the localization of the electron-laser inte
action in a region, which typically extends a few Bohr ra
around the atomic nucleus only@3#; and ~2! the large exten-
sion of the classically accessible region of space in which
dynamics of the Rydberg electron is dominated by ther
Coulomb potential of the ionic core@4#. According to prop-
erty ~1!, which applies to electromagnetic fields of modera
intensities in the optical frequency regime, a Rydberg el
tron can be affected by a laser field only near the ato
nucleus. In contrast, the interaction of a Rydberg elect
with an electromagnetic microwave field is completely d
ferent @5#. In this latter case the relevant excitation freque
cies are typically of the same order of magnitude as the le
spacings between adjacent Rydberg states. This implies
in the microwave regime photons can be absorbed by
Rydberg electron at any position within its classically acc
sible region of space. Property~2! implies a universal behav
ior of Rydberg systems@6#. Thus characteristic dynamica
effects of atomic Rydberg systems can also be observe
more complex physical systems, such as molecules or c
ters.

In this paper the influence of laser fluctuations on
optical one-photon excitation of atomic Rydberg states cl
to a photoionization threshold is investigated. Thereby
561050-2947/97/56~1!/820~13!/$10.00
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restrict ourselves to cases in which the laser fluctuations
be described within the framework of the phase diffusi
model ~PDM! @7#. This stochastic model describes the las
field of a realistic single mode laser with a well-stabilize
amplitude. Furthermore, the laser intensities are assume
be moderate in the sense that they are small in compar
with the atomic unit of intensity (I51.4031017 W cm22),
but still intense enough so that their influence on the at
cannot be described perturbatively. Therefore, in this int
sity regime the phase fluctuations of the laser field will te
to destroy interferences between quantum-mechanical p
ability amplitudes which are associated with repeated retu
of the Rydberg electron to the ionic core@8#.

The main theoretical problem which has to be overco
is the nonperturbative treatment of the fluctuating laser fi
on the one hand, and the proper treatment of the thres
phenomena on the other hand, which originate from the
finitely many bound Rydberg states converging to the ioni
tion threshold. In particular, we are interested in obtainin
dynamical description of the laser-induced excitation proc
which is also valid at very long interaction times. Due
inherent numerical inaccuracies, stochastic simulation m
ods are not suited for this purpose. In the following an alt
native theoretical approach is used which takes advantag
special properties of the PDM. It is known that within th
framework of the PDM a master equation can be derived
the atomic density operator which is averaged over the fi
fluctuations@9#. Master equations of this type are also stu
ied in the context of the theory of continuous quantum m
surement processes@10#. In the following it is shown that
this master equation can be analyzed systematically with
help of quantum defect theory~QDT! @4,6#. Thereby all
threshold phenomena which arise from the infinitely ma
bound Rydberg states and the adjacent electron contin
are taken into account properly. On the basis of this theo
ical approach it will be shown that at sufficiently long inte
action times the dynamics of the excited Rydberg electro
dominated by stochastic energy diffusion toward the pho
ionization threshold. The theoretical approach presente
well suited for investigating the resulting nonexponent
features of the laser excitation process analytically.

The paper is organized as follows: In Sec. II, a theoreti
description of one-photon excitation of Rydberg states cl
to a photoionization threshold is developed. With the help
820 © 1997 The American Physical Society
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56 821RYDBERG ELECTRONS IN INTENSE FLUCTUATING . . .
QDT a Fourier representation of the~averaged! atomic den-
sity operator is developed. This representation is useful
numerical, highly accurate calculations of relevant atom
observables which are averaged over the phase fluctuat
of the laser field. Furthermore, it is a convenient startin
point for the derivation of analytical results on the long-tim
dynamics of the excitation process. This section concentra
on the presentation of the main ideas and main theoreti
results. Details of mathematical derivations can be found
Appendices A, B, and C. Numerical examples which exhib
the characteristic physical effects originating from the pha
fluctuations of the laser field are presented in Sec. III.
short summary and conclusions are given in Sec. IV.

II. THEORETICAL DESCRIPTION

In this section a theoretical description of one-photon e
citation of Rydberg states by a laser field with fluctuatin
phase is developed. Mathematical details of derivations
postponed to Appendixes A, B, and C.

Let us consider one photon excitation of Rydberg an
continuum states close to a photoionization threshold,
shown schematically in Fig. 1. Thereby these Rydberg a
continuum states are excited from an initially prepared en
getically low-lying bound stateug& with energyeg . In the
dipole and rotating-wave approximations, this excitation pr
cess is characterized by the Hamiltonian

H„F~ t !…5egug&^gu1(
n

enun&^nu

2(
n

~ un&^gu^nudug&•E0e
iF~ t !e2 ivt1H.c.!. ~1!

Thereby the indexn refers to Rydberg and continuum state
Atomic units are used withe5\5me51. In Eq. ~1! it is

FIG. 1. Schematic representation of the excitation process.
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assumed that the exciting fluctuating cw-laser field of f
quencyv can be described by the classical electric field

E~ t !5E0e
iF~ t !e2 ivt1c.c., ~2!

whose amplitude is well stabilized and whose phase is fl
tuating. For near-ideal single-mode laser fields to a go
degree of approximation, these phase fluctuations can be
scribed by the PDM@7#, in which the stochastic phase varia
tion F(t) is given by a real-valued Wiener process wi
M dF(t)50 and @dF(t)#252b dt (M denotes averaging
over the statistical ensemble!. The energies of the excite
Rydberg and continuum states are denoteden , andd is the
atomic dipole operator. Within the framework of QDT@4#
and the one-channel approxmation, the excited states
characterized by a complex quantum defectm5a1 ib. The
real part of this quantum defect defines the energies of
bound states in the absence of the laser field,
en521/@2(n2a)2#. The imaginary partb describes effects
arising from photon absorption from the highly excited sta
close to threshold to continuum states well above thresh
As long as the laser intensityI is small on the atomic scale
i.e., I!I 051.4031017 W cm22, in the optical frequency re-
gime this photon absorption process can be described pe
batively with @11#

b5^e5vud•E0ue50&. ~3!

