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Rydberg electrons in intense fluctuating laser fields
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The influence of laser fluctuations on the optical excitation of Rydberg and continuum states close to a
photoionization threshold is investigated within the framework of the phase diffusion model. Theoretical
methods are developed for solving the relevant master equation of the atomic density operator which is
averaged over the laser fluctuations. In the long-time limit this laser-induced excitation process exhibits non-
exponential decay. This nonexponential time dependence reflects the fluctuation-induced diffusion of the
Rydberg electron toward the ionization thresh¢®B1050-29477)06006-X

PACS numbes): 42.50.Ct, 42.50.Hz

I. INTRODUCTION restrict ourselves to cases in which the laser fluctuations can
be described within the framework of the phase diffusion
The dynamics of quantum systems under the influence afmodel (PDM) [7]. This stochastic model describes the laser
stochastic external forces is a major field of current physicafield of a realistic single mode laser with a well-stabilized
interest[1]. An example which is of particular relevance in amplitude. Furthermore, the laser intensities are assumed to
laser spectroscopy is the optical excitation of atomic or mobe moderate in the sense that they are small in comparison
lecular systems by fluctuating laser fields. In recent yearsyith the atomic unit of intensity I(=1.40x 10" W cm™?2),
research in this context has concentrated mainly on questiormut still intense enough so that their influence on the atom
concerning the influence of laser fluctuations on resonantannot be described perturbatively. Therefore, in this inten-
possibly nonperturbative excitation of isolated energy eigensity regime the phase fluctuations of the laser field will tend
states. By now the dynamics of these types of processes ie destroy interferences between quantum-mechanical prob-
fairly well understood2]. However, still almost nothing is ability amplitudes which are associated with repeated returns
known about the influence of laser fluctuations on the opticabf the Rydberg electron to the ionic cdi@].
excitation of atomic or molecular systems under conditions The main theoretical problem which has to be overcome
in which the level density of the resonantly excited states igs the nonperturbative treatment of the fluctuating laser field
large. A main intention of this paper is the exploration of thison the one hand, and the proper treatment of the threshold
latter problem in Rydberg atoms. phenomena on the other hand, which originate from the in-
Rydberg atoms are paradigms of physical systems with &nitely many bound Rydberg states converging to the ioniza-
high level density. The dynamics of a Rydberg electron in aion threshold. In particular, we are interested in obtaining a
laser field is dominated by two main characteristic proper-dynamical description of the laser-induced excitation process
ties, namely,(1) the localization of the electron-laser inter- which is also valid at very long interaction times. Due to
action in a region, which typically extends a few Bohr radii inherent numerical inaccuracies, stochastic simulation meth-
around the atomic nucleus onlg]; and(2) the large exten- ods are not suited for this purpose. In the following an alter-
sion of the classically accessible region of space in which th@ative theoretical approach is used which takes advantage of
dynamics of the Rydberg electron is dominated by tire 1/ special properties of the PDM. It is known that within the
Coulomb potential of the ionic cordet]. According to prop- framework of the PDM a master equation can be derived for
erty (1), which applies to electromagnetic fields of moderatethe atomic density operator which is averaged over the field
intensities in the optical frequency regime, a Rydberg elecfluctuations[9]. Master equations of this type are also stud-
tron can be affected by a laser field only near the atomiged in the context of the theory of continuous quantum mea-
nucleus. In contrast, the interaction of a Rydberg electrorsurement process¢40]. In the following it is shown that
with an electromagnetic microwave field is completely dif- this master equation can be analyzed systematically with the
ferent[5]. In this latter case the relevant excitation frequen-help of quantum defect theor¢QDT) [4,6]. Thereby all
cies are typically of the same order of magnitude as the levehreshold phenomena which arise from the infinitely many
spacings between adjacent Rydberg states. This implies thebund Rydberg states and the adjacent electron continuum
in the microwave regime photons can be absorbed by thare taken into account properly. On the basis of this theoret-
Rydberg electron at any position within its classically accesical approach it will be shown that at sufficiently long inter-
sible region of space. Propert®) implies a universal behav- action times the dynamics of the excited Rydberg electron is
ior of Rydberg system$6]. Thus characteristic dynamical dominated by stochastic energy diffusion toward the photo-
effects of atomic Rydberg systems can also be observed ionization threshold. The theoretical approach presented is
more complex physical systems, such as molecules or clusvell suited for investigating the resulting nonexponential
ters. features of the laser excitation process analytically.
In this paper the influence of laser fluctuations on the The paper is organized as follows: In Sec. Il, a theoretical
optical one-photon excitation of atomic Rydberg states closéescription of one-photon excitation of Rydberg states close
to a photoionization threshold is investigated. Thereby weo a photoionization threshold is developed. With the help of
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energy assumed that the exciting fluctuating cw-laser field of fre-
A / quencyw can be described by the classical electric field

