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A quantum-mechanical description of the continuous Stern-Gerlach effect is developed in which environ-
mental effects, as well as effects arising from the continuous measurement of the electroniczmotion, are taken
into account. Master equations are presented that describe the behavior of a quantum statistical ensemble of
continuous measurement processes. On the basis of these master equations and with the help of the quantum-
state diffusion model a theoretical description of individual continuous measurement processes is developed.
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I. INTRODUCTION

The continuous Stern-Gerlach effect~CSGE! @1–6# has
been designed as a method to measure continuously and non-
destructively the spin state of an electron confined in a Pen-
ning trap in ultrahigh vacuum. In contrast to the classical
Stern-Gerlach effect, which is one of its historical corner-
stones, in the CSGE the spin detection process does not ab-
sorb the observed electron, so that the dynamics of an indi-
vidual, single electron can be monitored continuously. This
effect has been used in a series of impressive experiments to
determine fundamental physical constants, such as the elec-
tronicg factor, with unprecedented precision. Furthermore, it
is a near-ideal realization of a continuous quantum-
mechanical measurement process. According to Dehmelt the
CSGE demonstrates two important points@1,2#: ~1! for re-
duction of the state of an individual quantum system to take
place no animate observer is required; interaction of the con-
tinuously measured physical system with its environment is
sufficient for this process to occur; and~2! the completion of
an individual quantum measurement process requires a mini-
mum, nonzero timeTm . Therefore the CSGE raises the
question of how an individual continuous quantum measure-
ment process should be described theoretically~here an ‘‘in-
dividual’’ measurement process is understood as a single
member of a quantum statistical ensemble of measurement
processes!.

The quantum theory of measurement is motivated by the
idea of the universality of quantum mechanics according to
which this theory should be applicable, in particular, to the
measurement process itself. It has been shown by von Neu-
mann@7# and Lüders@8# that, as a key element, a dynamical
model for an ideal quantum measurement process should
yield the collapse of the quantum-mechanical state into an
eigenstate of the measured observable as the result of a dy-
namical albeit stochastic process. Within the framework of
traditional quantum mechanics this collapse of the quantum-
mechanical state occurs instantaneously in the form of a
‘‘quantum jump.’’ It is difficult to explain this stochastic col-
lapse of the quantum state by the unitary time evolution im-
plied by the Schro¨dinger equation@9#. This is the origin of
the so called quantum measurement problem@10#. In quan-
tum optical problems substantial progress has been achieved
in the theoretical description of individual photoelectric de-
tection processes by which the state of a photon source is

monitored@11–15#. In particular, in this context it has been
shown that contingent on those particular measurement
records which involve homodyning or heterodyning with a
classical intense photon source the time evolution of a con-
tinuously observed photon source can be described by par-
ticular types of nonlinear, stochastic Schro¨dinger equations
@14#. Motivated by the more general question ‘‘what is actu-
ally happening during an~arbitrary, individual! quantum
measurement’’@16# recently various classes of nonlinear, sto-
chastic Schro¨dinger equations have been proposed as general
dynamical approaches to the process of state reduction@16–
21#. These equations aim at describing arbitrary quantum
measurement processes which do not necessarily involve
photon detection processes at all. Typically, these latter, gen-
eral approaches to the quantum measurement problem con-
stitute generalizations of traditional quantum mechanics and
it is still an open question which one of these approaches
might ultimately turn out as being consistent with experi-
ment. In particular, in one of these approaches, namely, the
quantum-state diffusion model~QSDM! @20,21#, Dehmelt’s
conjectures~1! and ~2! are taken into account in a natural
way. In this phenomenological model any continuous quan-
tum measurement process is modeled, like any other interac-
tion of a quantum system with an environment, by a continu-
ous, nonlinear stochastic process which is consistent with a
master equation for the density operator of the associated
quantum statistical ensemble. Thereby the continuity of the
stochastic process implies in a natural way that the comple-
tion of an individual quantum measurement process requires
a characteristic timeTm @20#.