Such a perturbative treatment is valid as long as the osc
tion amplitudeaosc5uE0uv22 of an electron in the laser field
is significantly smaller than the Bohr radius which defin
the characteristic length scale of atomic quantum phen
ena. The matrix element of Eq.~3! can be estimated sem
classically, for example, with the help of the Bohr correspo
dence principle. Thus it is found@12# that

b562/3G~2/3!v25/3uE0u/~2pA3!. ~4!

Thev25/3 dependence of this semiclassical result reflects
fact that the dominant contribution to the matrix element
Eq. ~3! originates from a spatial region around the atom
nucleus with a typical size of the order ofr c'v22/3. This
characteristic sizer c is determined by the distance a classic
electron can depart from a singly charged nucleus during
relevant photon absorption timetphoton5v21, while it is
moving on a parabolic, classical Kepler orbit of angular m
mentum zero. Thus in the optical frequency regime this le
to the well-known conclusion@3# that the photon absorption
process takes place in a region extending only a few B
radii around the atomic nucleus, a region which is small
comparison with the extension of highly excited Rydbe
states of large eccentricity.

In order to describe nonperturbative aspects of the dyn
ics of the laser excitation process, one has to solve the
chastic linear Schro¨dinger equation with Hamiltonian~1!,
and has to average observables of interest over the laser
tuations. In this context straightforward, numerical stocha
simulation approaches@13# offer the general advantage th
they are applicable to any types of laser fluctuations. Ho
ever, this way it is difficult to obtain numerically reliabl
results for threshold phenomena which originate from
infinitely many Rydberg and continuum states close
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822 56G. ALBER AND B. EGGERS
threshold. In particular, due to unavoidable numerical in
curacies it is very difficult to investigate long time phenom
ena which are direct consequences of these threshold eff
Therefore, in this paper an alternative theoretical approac
used which takes advantage of special properties of
PDM, and which allows the long-time behavior to be eva
ated accurately. It is well known@9# that the mean values

rnn8~ t !5rn8n
* ~ t !5M ^nuc~ t !&^c~ t !un8&,

rng~ t !5rgn* ~ t !5Me2 iF~ t !^nuc~ t !&^c~ t !ug&, ~5!

rgg~ t !5M u^guc~ t !&u2

can be combined to form a density operatorr(t). Thereby
uc(t)& denotes the atomic state which is associated wit
single realization of the fluctuating laser field. The dens
operatorr(t) fulfills the master equation@9#

d

dt
r~ t !52 i @Hmod,r~ t !#1 1

2 $@L,r~ t !L†#1@Lr~ t !,L†#%.

~6!

The Hamiltonian Hmod[H„F(t)[0… describes laser
induced excitation in the absence of phase fluctuations.
destruction of coherence due to the laser fluctuations is
scribed by the Lindblad operator

L5A2bug&^gu. ~7!

Master equations of this type are also of general interes
phenomenological descriptions of deterministic excitat
processes in the presence of continuous measurement o
initial stateug& @10#. In this context 1/b can be interpreted a
the mean time between subsequent measurements. S
master equations of the form of Eq.~6! have been studied
only in cases in which the number of resonantly coup
states is small. In the following it will be shown that the
master equations are also useful starting points for inve
gating nonperturbative laser-induced threshold phenom
of Rydberg systems.

For the subsequent treatment it is convenient to repre
the formal solution of Eq.~6! as a sum over all possibl
quantum jumps which are induced by the Lindblad opera
L @14#, i.e., r(t)5(N50

` r (N)(t), with

r~N!~ t !5E
0

t

dtN•••E
0

t2
dt1uc~ tutN , . . . ,t1!&

3^c~ tutN , . . . ,t1!u

being a mixture of the pure states

uc~ tutN , . . . ,t1!&5e2 iH̄ ~ t2tN!L•••Le2 iH̄ t1uc~0!&. ~8!

The effective Hamiltonian

H̄5Hmod2 iL †L/2 ~9!

describes the deterministic time evolution between suc
sive quantum jumps which take place at the random ju
times t1 ,t2 , . . . ,tN . In terms of the Laplace-transforme
quantities
-
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Ai j ~z!5E
0

`

dt eizt^ i ue2 iH̄ tug&^ j ue2 iH̄ tug&* , ~10!

with i , jP$n,g%, this decomposition of the formal solution o
Eq. ~6! yields

r i j ~ t !5
1

2pE2`1 i0

`1 i0

dz e2 iztAi j ~z! (
N50

`

@2bAgg~z!#N

5
1

2pE2`1 i0

`1 i0

dz e2 iztAi j ~z!@122bAgg~z!#21.

~11!

As u2bAgg(z)u,1, Eq.~11! represents a convergent geome
ric series. Thus the main problem is the evaluation of
characteristic kernelsAi j (z). This can be achieved with th
help of QDT. Thereby it is possible to include effects of t
infinitely many bound Rydberg and continuum states pr
erly. It is shown in detail in Appendix A that

Agg~z!5U~z!1U* ~2z!, ~12!

with

U~z!5H 2C2~z!1C4~z!1 i (
Reẽn,0

F12
d

dz1
S* ~z12z!G21

3@z12 ē1 ib2S~z1!#
21uz15z1 ẽ

n* J Q~z!,

C2~z!5
1

2p~z12ib !
ln
z2 ē1 i ~b1g/2!