E(t)=Eqe'®Ve @'+ cc., 2)

whose amplitude is well stabilized and whose phase is fluc-
tuating. For near-ideal single-mode laser fields to a good
degree of approximation, these phase fluctuations can be de-
]___ scribed by the PDM7], in which the stochastic phase varia-
— tion ®(t) is given by a real-valued Wiener process with
° M d®(t)=0 and[d®(t)]>=2b dt (M denotes averaging
P over the statistical ensembleThe energies of the excited
e ° Rydberg and continuum states are denatgdandd is the
atomic dipole operator. Within the framework of QD¥]
and the one-channel approxmation, the excited states are
characterized by a complex quantum defeet a+iB. The
real part of this quantum defect defines the energies of the
) bound states in the absence of the laser field, i.e.,
€,=—1[2(n— a)?]. The imaginary parB describes effects
arising from photon absorption from the highly excited states
close to threshold to continuum states well above threshold.
As long as the laser intensityis small on the atomic scale,
€ - I g> i.e., 1<1y=1.40x 10" W cm~2, in the optical frequency re-
gime this photon absorption process can be described pertur-
batively with[11]

(T

FIG. 1. Schematic representation of the excitation process. B=(e=w|d-Egy|e=0). (3)

QDT a Fourier representation of tii@averagegiatomic den-  Such a perturbative treatment is valid as long as the oscilla-
sity operator is developed. This representation is useful fofion amplitudea,.=|Eq| w2 of an electron in the laser field
numerical, highly accurate calculations of relevant atomigs significantly smaller than the Bohr radius which defines
observables which are averaged over the phase fluctuationse characteristic length scale of atomic quantum phenom-
of the laser field. Furthermore, it is a convenient startinga5 The matrix element of E) can be estimated semi-

point for the derivation of analytical results on the long-time o «giealy, for example, with the help of the Bohr correspon-
dynamics of the excitation process. This section concentratqfence prin,ciple Thus it’ is found 2] that
s .

on the presentation of the main ideas and main theoretic
results. Details of mathematical derivations can be found in _p2 —5/3
Appendices A, B, and C. Numerical examples which exhibit B=6"T (2130 |E°|/(27T\/§)' @)

the characteristic physicalleffects originating fr_om the phas%’heaff”3 dependence of this semiclassical result reflects the
fluctuations of the laser field are presented in Sec. Ill. A

short summary and conclusions are given in Sec. IV. fact that t_he_ dominant contrlbqtlon o the matrix element (_)f
Eq. (3) originates from a spatial region around the atomic
Il. THEORETICAL DESCRIPTION nucleus Wlth a_typi_cal size Of the order C_)(f~w72/3. ThiS_
) ) ] o characteristic size, is determined by the distance a classical
_In this section a theoretical description of one-photon exlectron can depart from a singly charged nucleus during the
citation of Rydberg states by a laser field with fluctuating,g|eyant photon absorption timgyq = o1 while it is
phase is developed. Mathematlcal details of derivations arfhoving on a parabolic, classical Kepler orbit of angular mo-
poitptoned to A%pendlxes r’?"tB’ and tCt f Rvdb entum zero. Thus in the optical frequency regime this leads
el us consider one pnoton excitation of Rydberg anG yye \ye|l-known conclusion3] that the photon absorption

continuum states close to a photoionization threshold, a ; : :

shoun Schematicly i Fi. L. Thereby hese Rydberg angl S¢S 465 Dace & egon exendng ent o Bon
continuum states are excited from an initially prepared ener- mparison with the extensi n, P highl wcited Rvdber
getically low-lying bound statég) with energyey. In the ~ SOMPANSo € extension of highly € ydberg

dipole and rotating-wave approximations, this excitation pro-States of large eccentricity. .
cess is characterized by the Hamiltonian In order to describe nonperturbative aspects of the dynam-

ics of the laser excitation process, one has to solve the sto-
chastic linear Schidinger equation with Hamiltoniari1),
H(® ()= &glg)(gl+ ; enln)(n| and has to average observables of interest over the laser fluc-
tuations. In this context straightforward, numerical stochastic
) e simulation approachgd 3] offer the general advantage that
_zn: (In)Xgl(nld|g)-Eqe'*Ve "'+ H.c). (D) they are applicable to any types of laser fluctuations. How-
ever, this way it is difficult to obtain numerically reliable
Thereby the index refers to Rydberg and continuum states.results for threshold phenomena which originate from the
Atomic units are used witle=A=m,=1. In Eq. (1) it is infinitely many Rydberg and continuum states close to
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threshold. In particular, due to unavoidable numerical inac- o , — —

curacies it is very difficult to investigate long time phenom- Aij(z):J dt e7(ile”™g)(jle""g)*, (10
ena which are direct consequences of these threshold effects. 0

Therefore, in this paper an alternative theoretical approach igitn i j < {n,g}, this decomposition of the formal solution of
used which takes advantage of special properties of theq (6) yields

PDM, and which allows the long-time behavior to be evalu-

ated accurately. It is well knowf9] that the mean values 1 fomo

pon (1=} =ML BDIN'), P 27

ool D)= pa(D=Me Ol w(O)(w(DIg), “27) o
Pag() =M[(g|y(1))[? »

can be combined to form a density operapgt). Thereby Ag |2bAgq4(2)|<1, Eq.(11) represents a convergent geomet-

l#(t)) denotes the atomic state which is associated with dic series. Thus the main problem is the evaluation of the
single realization of the fluctuating laser field. The densitycharacteristic kernel;(z). This can be achieved with the

dz e’iZtAij(z)szo [2bAgy(2)

—©+i0

1 [o+i0 )
dz € '"'A;j(2)[1-2bAy,(2)] .