In this paper the controversial discussion about which one
of these general, stochastic approaches to the problem of
state reduction might ultimately lead to a satisfactory de-
scription of arbitrary real quantum measurement processes is
approached from a pragmatic point of view. In the following
a theoretical description of the CSGE is developed with the
help of QSDM in the hope that this application of QSDM
and the comparison of its theoretical predictions with this
real experiment might ultimately help to falsify or support
QSDM as a general model of state reduction. The CSGE as
performed by Dehmelt and Brown and Gabrielse@1–6# is an
almost ideal example of a real continuous quantum measure-
ment process which does not involve the detection of pho-
tons at all and which has already been realized in the labo-
ratory. It should be mentioned at this point that there have
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already been investigations of optical analogs of the classical
Stern-Gerlach effect@22# in which the problem of the theo-
retical description of individual photon detection processes is
approached with the help of the quantum trajectory approach
@11#. However, in the CSGE, which we are considering in the
following, the dynamics of the electron in the Penning trap is
monitored by purely electronic means by measuring the
charge-induced currents in the end caps of the trap. There-
fore this experiment does not involve any photodetection
process and these quantum optical models do not have direct
physical significance for our subsequent investigation. The
use of QSDM in this context as a general model of state
reduction is motivated by Dehmelt’s points of view~1! and
~2! which are taken into account by QSDM in a natural way.
In particular, the purpose of this paper is twofold. First of all,
quantum-mechanical master equations are derived which de-
scribe the dynamics of a quantum statistical ensemble of
continuous measurement processes which are performed on
an electron in the CSGE. Thereby effects which arise from
the coupling of the trapped electron to its surrounding~mac-
roscopic! environment and the measuring apparatus as well
as the relevant nonlinear couplings between cyclotron, spin,
andzmotion are taken into account in a consistent quantum-
mechanical way. Secondly, on the basis of these master equa-
tions and the associated QSDM a theoretical description of
individual continuous quantum measurement processes is de-
veloped with particular emphasis on the behavior of the
quantum fluctuations which are peculiar to QSDM.

This paper is organized as follows: In Section II the
quantum-mechanical treatment of the CSGE is developed. In
Sec. II A the general theoretical description of individual
continuous quantum measurement processes within the
framework of QSDM is summarized. In Sec. II B master
equations are presented which describe the dynamics of a
single electron in a Penning trap under the influence of ef-
fects originating from interaction with its environment and
the measuring apparatus. These master equations are the
starting point for the description of individual continuous
measurement processes by QSDM. By adiabatic elimination
of the electronicz motion a simplified description of the
cyclotron and spin dynamics is obtained. Thereby an analyti-
cal expression for the characteristic measurement timeTm is
derived which generalizes Dehmelt’s early estimate@2#. With
the help of QSDM in Sec. III numerical simulations of indi-
vidual continuous quantum measurement processes are dis-
cussed.

II. QUANTUM THEORY OF THE CONTINUOUS
STERN-GERLACH EFFECT

In the first part of this section basic aspects of the
quantum-state diffusion model as a model for continuous
quantum-mechanical measurement processes are summa-
rized. In the second part master equations are derived which
describe the dynamics of a quantum statistical ensemble of
continuous quantum measurement processes in the CSGE.
These master equations are the starting point for the descrip-
tion of individual measurement processes within the frame-
work of QSDM.

A. Continuous quantum measurements and the quantum-state
diffusion model

Recently QSDM has been developed by Gisin and Per-
cival @20,21# as a theoretical model for describing continuous
quantum measurement processes. In a phenomenological
way this model aims at answering the question ‘‘what is
actually happening during a quantum measurement’’@16#.
Thereby the term ‘‘individual’’ refers to a single member of a
quantum statistical ensemble. QSDM is based on two main
theoretical elements.

~1! A realistic state concept. Independent of acts of per-
ception, the state of an individual quantum system is de-
scribed completely by a ray in a Hilbert spaceuc(t)&. Physi-
cal properties of a quantum system are described by self-
adjoint operators in this Hilbert space. The value
^A& t5^c(t)uAuc(t)& is interpreted as the value of the physi-
cal quantityA which is assumed at timet in the course of a
single continuous quantum measurement process.

~2! A stochastic dynamical law. The time evolution of the
state of an individual quantum system is described by a sto-
chastic Itôequation of the form

duc~ t !&52
i

\
Huc~ t !&dt2

1

2(j ~L j
†L j1^L j

†& t^L j& t

22^L j
†& tL j !uc~ t !&dt1(

j
~L j2^L j& t!uc~ t !&dj j ,

~1!

with the complex Wiener processes

Mdj j5Mdj j*50, dj j
25~dj j* !250, dj jdjk*5d jkdt.

TherebyM represents the mean over the statistical probabil-
ity distribution and the quantitieŝL j& t5^c(t)uL j uc(t)& re-
fer to single realizations of the stochastic process.