2 ē1 i ~g/22b!
,

C4~z!5
1

2p@z1 i ~g12b!#
ln
z2 ē1 i ~g/21b!

2 ē2 i ~g/21b!
. ~13!

Thereby the branches of the logarithmic functions have to
chosen in agreement with the definitions of Eq.~A5! of Ap-
pendix A. Analogous expressions are obtained for the~aver-
aged! coherences of the Rydberg and continuum sta
Ann8(z) andAee8(z). Their explicit form is given in Eq.~A7!
of Appendix A.

The sum of Eq.~13! extends over all dressed states w
energiesẽn which are determined by the condition

ẽn2 ē1 ib2S~ẽn!50. ~14!

The quantityS(z) denotes the resonant part of the se
energy of stateug&, and is defined by@11#

S~z!5(
n

u^nud•E0ug&u2

z2en

52 i
g

2
2

igx

e2 i2p~22z!21/2
2x

. ~15!

It is characterized by the laser-induced depletion rate

g52pu^e50ud•E0ug&u2

of the initial stateug& and the scattering matrix element@11#



y

d
-
ov
tin
be
ro
vi
at

ec
m

nt
It

r

e

s

nc

d
in-
e
o
on
ch

by

-

-

e

n
her

se
ta-
ion

-
ate
om
ove
so
ell
te
l
h at
in
ial
n
ial,

er-
sh-
rd
ork
he
za-

ove
ion
te
are
e.,

56 823RYDBERG ELECTRONS IN INTENSE FLUCTUATING . . .
x5ei2pm,

which describes all effects arising from scattering of the R
dberg electron by the ionic core and photon absorption.

Equation~13! is a major result of this paper. Combine
with Eq. ~11! it is useful for numerically accurate calcula
tions of relevant atomic observables which are averaged
the laser fluctuations. Furthermore, it is a convenient star
point for the derivation of analytical results which descri
the long-time dynamics of the laser-induced excitation p
cess. This long-time dynamics is dominated by the beha
of Agg(z) in a small neighborhood of its branch point
z50 in the complexz plane@15#.

In order to discuss this long-time dynamics, let us negl
ionization from highly excited Rydberg states to continuu
states well above threshold, i.e.,b50. Effects of photon
absorption from the excited Rydberg states will be taken i
account in the numerical examples presented in Sec. III.
shown in Appendix B that for sufficiently small values ofz
two dynamical regimes can be distinguished:

~1! uzu!1/tc :
If the values ofz are much smaller than the inverse cha

acteristic time

tc5
4p

gbA27F „ē213~b21g2/4!/4…3/2

ē21b21g2/4
G 1/2, ~16!

the asymptotic relation

Agg~z!5U~z50!2
2p

12A3b2F bg

p~ē21b21g2/4!
G 1/3

3e2 ip/3z2/31O~z! ~17!

is found with

U~z50!5
1

2bF12
g

g12b

w

pG , ~18!

and with2 ē1 i (b1g/2)5reiw (0,w,p).
~2! 2 ē@b, 1/tc,uzu:
In this case Rydberg states well below threshold are

cited, and one obtains

Agg~z!5
1

2b
2
e2 ip/4

8b2
A2bgT ē z

1/21O~z!. ~19!

The mean classical orbit time of the excited Rydberg state
denotedT ē 52p(22ē)23/2.

These asymptotic relations show explicitly thatAgg(z)
does not have poles in a small neighborhood of its bra
point atz50. According to Eq.~11! the time evolution of the
averaged atomic density matrix elements can be evaluate
inverting the Laplace transform with the help of contour
tegration in the complexz plane. Thereby the poles of th
integrand with negative imaginary parts give rise to exp
nentially decaying terms. Any nonexponential contributi
arises from contour integration along the branch cut whi
according to Eqs.~17! and~19!, starts atz50. This cut con-
tribution dominates the long-time behavior, and is given
-

er
g

-
or

t

o
is

-

x-

is

h

by

-

,

r i j ~ t !52
1

p
ReH i E

0

`

dy e2ytAi j ~e
2 ip/2y!

3@122bAgg~e
2 ip/2y!#21J . ~20!

Equation~20! indicates that it is only the immediate neigh
borhood of the branch point atz50 which contributes sig-
nificantly in the limit t→`. Inserting the asymptotic expres
sions of Eqs.~17! and~19! into Eq. ~20! in the limit of long
interaction timest, the following asymptotic decay laws ar
obtained forrgg(t):

~1! t@tc :

rgg~ t !5
~g12b!2

~2bgw/p!2F gbG3~5/3!t25

27p~ē21b21g2/4!
G 1/3. ~21!

~2! 2 ē@b, t,tc :

rgg~ t !5
2

p
G~1/2!@2bgT ē #21/2t21/2. ~22!

TherebyG(x)5*0
`du e2uux21 denotes the gamma functio

@16#. Analogous expressions can be found for the ot
density-matrix elements.