operatorp(t) fulfills the master equatiof®] help of QDT. Thereby it is possible to include effects of the
d infinitely many bound Rydberg and continuum states prop-
ap(t): —i[Humogs (D) ]+ H[L,p(OLTT+[Lp(t),LT]}. erly. It is shown in detail in Appendix A that
(6) Agy(2)=U(2)+U*(-2), (12

The Hamiltonian H,,=H(®(t)=0) describes laser- with
induced excitation in the absence of phase fluctuations. The

destruction of coherence due to the laser fluctuations is de- _ ) 2 d . -1
scribed by the Lindblad operator U(z)= —C2(2)+C4(z)+|R€E » 1- d_zlz (z2,-2)
L=2blg)(g|. (7)

X[Zl—?Hb—E(Zl)]l|ZlZ+"€:]®(Z),
Master equations of this type are also of general interest as

henomenological descriptions of deterministic excitation —
P g p z—e+i(b+yl2)

processes in the presence of continuous measurement of the Cy(2)= N

initial state|g) [10]. In this context 13 can be interpreted as 2m(z+2ib) " —e+i(y/2=b) "’
the mean time between subsequent measurements. So far _

master equations of the form of E¢(6) have been studied 1 Z—eti(y/2+Db)

C4(2) (13

only in cases in which the number of resonantly coupled C 2m[z+i(y+ 2b)]'n —e—i(yl2+Db) "
states is small. In the following it will be shown that these
master equations are also useful starting points for investiThereby the branches of the logarithmic functions have to be
gating nonperturbative laser-induced threshold phenomenghosen in agreement with the definitions of E45) of Ap-
of Rydberg systems. pendix A. Analogous expressions are obtained for(ther-

For the subsequent treatment it is convenient to represe@ged coherences of the Rydberg and continuum states
the formal solution of Eq(6) as a sum over all possible Ann(2) andA.. (z). Their explicit form is given in Eq(A7)

quantum jumps which are induced by the Lindblad operatopf Appendix A.

L [14], i.e.,p(t)=2°,f,:0p(’\')(t), with The sum of Eq(13) extends over all dressed states with
energiese, which are determined by the condition
t ty L _
pM(t)= jodtN' o jo dty ¢(ttn, - . - b)) €, —et+ib—3(€,)=0. (14
X (|t t)] The quantityX(z) denotes the resonant part of the self-
N»oooid energy of statég), and is defined by11]
being a mixture of the pure states
|(nld-Eolg)[?
sy | el 2=3
[h(tltn, - .- t))=¢e NL- - Le MU y(0)). (8) n Z— €y
The effective Hamiltonian Y iyx 1
=13 e—izﬁ(—zz)*l’z_x' (19

H=Hpmog—iLTL/2 (9)
. o . It is characterized by the laser-induced depletion rate
describes the deterministic time evolution between succes-
sive quantum jumps which take place at the random jump y=27|(e=0|d- Eo|g)|2

times ty,t,, ... ty. In terms of the Laplace-transformed

quantities of the initial statelg) and the scattering matrix elemefitl]
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=g, 1 - .
X plj(t):_;R%IJ dy eiytAij(eth/Zy)
which describes all effects arising from scattering of the Ry- 0
dberg electron by the ionic core and photon absorption. .

Equation(13) is a major result of this paper. Combined X[l—ZbAgg(e_'”/ZY)]_lj- (20
with Eq. (11) it is useful for numerically accurate calcula-
tions of relevant atomic observables which are averaged over } o o _ ) _
the laser fluctuations. Furthermore, it is a convenient startingquation(20) indicates that it is only the immediate neigh-
point for the derivation of analytical results which describeborhood of the branch point =0 which contributes sig-
the long-time dynamics of the laser-induced excitation proJificantly in the limitt—cc. Inserting the asymptotic expres-
cess. This long-time dynamics is dominated by the behavio$ions of Eqs(17) and(19) into Eq.(20) in the limit of long
of Ayy(2) in a small neighborhood of its branch point at interaction timed, the following asymptotic decay laws are
z=0 in the complexz plane[15]. obtained forpgy(t):

In order to discuss this long-time dynamics, let us neglect (1) t>t:
ionization from highly excited Rydberg states to continuum

states well above threshold, i.¢8=0. Effects of photon (y+2b)2 [ yoT3(5/3t5 |
absorption from the excited Rydberg states will be taken into pgy(t)= 2byolm)? —~ 5 (22
account in the numerical examples presented in Sec. lll. Itis (2byeglm {2777(6 +b+y%/4)
shown in Appendix B that for sufficiently small values of
two dynamical regimes can be distinguished: (2) —e>b, t<t.:

(1) |z|<1t,:

If the values ofz are much smaller than the inverse char- 2
acteristic time pgg(t) = —T'(1/2[2b YT Y412, (22

am [ (+3(0%+ y214)14)37]

t:
© ybV27 b2+ 424

, (16)  TherebyI'(x)=f5du e “u*~! denotes the gamma function
[16]. Analogous expressions can be found for the other
density-matrix elements.

Equationg21) and(22) together with Eqs(11), (13, and

113 (A7) are the main results of this paper. Within the phase
diffusion model they describe the influence of laser flucta-
tions on nonperturbative laser excitation in the energy region

imBe23 close to the photoionization threshold. Equatig24) and

xXe '""z7+0(2) (17 (22 imply that for sufficiently long interaction times be-

tween the Rydberg atom and the laser field, the initial state

the asymptotic relation

AyD)=U(z=0)- 22| b7
2)=U(z=0)—
99 12y/3b? m(e%+ b2+ y2/4)

is found with exhibits a nonexponential decay as long as ionization from
highly excited Rydberg states to continuum states well above
U(z=0)=i 1— Y f} (18) threshold is negligible. In particular, this conclusion also
2b v+2b 7|’ holds for resonant laser excitation of Rydberg states well
e ‘ below threshold, in which the field-induced depletion rate
and with —e+i(b+ y/2)=re'? (0<e<m). y and the laser bandwidth are much smaller than the level
(2) —e>b, 1 <|z: spacing between adjacent Rydberg states, and in which at
In this case Rydberg states well below threshold are exfirst sight a two-level approximation should be valid. Within
cited, and one obtains the framework of such a two-level approximation the initial
, state probabilitypyg(t) tends to the stationary value 0.5 in
1 e’ the long-time limit. Physically speaking the nonexponential,

Agg(2)= 2b  8b?2 2by T2+ 0(2). (19 asymptotic time evolution predicted by Eq®1) and (22
reflects diffusion of the excited Rydberg electron to higher-
The mean classical orbit time of the excited Rydberg states iying energy eigenstates close to the photoionization thresh-
denotedT.=2m(—2¢) 32 old. The dynamics of this stochastic energy diffusion toward
These asymptotic relations show explicitly thay,(z) threshold cannot be described properly within the framework
does not have poles in a small neighborhood of its branclef a two- or few-level approximation. It is the presence of the
point atz=0. According to Eq(11) the time evolution of the infinitely many bound states converging to the photoioniza-
averaged atomic density matrix elements can be evaluated Kign threshold which dominates this process. &4) is valid
inverting the Laplace transform with the help of contour in-irrespective of whether energy eigenstates below or above
tegration in the complex plane. Thereby the poles of the threshold are excited by the laser field. Thus for interaction
integrand with negative imaginary parts give rise to expolimes t>t. a nonexponential depletion of the initial state
nentially decaying terms. Any nonexponential contribution|g) is predicted even if continuum states above threshold are
arises from contour integration along the branch cut whichexcited dominantly. However, well above threshold, i.e.,
according to Eqs(17) and(19), starts az=0. This cut con-  for e> b2+ 9?/2, the critical timet, of Eq. (16) tends to
tribution dominates the long-time behavior, and is given byinfinity.
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7 FIG. 2. Initial-state probability4(t) (a) and
ionization probabilityP;,,(t) (b) as a function of
interaction timet in units of the mean classical
i orbit time T, with v=(—2¢) ¥?=80,
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. NUMERICAL RESULTS interaction timet the initial-state probability tends to the

In the subsequent numerical examples the mean initi alue 1 in the "mitbﬂoo' T_he appearance of this quantum
state and ionization probabilitep,y(t) and Pg(t) eno gﬁect[l?] is a plausible consequence of the_ formal
— g ¢ btained f E :ng:lL 13 d%? similarity between Eq(6) and master equations which de-

Jode ped(D), as opbtained from q_$ ), ( )! and( ) . scribe laser excitation processes in the presence of continu-
are compared with the corresponding analytical predlctlon%us measurement of an initial stdt0]. In this analogy the
of E.qs.. (21) and(22). The parame.te'r.s used refer to optical parameter 1 corresponds to the mean time between subse-
excitation of_hydrogen _from the initial statlg>=|23> by_ guent measurements. However, for longer interaction times
!lne_arly polarized I_aser I'ght.‘ In these numerical res_ults, '9M%he initial-state probability exhibits a nonexponential decay
ization by absorption of optical photons from the highly ex- which to a good degree of approximation is described by Eq.
cited Rydberg states is taken into account by the_ imag_inaryzz)_ The physical reason for this nonexponential decay is
quantum defecp.=ip. In agreement with the semiclassical gqchastic energy diffusion of the excited Rydberg states to-
estlma_te of Eq(4), it IS assumed thac_B =0.0037%. ward the photoionization threshold which is brought about

In Fig. 2 the Ia_ser—lnduce_d depl_enon rapeand the band—_ by the fluctuations of the laser field. This physical picture is
width b are 'small In comparison V\,"th the mean level spacing.qngjstent with the corresponding increase of the ionization
of the excited Rydberg state, i.eyTe<bTe<1. Thus, nopapility in Fig. 2b). From Egs.(11) and (A7) it can be
seemingly, only one Rydberg state is excited resonantly bipqyn that for these interaction times the ionization prob-
the fluctuating laser field, and it is expected that this case Caghility is approximately given by
be described adequately in the two-level approximation. In

Fig. 2(a), well-known characteristic features of resonant two- —_—
level excitation by a fluctuating laser field are apparfeit Pon(t) = 4_(,03,22Lt/1'5— (23
7 (y+2b) -’