Equations~21! and~22! together with Eqs.~11!, ~13,! and
~A7! are the main results of this paper. Within the pha
diffusion model they describe the influence of laser fluc
tions on nonperturbative laser excitation in the energy reg
close to the photoionization threshold. Equations~21! and
~22! imply that for sufficiently long interaction times be
tween the Rydberg atom and the laser field, the initial st
exhibits a nonexponential decay as long as ionization fr
highly excited Rydberg states to continuum states well ab
threshold is negligible. In particular, this conclusion al
holds for resonant laser excitation of Rydberg states w
below threshold, in which the field-induced depletion ra
g and the laser bandwidthb are much smaller than the leve
spacing between adjacent Rydberg states, and in whic
first sight a two-level approximation should be valid. With
the framework of such a two-level approximation the init
state probabilityrgg(t) tends to the stationary value 0.5 i
the long-time limit. Physically speaking the nonexponent
asymptotic time evolution predicted by Eqs.~21! and ~22!
reflects diffusion of the excited Rydberg electron to high
lying energy eigenstates close to the photoionization thre
old. The dynamics of this stochastic energy diffusion towa
threshold cannot be described properly within the framew
of a two- or few-level approximation. It is the presence of t
infinitely many bound states converging to the photoioni
tion threshold which dominates this process. Eq.~21! is valid
irrespective of whether energy eigenstates below or ab
threshold are excited by the laser field. Thus for interact
times t@tc a nonexponential depletion of the initial sta
ug& is predicted even if continuum states above threshold
excited dominantly. However, well above threshold, i.
for ē@Ab21g2/2, the critical timetc of Eq. ~16! tends to
infinity.
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FIG. 2. Initial-state probabilityrgg(t) ~a! and
ionization probabilityPion(t) ~b! as a function of
interaction timet in units of the mean classica
orbit time T, with n̄5(22ē)21/2580,
gT51024 and bT50.08. Various approximate
time dependences are also indicated, namely,~a!
rgg(t)5(11e22Rt)/2, with R52g/bT ~long
dashed, short dashed!, Eq. ~22! ~short dashed!,
and Eq. ~21! ~long dashed!; and ~b! Eqs. ~23!
~short dashed! and ~24! ~long dashed!.
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III. NUMERICAL RESULTS

In the subsequent numerical examples the mean in
state and ionization probabilitesrgg(t) and Pion(t)
5*0

`de ree(t), as obtained from Eqs.~11!, ~13!, and ~A7!,
are compared with the corresponding analytical predicti
of Eqs. ~21! and ~22!. The parameters used refer to optic
excitation of hydrogen from the initial stateug&5u2s& by
linearly polarized laser light. In these numerical results, io
ization by absorption of optical photons from the highly e
cited Rydberg states is taken into account by the imagin
quantum defectm5 ib. In agreement with the semiclassic
estimate of Eq.~4!, it is assumed thatb 50.00375g.

In Fig. 2 the laser-induced depletion rateg and the band-
width b are small in comparison with the mean level spac
of the excited Rydberg state, i.e.,gT ē !bT ē !1. Thus,
seemingly, only one Rydberg state is excited resonantly
the fluctuating laser field, and it is expected that this case
be described adequately in the two-level approximation
Fig. 2~a!, well-known characteristic features of resonant tw
level excitation by a fluctuating laser field are apparent@2#.
As b@g, initially rgg(t) decays exponentially with rat
R52g/(bT ē ), and reaches the statistical equilibrium val
of 0.5 @9#. In particular, the decay rateR is inversely propor-
tional to the bandwidth of the laser field. Within the tw
level limit this particular dependence implies that for fix
al

s
l

-

ry

g

y
an
n
-

interaction timet the initial-state probability tends to th
value 1 in the limitb→`. The appearance of this quantu
Zeno effect@17# is a plausible consequence of the form
similarity between Eq.~6! and master equations which de
scribe laser excitation processes in the presence of con
ous measurement of an initial state@10#. In this analogy the
parameter 1/b corresponds to the mean time between sub
quent measurements. However, for longer interaction tim
the initial-state probability exhibits a nonexponential dec
which to a good degree of approximation is described by
~22!. The physical reason for this nonexponential decay
stochastic energy diffusion of the excited Rydberg states
ward the photoionization threshold which is brought abo
by the fluctuations of the laser field. This physical picture
consistent with the corresponding increase of the ioniza
probability in Fig. 2~b!. From Eqs.~11! and ~A7! it can be
shown that for these interaction times the ionization pro
ability is approximately given by

Pion~ t !5
4wA2bgt/T ē

p3/2~g12b!
. ~23!

It is worth mentioning that the nonexponential decay d
scribed by Eq.~22! can also be derived under the assumpt
of an equidistant level spacing between the excited Rydb
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FIG. 3. Initial-state probabilityrgg(t) ~a! and
ionization probabilityPion(t) ~b! as a function of
interaction timet in units of the mean classica
orbit time T with n̄5(22ē)21/2580, gT50.5
and bT510. Various approximate time depen
dences are also indicated, namely,~a! rgg(t)
5e2gt ~dotted!, Eq. ~22! ~short dashed!, and Eq.
~21! ~long dashed!; and ~b! Eqs. ~25! ~dotted!,
~23! ~short dashed!, and~24! ~long dashed!.
R
te
s
a

y
n
th
in

de
on
ibl
ab
e.
n

n

but
ss
o-
te
k
to
wn

en-
cay
bed

ion-
es
r to

ton
ant.
states. This indicates that for these interaction times the
dberg electron has been diffusing over a small energy in
val only over which the level spacing of the Rydberg state
approximately equidistant. For interaction times larger th
the characteristic timetc of Eq. ~16!, finally the nonexponen-
tial decay crosses over to at25/3-decay law, as predicted b
Eq. ~21!. At these long interaction times the stochastic e
ergy diffusion of the Rydberg electron has reached
photoionization threshold, and the ionization probability
creases significantly. With the help of Eqs.~20! and ~B2! it
can be shown that, fort.tc , the ionization probability is
given approximately by

Pion~ t !512
pG~2/3!~g12b!

6bgw F gb

p~ē21b21g2/4!
G 1/3t22/3.