As b>vy, initially py4(t) decays exponentially with rate
R=2y/(bTS), and reaches the statistical equilibrium value
of 0.5[9]. In particular, the decay rafe is inversely propor- It is worth mentioning that the nonexponential decay de-
tional to the bandwidth of the laser field. Within the two- scribed by Eq(22) can also be derived under the assumption
level limit this particular dependence implies that for fixed of an equidistant level spacing between the excited Rydberg
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FIG. 3. Initial-state probabilityy4(t) (a) and
ionization probabilityP;,,(t) (b) as a function of
interaction timet in units of the mean classical

' , . l ™ . . orbit time T with »=(—2€) ¥?=80, yT=0.5
1.0. ! ! ' ' ' P ' and bT=10. Various approximate time depen-
/ 7 o dences are also indicated, namel®) pqq(t)
tc ! (b) =e " (dotted, Eq.(22) (short dashex and Eq.
0.8 / / . (21) (long dashe)] and (b) Egs. (25 (dotted,
1y (23) (short dashed and(24) (long dashef
"
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states. This indicates that for these interaction times the Rylevel spacing between the excited Rydberg states, but
dberg electron has been diffusing over a small energy interyT-<1. Now even the initial stage of this excitation process
val only over which the level spacing of the Rydberg states i€an no longer be described within the framework of a two-
approximately equidistant. For interaction times larger tharlevel approximation. As apparent from Fig. 3, initially state
the characteristic time, of Eq. (16), finally the nonexponen- |g) decays with ratey. Physically this might be traced back
tial decay crosses over tota®*-decay law, as predicted by to the large bandwidth of the laser field which tends to
Eqg. (21). At these long interaction times the stochastic en-“smear out” the discrete Rydberg states. As can be shown
ergy diffusion of the Rydberg electron has reached thdrom Egs.(11) and (A7), this initial stage of the ionization
photoionization threshold, and the ionization probability in-process is approximately described by the relation

creases significantly. With the help of E420) and (B2) it

can be shown that, for>t., the ionization probability is

given approximately by Pion(t) = f(l_efyt), (25)
ar
b (o1 TR 2b)| b 1’3t_2,3
on 6bye | 7(Z+ b2+ y2/4) ' with ¢ being defined in Eq(18). At larger interaction times

(24)  the Rydberg electron starts to diffuse to higher-energy eigen-

states closer to the photoionization threshold. Thus the decay

The characteristic long-time behavior which has been deef the initial state becomes nonexponential, and is described
rived in Sec. Il under the assumption of negligible photonapproximately by Eq(22). At the critical timet,, finally, the

absorption from the excited Rydberg states is clearly visiblaliffusing Rydberg electron has already reached the photoion-

in Fig. 2, as for the interaction times considered photon abization threshold. Therefore the ionization probability rises

sorption from the Rydberg states is still negligible, i.e.,significantly and the decay of the initial state crosses over to
I'st=47B/T-<1 (I'—denotes the laser-induced ionization thet~>3-decay law predicted by Eq21). Similar to Fig. 2,

rate of Rydberg states with energy. all these asymptotic effects take place long before photon

In Fig. 3 the bandwidttb is much larger than the mean absorption from the highly excited states becomes important.



826 G. ALBER AND B. EGGERS 56

FIG. 4. Initial-state probability44(t) (a) and
ionization probabilityP;,,(t) (b) as a function of
interaction timet in units of the mean classical
orbit time T with v=(—2¢€) " Y?=80, yT=12
andbT=12. Various approximate time depen-
dences are also indicated, namely(a)
pgo(t)=e""" (dotted, Eq. (22) (short dashed
and Eg.(21) (long dashed and (b) Egs. (25
(dotted, (23) (short dashed and (24) (long
dashegl

107 10™

In Fig. 4 both the bandwidth of the laser field and the ent dynamics of the electronic wave packet is destroyed.
field-induced depletion rate are larger than the mean level This stochastic energy diffusion of the Rydberg electron
spacing of the excited Rydberg states, ileTyT-=>1. leads to an increase of the ionization probability which is
Thus an electronic Rydberg wave packet is prepared bglescribed approximately by E¢23). At interaction times
power broadening11]. This wave packet evolves under the t>tc the energy diffusion of the Rydberg electron has
combined influence of the Coulomb potential of the ionicreached the photoionization threshold. Thus the initial state
core and the fluctuating laser field. Whenever it returns to th&l€cays according to the decay law of E2fl), and the photo-
core region it is scattered resonantly by the laser field. ThéPnization probability is described approximately by Eg.
maxima near multiples of the mean classical orbit time 24). . :
result from laser-induced stimulated transitions of this Wave% In Fig. 5, Rydberg and continuum states very close to

packet to the initial state at one of the wave packet’s return hreshold bare e_}(ﬁ'tedh Thﬁ bar;IdW|dth. of thfe rl\asler f'e]!.d I(Ijs
to the ionic core. In this example the bandwidth of the fluc- arge, 1.e.p>7y. Thus the phase fluctuations of the laser fie
tuating | p I.d i | i ehT->1. This implies that dominate the dynamics of the excitation process. Initially the
uating laser field is large, i.ehTe>1. This implies tha initial state decays with rate. Physically speaking this is

coherent effects arising from laser-induced resonant scatteg;, e by the large bandwidth of the laser field which tends

ing during one of the wave packet's intermediate retumns Q, smooth out the excited, discrete energy levels, so that the
the core region, which typically lead to scattering-inducedrygperg electron behaves as if it were excited into a flat
time delays, are not seen. The absence of these effects origiontinuum. Initially the ionization probabilty increases expo-
nates from the fluctuation-induced destruction of all cohernentially and reaches a metastable equilibrium value of ap-
ences associated with physical processes which occur at rgroximately 0.5. As the initial-state probability is very small,
peated returns of the electronic Rydberg wave packet to thgnis implies that with a probability of 0.5 the Rydberg elec-
ionic core. At sufficiently large interaction times, at which tron is either in a bound Rydberg state or in a continuum
e "< 1/\/2btyT the recurrence peaks disappear and thestate. This initial stage of the ionization process is described
initial state probability exhibits the characteristic nonexpo-approximately by Eq(25). Furthermore, from Eqg11) and
nential decay described by ER2). At these interaction (B1) it is straightforward to show that for interaction times
times the dynamics of the excited Rydberg electron starts t¢)y‘1ln(\/5/27-r)|<t<tc the initial-state probability is ap-
be dominated by stochastic energy diffusion, and the coheiproximately given by
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FIG. 5. Initial-state probability4(t) (a) and
ionization probabilityP;,,(t) (b) as a function of
. interaction time t in wunits of 1A with
y=10%a.u=4.13x10s™ !, ¢y=0.1, and
b/y=80. Various approximate time dependences
are also indicated, namelgg) pgg(t)ze’yt (dot-
ted), Eq. (26) (short dashex and Eq.(21) (long
dashegt and(b) Egs.(25) (dotted and(24) (long
dashegl

10

IV. SUMMARY AND CONCLUSIONS

p (t)=ﬁe’7"5”(2”>. (26) . . ,
99 2w The influence of phase fluctuations of a laser field on

one-photon excitation of Rydberg and continuum states close
For interaction timeg>t, the ionization probability rises (© @ photoionization threshold was investigated. This inves-
significantly, and finally saturates at the value of 1. This timeigation concentrated on laser intensities which are small in
large interaction times the initial-state probability decays acinteraction of the Rydberg electron with the fluctuating laser
cording to Eq.(22). field takes place in a region extending a few Bohr radii
In Fig. 6 continuum states well above the photoionizationafound the atomic nucleus. The laser fluctuations tend to
treshold are excited. Initially the ionization probability rises destroy the quantum coherence between probability ampli-
exponentially according to E@25), and assumes the meata- tudes which are associated Wlth repeated returns of the Ry-
stable value ofp/ 7. However, as in this case~ , already ~ dberg electron to the core region where the electron-laser
in this early stage of the excitation process the ionizatiorinteraction is localized. As a consequence, the wave-packet
probability rises to a value of almost 1. At long interaction dynamics of a Rydberg electron is affected significantly. In
times witht>t, the ionization probability rises to the final Particular, at sufficiently long interaction times its dynamics
value of 1 according to Eq24). From Eqs(11) and(B1) it IS dominated by stochastic energy diffusion toward the
is straightforward to show that for interaction times Photoionization threshold. The early stages of this diffusion
|y’lln(\5/27r)|<t<tc the decay of the initial state prob- Process in which the Rydberg electron is energetically still
ability is approximately described by well below threshold are governed byta? decay law of
the initial state. At a critical timé,. [Eq. (16)], the Rydberg
electron reaches the photoionization threshold by this diffu-

()= m(2b+y)? 6 572 _ 2myb(2b+y)(6 52 sion process, and the ionization probability rises signifi-
Pegl = 8o2(26)%2\ 7 4¢(26)2 \7 cantly. This threshold phenomenon is characterized by a

279t > decay law of the initial state. The detailed analytical
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FIG. 6. Initial-state probabilityy4(t) (a) and
ionization probabilityP;,,(t) (b) as a function of
interaction time t in wunits of 1A with
y=10"% au=4.13<10°s !, €/y=10, and
b/y=1. Various approximate time dependences
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analysis of these nonexponential aspects has showrt that needs further investigation. Furthermore, effects of electron
assumes its smallest value if Rydberg and continuum staterrelations which have to be described within the frame-
are excited directly at threshold. The examples presentedork of quantum defect theory in a multichannel approxima-
demonstrate that these diffusive threshold phenomena at®mn might change the quantitative details of the nonexponen-
observable as long as photon absorption from the excitetial threshold phenomena. This aspect will be explored in
Rydberg states is negligible. subsequent work.

Our investigation concentrated on effects arising from
phase fluctuations of a single mode laser field which can be
described by the PDM. Nowadays it is possible to control
laser fluctuations experimentalfd8]. Thus the presented
diffusive threshold phenomena of Rydberg systems shoul
be amenable to experimental observation. In the context OE{:
resonant one-photon excitation of two- and few-level sysp
tems by fluctuating laser fields, it is know8] that in the
limit of large laser bandwidths results obtained within the
framework of the phase diffusion model also apply to other
types of laser fluctuations with the same Lorentzian spec-
trum. This may be traced back to the fact that sufficiently In this appendix explicit expressions are derived for the
large bandwidths imply correlation times of the laser fluctuaintegral kernelsA;;(z) of Eq. (10) in terms of contributions
tions which are so short that relevant atom-field averages capver all dressed states of the effective Hamiltoni&nAc-
be decorrelated. Within such a decorrelation approximatiorcording to Eq.(11) these expressions are convenient for nu-
the dynamics of an excited atom is determined completely bynerical evaluations of the density-matrix elements. Further-
the spectrum of the laser field, i.e., the lowest-order fieldmore, they are starting points for the derivation of analytical
correlation function. In view of these results it seems plau+esults in various limiting cases.
sible that a similar conclusion also holds for the threshold With the help of Laplace transforms the kernals(z) of
phenomena discussed in this paper. However, this poirEq. (10) can be rewritten in the formi(j e {n,g})
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1 z+i® o
CZ(Z):EJ-Z le[Zl—€+I()//2+b)]7l