~24!

The characteristic long-time behavior which has been
rived in Sec. II under the assumption of negligible phot
absorption from the excited Rydberg states is clearly vis
in Fig. 2, as for the interaction times considered photon
sorption from the Rydberg states is still negligible, i.
G ē t54pb/T ē ,1 (G ē denotes the laser-induced ionizatio
rate of Rydberg states with energyē).

In Fig. 3 the bandwidthb is much larger than the mea
y-
r-
is
n

-
e
-

-

e
-
,

level spacing between the excited Rydberg states,
gT ē ,1. Now even the initial stage of this excitation proce
can no longer be described within the framework of a tw
level approximation. As apparent from Fig. 3, initially sta
ug& decays with rateg. Physically this might be traced bac
to the large bandwidth of the laser field which tends
‘‘smear out’’ the discrete Rydberg states. As can be sho
from Eqs.~11! and ~A7!, this initial stage of the ionization
process is approximately described by the relation

Pion~ t !5
w

p
~12e2gt!, ~25!

with w being defined in Eq.~18!. At larger interaction times
the Rydberg electron starts to diffuse to higher-energy eig
states closer to the photoionization threshold. Thus the de
of the initial state becomes nonexponential, and is descri
approximately by Eq.~22!. At the critical timetc , finally, the
diffusing Rydberg electron has already reached the photo
ization threshold. Therefore the ionization probability ris
significantly and the decay of the initial state crosses ove
the t25/3-decay law predicted by Eq.~21!. Similar to Fig. 2,
all these asymptotic effects take place long before pho
absorption from the highly excited states becomes import
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FIG. 4. Initial-state probabilityrgg(t) ~a! and
ionization probabilityPion(t) ~b! as a function of
interaction timet in units of the mean classica
orbit time T with n̄5(22ē)21/2580, gT ē 512
and bTē 512. Various approximate time depen
dences are also indicated, namely,~a!
rgg(t)5e2gt ~dotted!, Eq. ~22! ~short dashed!,
and Eq. ~21! ~long dashed!; and ~b! Eqs. ~25!
~dotted!, ~23! ~short dashed!, and ~24! ~long
dashed!.
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In Fig. 4 both the bandwidthb of the laser field and the
field-induced depletion rateg are larger than the mean lev
spacing of the excited Rydberg states, i.e.,bT ē ,gT ē @1.
Thus an electronic Rydberg wave packet is prepared
power broadening@11#. This wave packet evolves under th
combined influence of the Coulomb potential of the ion
core and the fluctuating laser field. Whenever it returns to
core region it is scattered resonantly by the laser field. T
maxima near multiples of the mean classical orbit timeT ē
result from laser-induced stimulated transitions of this wa
packet to the initial state at one of the wave packet’s retu
to the ionic core. In this example the bandwidth of the flu
tuating laser field is large, i.e.,bT ē @1. This implies that
coherent effects arising from laser-induced resonant sca
ing during one of the wave packet’s intermediate returns
the core region, which typically lead to scattering-induc
time delays, are not seen. The absence of these effects o
nates from the fluctuation-induced destruction of all coh
ences associated with physical processes which occur a
peated returns of the electronic Rydberg wave packet to
ionic core. At sufficiently large interaction times, at whic
e2gt,1/A2btgT ē , the recurrence peaks disappear and
initial state probability exhibits the characteristic nonexp
nential decay described by Eq.~22!. At these interaction
times the dynamics of the excited Rydberg electron start
be dominated by stochastic energy diffusion, and the co
y

e
e

e
s
-

er-
o
d
igi-
-
re-
e

e
-

to
r-

ent dynamics of the electronic wave packet is destroy
This stochastic energy diffusion of the Rydberg electr
leads to an increase of the ionization probability which
described approximately by Eq.~23!. At interaction times
t.tc the energy diffusion of the Rydberg electron h
reached the photoionization threshold. Thus the initial st
decays according to the decay law of Eq.~21!, and the photo-
ionization probability is described approximately by E
~24!.

In Fig. 5, Rydberg and continuum states very close
threshold are excited. The bandwidth of the laser field
large, i.e.,b@g. Thus the phase fluctuations of the laser fie
dominate the dynamics of the excitation process. Initially
initial state decays with rateg. Physically speaking this is
caused by the large bandwidth of the laser field which te
to smooth out the excited, discrete energy levels, so that
Rydberg electron behaves as if it were excited into a
continuum. Initially the ionization probabilty increases exp
nentially and reaches a metastable equilibrium value of
proximately 0.5. As the initial-state probability is very sma
this implies that with a probability of 0.5 the Rydberg ele
tron is either in a bound Rydberg state or in a continu
state. This initial stage of the ionization process is descri
approximately by Eq.~25!. Furthermore, from Eqs.~11! and
~B1! it is straightforward to show that for interaction time
ug21ln(Ab/2p)u,t,tc the initial-state probability is ap-
proximately given by
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FIG. 5. Initial-state probabilityrgg(t) ~a! and
ionization probabilityPion(t) ~b! as a function of
interaction time t in units of 1/g with
g51026 a.u.54.1331010 s21, ē/g50.1, and
b/g580. Various approximate time dependenc
are also indicated, namely,~a! rgg(t)5e2gt ~dot-
ted!, Eq. ~26! ~short dashed!, and Eq.~21! ~long
dashed!; and~b! Eqs.~25! ~dotted! and~24! ~long
dashed!.
m

ac

io
es
a-

io
n
l

s
-

on
lose
es-
l in
he
er
dii
to
pli-
Ry-
ser
cket
In
cs
he
ion
till

ffu-
ifi-
y a
al
rgg~ t !5
Ab
2p

e2gAbt/~2p!. ~26!