X[z,—z—€+i(yl2—b)]7L,

1 (= _
C4(Z): EJ’Z le[Zl— €+|('y/2+ b)]71

C. X[z,—z—e+i(yl2+b)]" L. (A5)

x o XX Thereby the quantitie€,(z) andC,(z) result from the con-
tour integrations over curveS, and C, in Fig. 7. Explicit
expressions for them in terms of logarithmic functions are
given in Eqg.(13). Note that the phases of these logarithmic
functions have to be chosen in such a way that their argu-
ments are continuous functions nf along the relevant inte-
gration paths. For B ze R the relationAy4(2) =[U(—2)]*
can be used, thus finally yielding E¢1L2).

Similar expressions may be derived for all other quantities
Aij(2). In particular, it is found that

FIG. 7. Contours of integration in the complex plane.

1 )
Ajj(2)= Eﬁwdzlaig(zﬁiO)[ajg(zl—eriO)]*,
(A1)

Aee’(z):Vee’(z)+[ve’e(_z)]* (ZER)v (A6)
with
with
Vee’(z) = ®(Z)<E|d E0|g><6,|d E0|g>*

a(20) =il ———=la), (R2) y

z,+i0—H > (zy+i0—€) Yz~ e+ib

~ %
Reek <0

—3(2,+i0)) Yz;—z—i0—¢€") 1

andH defined in Eq(9). Therefore the complex amplitudes
ag(z) can be evaluated from the system of equations

N d . -1
(zy+10—e+ib)agy(z;— w)=—(g|d-Eg|n)* ang(z1) +i, X 1—d—212(21—|0)> 3
z2,—2=€*
(A3) s
(z1+10— €n)ang(z1) = —(n|d- Eq|g)agy(z1— w), —Dy(2)+Dy(2) |. (A7)
in which e= €,1 o denotes the mean excited energy. These
equations imply The quantitiesD,(z) andD,(z) represent the relevant inte-
. R 1 grals over the curve€, andC, of Fig. 7. They are defined
agg(z1— w)=i[z;+i0—€e+ib—2(z)] ", by
(A4) L
ang(21)=—[2,+10— €,]1 7 X(n|d- Eo|g)agy(zs— o). Da(2)=(eld-Eqlg){e’|d-Eolg)* 5 —
The resonant part of the self-enerfiyz,) of state|g) can be z+iw . . . .
evaluated with the help of QDT. Thereby all effects arising X L dzy(z;+i0—€)” (23— e+i(b+ y/2))

from the infinitely many Rydberg and continuum states close
to the photoionization threshold are taken into account prop- X(z2;—z—i0—€') Yzy—z—e—i(b—vy/2)) "%,
erly. Within the framework of a one-channel approximation,

its explicit form is given by Eq(15). Evaluating Eq.(Al) 1

with the help of contour integration in the complexplane D4(2)=(eld-Eo|g){€’|d-Eo|g)* >

Aij(2) can be represented as a sum over all dressed states of
the effective Hamiltoniamd. For this purpose one has to take Jm
. . X
into account thaty,(z;) has poles in the lower complex

z, plane at the dressed energies (Ime,<0) which are _
determined by Eq(14). This implies thafayy(z;—2)]* has X(z;~2—i0—€) " Hz;—z—e—i(b+y/2))" .

poles atz;=z+'€; in the upper complex; plane. Thus, (A8)
choosing for 6<ze R the integration contours as shown in

Fig. 7, and taking into account that the integral over curveAnalogous to Eq(13), these quantities can be expressed in a
C3 vanishes, Eq(13) is obtained with straightforward way by complex logarithmic functions. In

dz(z;+i0—€) Yz, —e+i(b+y/2))~ 1

z
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Eq. (A7), (e€|d-Eglg) and (€’'|d-Eolg) are energy-

normalized dipole matrix elements. Replacing the energy- |(Z)=—E

normalized continuum statés) and|e’) by the normalized
bound Rydberg statgs) and|n’), the corresponding kernel

G. ALBER AND B. EGGERS

b% 1
2bTzx (€5 — €)%+ b+ y?/4+i2by/[2Tzs] ’
(B6)

€n

is obtained which determines the coherences of the Rydberg

states.

APPENDIX B

In this appendix the behavior &y4(z) in the complex
z plane is investigated in a small neighborhood of its branc
point atz=0. This determines the time evolution of the ini-
tial state probabilitypyy(t) in the long-time limit.