For interaction timest.tc the ionization probability rises
significantly, and finally saturates at the value of 1. This ti
evolution is described approximately by Eq.~24!. At these
large interaction times the initial-state probability decays
cording to Eq.~21!.

In Fig. 6 continuum states well above the photoionizat
treshold are excited. Initially the ionization probability ris
exponentially according to Eq.~25!, and assumes the meat
stable value ofw/p. However, as in this casew;p, already
in this early stage of the excitation process the ionizat
probability rises to a value of almost 1. At long interactio
times with t.tc the ionization probability rises to the fina
value of 1 according to Eq.~24!. From Eqs.~11! and~B1! it
is straightforward to show that for interaction time
ug21ln(Ab/2p)u,t,tc the decay of the initial state prob
ability is approximately described by

rgg~ t !5
p~2b1g!2

8w2~2ē !3/2S 67D
5/2

expH 2t
2pgb~2b1g!

4w~2ē !3/2 S 67D
5/2J .
~27!
e

-

n

n

IV. SUMMARY AND CONCLUSIONS

The influence of phase fluctuations of a laser field
one-photon excitation of Rydberg and continuum states c
to a photoionization threshold was investigated. This inv
tigation concentrated on laser intensities which are smal
comparison with the atomic unit of intensity. Therefore t
interaction of the Rydberg electron with the fluctuating las
field takes place in a region extending a few Bohr ra
around the atomic nucleus. The laser fluctuations tend
destroy the quantum coherence between probability am
tudes which are associated with repeated returns of the
dberg electron to the core region where the electron-la
interaction is localized. As a consequence, the wave-pa
dynamics of a Rydberg electron is affected significantly.
particular, at sufficiently long interaction times its dynami
is dominated by stochastic energy diffusion toward t
photoionization threshold. The early stages of this diffus
process in which the Rydberg electron is energetically s
well below threshold are governed by at21/2 decay law of
the initial state. At a critical timetc @Eq. ~16!#, the Rydberg
electron reaches the photoionization threshold by this di
sion process, and the ionization probability rises sign
cantly. This threshold phenomenon is characterized b
t25/3 decay law of the initial state. The detailed analytic
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FIG. 6. Initial-state probabilityrgg(t) ~a! and
ionization probabilityPion(t) ~b! as a function of
interaction time t in units of 1/g with
g51026 a.u.54.1331010 s21, ē/g510, and
b/g51. Various approximate time dependenc
are also indicated, namely,~a! Eqs. ~27! ~short
dashed! and~21! ~long dashed!; and~b! Eqs.~25!
~dotted! and ~24! ~long dashed!.
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analysis of these nonexponential aspects has shown thtc
assumes its smallest value if Rydberg and continuum st
are excited directly at threshold. The examples presen
demonstrate that these diffusive threshold phenomena
observable as long as photon absorption from the exc
Rydberg states is negligible.

Our investigation concentrated on effects arising fro
phase fluctuations of a single mode laser field which can
described by the PDM. Nowadays it is possible to cont
laser fluctuations experimentally@18#. Thus the presented
diffusive threshold phenomena of Rydberg systems sho
be amenable to experimental observation. In the contex
resonant one-photon excitation of two- and few-level s
tems by fluctuating laser fields, it is known@9# that in the
limit of large laser bandwidths results obtained within t
framework of the phase diffusion model also apply to oth
types of laser fluctuations with the same Lorentzian sp
trum. This may be traced back to the fact that sufficien
large bandwidths imply correlation times of the laser fluctu
tions which are so short that relevant atom-field averages
be decorrelated. Within such a decorrelation approxima
the dynamics of an excited atom is determined completely
the spectrum of the laser field, i.e., the lowest-order fi
correlation function. In view of these results it seems pla
sible that a similar conclusion also holds for the thresh
phenomena discussed in this paper. However, this p
es
ed
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l

ld
of
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r
c-
y
-
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n
y
d
-
d
nt

needs further investigation. Furthermore, effects of elect
correlations which have to be described within the fram
work of quantum defect theory in a multichannel approxim
tion might change the quantitative details of the nonexpon
tial threshold phenomena. This aspect will be explored
subsequent work.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungs
meinschaft within the Schwerpunktprogramm ‘‘Zeitabha¨n-
gige Pha¨nomene und Methoden in Quantensystemen
Physik und Chemie.’’

APPENDIX A

In this appendix explicit expressions are derived for t
integral kernelsAi j (z) of Eq. ~10! in terms of contributions
over all dressed states of the effective HamiltonianH̄. Ac-
cording to Eq.~11! these expressions are convenient for n
merical evaluations of the density-matrix elements. Furth
more, they are starting points for the derivation of analyti
results in various limiting cases.

With the help of Laplace transforms the kernelsAi j (z) of
Eq. ~10! can be rewritten in the form (i , jP$n,g%)
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Ai j ~z!5
1

2pE2`

`

dz1aig~z11 i0!@ajg~z12z1 i0!#* ,

~A1!

with

aig~z1!5^ i u
i

z11 i02H̄
ug&, ~A2!

andH̄ defined in Eq.~9!. Therefore the complex amplitude
aig(z) can be evaluated from the system of equations

~z11 i02 ē1 ib !agg~z12v!52^gud•E0un&* ang~z1!1 i ,

~A3!

~z11 i02en!ang~z1!52^nud•E0ug&agg~z12v!,

in which ē5eg1v denotes the mean excited energy. The
equations imply

agg~z12v!5 i @z11 i02 ē1 ib2S~z1!#
21,

~A4!

ang~z1!52@z11 i02en#
21^nud•E0ug&agg~z12v!.

The resonant part of the self-energyS(z1) of stateug& can be
evaluated with the help of QDT. Thereby all effects arisin
from the infinitely many Rydberg and continuum states clo
to the photoionization threshold are taken into account pr
erly. Within the framework of a one-channel approximatio
its explicit form is given by Eq.~15!. Evaluating Eq.~A1!
with the help of contour integration in the complexz1 plane
Ai j (z) can be represented as a sum over all dressed state
the effective HamiltonianH̄. For this purpose one has to tak
into account thatagg(z1) has poles in the lower complex
z1 plane at the dressed energiesẽn (Imẽn,0) which are
determined by Eq.~14!. This implies that@agg(z12z)#* has
poles atz15z1 ẽn* in the upper complexz1 plane. Thus,
choosing for 0,zPR the integration contours as shown i
Fig. 7, and taking into account that the integral over cur
C3 vanishes, Eq.~13! is obtained with

FIG. 7. Contours of integration in the complexz1 plane.
e

e
p-
,

of

e

C2~z!5
1

2pEz
z1 i`

dz1@z12 ē1 i ~g/21b!#21

3@z12z2 ē1 i ~g/22b!#21,

C4~z!5
1

2pEz
`

dz1@z12 ē1 i ~g/21b!#21

3@z12z2 ē1 i ~g/21b!#21. ~A5!

Thereby the quantitiesC2(z) andC4(z) result from the con-
tour integrations over curvesC2 andC4 in Fig. 7. Explicit
expressions for them in terms of logarithmic functions a
given in Eq.~13!. Note that the phases of these logarithm
functions have to be chosen in such a way that their ar
ments are continuous functions ofz1 along the relevant inte-
gration paths. For 0.zPR the relationAgg(z)5@U(2z)#*
can be used, thus finally yielding Eq.~12!.

Similar expressions may be derived for all other quantit
Ai j (z). In particular, it is found that

Aee8~z!5Vee8~z!1@Ve8e~2z!#* ~zPR!, ~A6!

with

Vee8~z!5Q~z!^eud•E0ug&^e8ud•E0ug&*

3F (
Reẽn*,0

~z11 i02e!21
„z12 ē1 ib

2S~z11 i0!…21~z12z2 i02e8!21

3S 12
d

dz1
S~z12 i0! D 21U

z12z5 ẽ
n*

2D2~z!1D4~z!G . ~A7!

The quantitiesD2(z) andD4(z) represent the relevant inte
grals over the curvesC2 andC4 of Fig. 7. They are defined
by

D2~z!5^eud•E0ug&^e8ud•E0ug&*
1

2p

3E
z

z1 i`

dz1~z11 i02e!21
„z12 ē1 i ~b1g/2!…21

3~z12z2 i02e8!21
„z12z2 ē2 i ~b2g/2!…21,

D4~z!5^eud•E0ug&^e8ud•E0ug&*
1

2p

3E
z

`

dz1~z11 i02e!21
„z12 ē1 i ~b1g/2!…21

3~z12z2 i02e8!21
„z12z2 ē2 i ~b1g/2!…21.

~A8!

Analogous to Eq.~13!, these quantities can be expressed i
straightforward way by complex logarithmic functions.
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Eq. ~A7!, ^eud•E0ug& and ^e8ud•E0ug& are energy-
normalized dipole matrix elements. Replacing the ener
normalized continuum statesue& and ue8& by the normalized
bound Rydberg statesun& andun8&, the corresponding kerne
is obtained which determines the coherences of the Ryd
states.

APPENDIX B

In this appendix the behavior ofAgg(z) in the complex
z plane is investigated in a small neighborhood of its bran
point atz50. This determines the time evolution of the in
tial state probabilityrgg(t) in the long-time limit.

With the help of the sum rule of Eq.~C1! Agg(z) can be
rewritten in the more convenient formAgg(z)5U(z)
1@U(2z)#* with

U~z!5Q~z!H 1

2b
1I ~z!2C2~z!1C4~z!

2
i

4bp
ln

2 ē2 i ~b1g/2!

2 ē2 i ~b2g/2!J , ~B1!

and with

I ~z!5
1

2b (
Reẽn*,0

F12
d

dz1
S~z1!G21U

z15 ẽ
n*

3
2z2 ẽn*1 ē1 ib1S~ẽn*1z!

z1 ẽn*2 ē1 ib2S~ẽn*1z!
. ~B2!

Using the one-channel approximation for the self-energy
given by Eq.~15!, and neglecting ionization from the highl
excited Rydberg states, i.e., puttingb50, Eq. ~B2! yields

I ~z!52
1

2b (
Reẽn*,0

F12
d

dz1
S~z1!G21U

z15 ẽ
n*

3
z1 ẽn*2 ē2 i ~b2g/2!

z1 ẽn*2 ē1 i ~b1g/2!

3
2 tan~pm̃!@~z1 ẽn*2 ē !21~b1g/2!2#

2 tan~pm̃!@~z1 ẽn*2 ē !21~b21g2/4!#1 i2bg
,

~B3!

with

e2ip[22~z1 ẽ n* !]21/2
@ x̃* ~z1 ẽn* !#215e2ipm̃. ~B4!

The laser-assisted scattering matrixx̃(z) is given by

x̃~z!5e2ipaS 12 i
g

z2 ē1 i ~b1g/2!
D . ~B5!