With the help of the sum rule of E4C1) Ay4(2z) can be
rewritten in the more convenient formAyy(z)=U(2)
+[U(—2z)]*with

1
U(2)=0(2) %+I(z)—C2(z)+C4(z)
i —e—i(b+y/2)
T 2br ' —ei(b—y2)|" (B1)
and with
1 d -1
|(Z)=% > 1—52(21)
Ré&} <0 1 7 =€
—z—€ +etib+3(e +2)
X (B2)

z+ei—etib—3(e¥+2)

Using the one-channel approximation for the self-energy as

given by Eq.(15), and neglecting ionization from the highly
excited Rydberg states, i.e., puttigg=0, Eq. (B2) yields

-1

dzlz(zl)

1
&=
R

> {1—
&:<0

Z+ € —e—i(b—yI2)
X —
z+€ —e+i(b+y/2)

2tar(mw)[(z+€5 —€)2+ (b+ y/2)?]
2 tan( ) (z+€ —€)2+ (b + y214) ] +i2by’

(B3)
with
eziw[—Z(er?:)]‘l’z[;* (z+¢€ )] L= Q2 Th (B4)
The laser-assisted scattering maiyi¢z) is given by
X(2)=e7| 1—i Y (BS)

z—et+i(b+y/2))

In particular, for|z|< b?+ 7?/4, one obtains

with the classical orbit timeT;:=27r(—2"e'§)*3’2 of the

dressed energy; . In Eq. (B6) it was assumed that the den-
sity of states of the Coulomb problem is not modified sig-
nificantly by the laser field, i.e, T;:>y/
A(E: —e—i(b—y/2))(€f —e—i(b+ y/2))|. Furthermore, the
quantity z of Eq. (B4) was determined by linearizing the
argument of the exponent, i.e.,rrZzT;:z, and the ap-

proximation taff;: z= T;: z+ O((T;: 2)®) was used. As the

summands of EqB6) are smooth functions &f: , Eq(B6)
can be evaluated approximately by replacing the summation
by an integration. Thus it is found that

fdv
0

with the characteristic roots
+J—RI2-S/4+T/Q. (j=1,...,4), and

Q.=+4\JRI2—9/4,

—2 sgr(q)|p|cog 8/3),

L]
005(5)=Wr,

14
I (v—v))’
(B7)

4
4bm(e2+b%+ 214

1(2)

Vj: _Qi/4

R

2—

b2++214__ 1
€+ ———e+g
27

+ n 2(_Z+b2+ 2|4)
12 8l 7z '€ Y

2(e7+ b2+ y?/4)3

q= (B8)

3
€+ Z(b2+ Y214)

P o b2+ 22y’

€

S: —l
€+ b%+ /4

wz(€+ b2+ 2/4)

Performing the integration in EqB7) with the help of the
Mittag-Leffler expansion

with AJ-=1/Hf¢|:1(vj— v)), the final expression

Y

4

v

— = A-(l-l— B9
Hjtl(v—vj) jgl ! V= (B9)

Y

4
A vin(—v; B10
4b7-r(?+b2+72/4)2 riin(=vy) - (B10

=1

1(z)=
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is obtained. Equatio(B10) is valid under quite general con-
ditions provided z|< \b%+ y?/4. It can be simplified further

in the following limiting cases:
(1) If |z]<1k,, with t; as defined in Eq(16),

77[ by

_9 1/3
12430 w(2+ b7+ 1214)

—im/3,2/3

1(z)

z

(B11)

(2) If —e>b and 1f.<|z|<Vb?+ »?/4, Eq.(B10) yields
—imwl4

1(2)=— —7V2byTz'2

55 (B12)

Inserting these relations into E@1) the asymptotic expres-
sions of Eqs(17) and (19) are obtained.

APPENDIX C

In this appendix the useful sum rule

d -1 i —eti(b+y/2)
1= 1-—3(z -——n—
qu)[ dz; (z1) ~ 2w —e+ti(b—v/2)
(CyY

is derived.

For this purpose, let us consider the integral

1

2m

Je= fcdz [z—e+tib—3(2)]? (C2)

along the curve€ in the complexz plane depicted in Fig. 8.
The only poles of the integrand of E(C2) are located at the
dressed energies="¢, in the lower half of the complex

plane and az=«. Furthermore, the integrand has a branch

cut extending along the positive realaxis. It is obvious
from Fig. 8 that

Jc,=Jc,=(Je,=Jdc,~Ic,) +(Jc,~Jc,).  (C3

The left-hand side of this equation is a contour integral

which encircles the pole at=« in the counterclockwise
sense, thus yielding

\]cl_\]czzl. (C4)
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infinity
infinity 7

infinity

FIG. 8. Contours of integration in the complexlane.

The presence of the poles at’e, in the lower half of the
complexz plane implies

(CH

d
‘]CS_‘]C4_JC2:Z |:1_ d_ZE(Z)

€n

Using Eq.(15) for the self-energy in the one-channel ap-
proximation, the remaining contour integrations can be per-
formed easily, i.e.,

1 (= _
_ - i _ i -1
N wao dz i{[z—e+i(b+y/2)]

~[z—e+i(b—y/2)]71}
i —eti(b+y/2)
T 2m —eti(b—I2)°

(C6)

Using Eqgs.(C4), (C5), and(C6) finally the sum rule of Eq.
(C1) is obtained.
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