In particular, foruzu!Ab21g2/4, one obtains
-

rg

h

s

I ~z!52(
ẽn

g

2bTẽ
n*

1

~ ẽn*2 ē !21b21g2/41 i2bg/@zTẽ
n*
#
,

~B6!

with the classical orbit timeT ẽ
n*
52p(22ẽn* )

23/2 of the

dressed energyẽn* . In Eq. ~B6! it was assumed that the den
sity of states of the Coulomb problem is not modified s
nificantly by the laser field, i.e., T ẽ

n*
@g/

u„ẽn*2 ē2 i (b2g/2)…„ẽn*2 ē2 i (b1g/2)…u. Furthermore, the
quantity m̃ of Eq. ~B4! was determined by linearizing th
argument of the exponent, i.e., 2pm̃5T ẽ

n*
z, and the ap-

proximation tanT ẽ
n*
z5T ẽ

n*
z1O„(T ẽ

n*
z)3… was used. As the

summands of Eq.~B6! are smooth functions ofẽn* , Eq.~B6!
can be evaluated approximately by replacing the summa
by an integration. Thus it is found that

I ~z!52
g

4bp~ē21b21g2/4
E
0

`

dn
n

P j51
4 ~n2n j !

,

~B7!

with the characteristic roots n j52Q6/4
6A2R/22S/41T/Q6 ( j51, . . . ,4), and

Q6564AR/22S/4,

R522 sgn~q!Aupucos~d/3!,

cos~d!5
uqu

upu3/2
,

q5

2

27
ē31

b21g2/4

12
ē1

1

8S gb

pzD
2

~ ē21b21g2/4!

2~ ē21b21g2/4!3
, ~B8!

p52

ē21
3

4
~b21g2/4!

9~ ē21b21g2/4!2
,

S5
ē

ē21b21g2/4
,

T5 i
bg

pz~ ē21b21g2/4!
.

Performing the integration in Eq.~B7! with the help of the
Mittag-Leffler expansion

n

P j51
4 ~n2n j !

5(
j51

4

Aj S 11
n j

n2n j
D , ~B9!

with Aj51/) jÞ l51
4 (n j2n l), the final expression

I ~z!5
g

4bp~ē21b21g2/4!
(
j51

4

Ajn j ln~2n j ! ~B10!
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is obtained. Equation~B10! is valid under quite general con
ditions provideduzu!Ab21g2/4. It can be simplified further
in the following limiting cases:

~1! If uzu!1/tc , with tc as defined in Eq.~16!,

I ~z!5
22p

12A3b2F bg

p~ē21b21g2/4!
G 1/3e2 ip/3z2/3.

~B11!

~2! If 2 ē@b and 1/tc!uzu!Ab21g2/4, Eq.~B10! yields

I ~z!52
e2 ip/4

8b2
A2bgT ēz

1/2. ~B12!

Inserting these relations into Eq.~B1! the asymptotic expres
sions of Eqs.~17! and ~19! are obtained.

APPENDIX C

In this appendix the useful sum rule

15 (
Reẽn,0

F12
d

dz1
S~z1!G21U

z15 ẽn

2
i

2p
ln

2 ē1 i ~b1g/2!

2 ē1 i ~b2g/2!

~C1!

is derived.
For this purpose, let us consider the integral

JC5
1

2pECdz i@z2 ē1 ib2S~z!#21 ~C2!

along the curvesC in the complexz plane depicted in Fig. 8
The only poles of the integrand of Eq.~C2! are located at the
dressed energiesz5 ẽn in the lower half of the complexz
plane and atz5`. Furthermore, the integrand has a bran
cut extending along the positive realz axis. It is obvious
from Fig. 8 that

JC12JC25~JC52JC42JC2!1~JC42JC3!. ~C3!

The left-hand side of this equation is a contour integ
which encircles the pole atz5` in the counterclockwise
sense, thus yielding

JC12JC251. ~C4!
d

l

The presence of the poles atz5 ẽn in the lower half of the
complexz plane implies

JC52JC42JC25(
ẽn

F12
d

dz
S~z!G21U

z5 ẽ n

. ~C5!

Using Eq. ~15! for the self-energy in the one-channel ap-
proximation, the remaining contour integrations can be per
formed easily, i.e.,

JC42JC35
1

2pE0
`

dz i$@z2 ē1 i ~b1g/2!#21

2@z2 ē1 i ~b2g/2!#21%

52
i

2p
ln

2 ē1 i ~b1g/2!

2 ē1 i ~b2g/2!
. ~C6!

Using Eqs.~C4!, ~C5!, and~C6! finally the sum rule of Eq.
~C1! is obtained.

FIG. 8. Contours of integration in the complexz plane.
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@5# R. Blümel, R. Graham, L. Sirko, U. Smilansky, H. Walter, an

K. Yamada, Phys. Rev. Lett.62, 341 ~1989!.
@6# U. Fano and A. R. P. Rau,Atomic Collision and Spectra~Aca-
demic, New York, 1986!.

@7# H. Haken, in Handbuch der Physik, edited by S. Flu¨gge
~Springer, New York, 1970!, Vol. XXV/2c.

@8# G. Alber and P. Zoller, Phys. Rev. Lett. .199, 231 ~1991!.
@9# G. S. Agarwal, Phys. Rev. Lett.37, 1383~1976!; Phys. Rev. A

18, 1490~1978!.
@10# V. B. Braginsky and F. Ya. Khalili,Quantum Measuremen

~Cambridge University Press, Cambridge, 1992!.
@11# G. Alber and P. Zoller, Phys. Rev. A37, 377 ~1988!.



f

c

er.

ys.

832 56G. ALBER AND B. EGGERS
@12# L. D. Landau and E. M. Lifshitz,The Classical Theory o
Fields ~Pergamon, Oxford, 1975!, p. 181ff.
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