In Eq. ~1! two different types of time evolutions are intro-
duced, namely, a deterministic one, characterized by a
HamiltonianH, and a stochastic one, characterized by Lind-
blad operatorsL j and associated Wiener processesdj j . The
Hamiltonian dynamics applies to the microscopic world. The
stochastic time evolution arises from the interaction of the
quantum system with its~macroscopic! environment and
leads to destruction of quantum coherence@23,24#. Within
the theoretical framework of QSDM a measurement process
is a special case of interaction with an environment. The
influence of an apparatus which measures the physical quan-
tity A continuously is modeled phenomenologically by a
self-adjoint Lindblad operatorL15AgA. Therefore an ideal
quantum measurement process of observableA is described
by the single Lindblad operatorL1 andH50. In this case
Eq. ~1! implies

uc~ t50!&→uc~ t→`!&5Pauc~ t50!&/Apa, ~2!

with Pa denoting the projection operators onto the eigens-
paces of operatorA with eigenvaluesa. This collapse of the
quantum state as a result of an individual quantum measure-
ment process @8# takes place with probability
pa5^c(t50)uPauc(t50)&. The continuity of the stochastic
law of Eq. ~1! also implies that the completion of this col-
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lapse of the quantum state requires a minimum measurement
time Tm whose magnitude is determined by the quantityg.
In the absence of any coupling to environments Eq.~1! re-
duces to the ordinary Schro¨dinger equation of quantum me-
chanics.

The dynamical law of Eq.~1! implies that the density
matrix r(t)5M uc(t)&^c(t)u of the associated quantum sta-
tistical ensemble fulfills the master equation@25#

ṙ~ t !52
i

\
@H,r~ t !#1

1

2(j $@L j ,r~ t !L j
†#1@L jr~ t !,L j

†#%.

~3!

The quantum-mechanical mean value of any observableA is
given by Tr$Ar(t)% and is equal to theM ^A& t . In the case of
the single Lindblad operatorL15AgA with H50 the master
Eq. ~3! implies the von Neumann postulate@7#

r~ t50!→r~ t→`!5(
a

Par~ t50!Pa . ~4!

In this case coherences between orthogonal eigenspaces of
different eigenvaluesa decay exponentially with a rate
whose magnitude is determined byg. The master equation
~3! is invariant under arbitrary unitary transformations in the
linear space of Lindblad operators@20#. In contrast to other
possible associated continuous stochastic dynamical laws Eq.
~1! also exhibits this invariance property.

The realistic state concept of QSDM is independent of the
actual form of the stochastic dynamical law. One might be
tempted to think that a replacement of Eq.~1! by another
stochastic, dynamical law which leads to the same master
equation for the density operatorr(t) of the quantum statis-
tical ensemble does not affect physically observable phe-
nomena. However, the physical interpretation ofuc(t)& used
by QSDM implies that this is not the case. This may be seen
by considering statistical means of nonlinear functionsF of
quantum expectation values of the formMF(^A& t). Accord-
ing to the realistic state concept of QSDM these quantities
are amenable to experimental observation. But they cannot
be evaluated from the associated density operator because in
generalMF(^A& t)ÞM @^F(A)& t#. Therefore this physical in-
terpretation implies that on the basis of nonlinear functionsF
of observablesA, i.e., by investigating the quantum fluctua-
tions of a measured quantity in a continuous quantum mea-
surement process, different classes of stochastic dynamical
laws can be distinguished physically even if they are associ-
ated with the same master equation for the density operator
@29#.

B. Master equations for the continuous Stern-Gerlach effect

In this section master equations are derived which de-
scribe the dynamics of an electron in the CSGE under the
influence of a measuring apparatus and other temperature-
dependent dissipative~macroscopic! environmental effects.
First of all a detailed description is developed which includes
the electronic cyclotron, magnetron, spin, andz motion and
its coupling to thevz-shift spectrometer@1,2# which consti-
tutes the measuring apparatus. Based on this description a
simplified treatment of the cyclotron and spin degrees of

freedom is developed by eliminating the electronicz motion
adiabatically. Thereby in a quantum-mechanically consistent
way an analytical expression is derived for the characteristic
measurement timeTm which is required to complete a mea-
surement of the electronic cyclotron and spin state.

1. Cyclotron, magnetron, spin, and z motion

In idealized form the physical system with which the spin
state of an individual electron in a Penning trap has been
observed continuously and nondestructively by Dehmelt and
co-workers@1–6# consists of:~1! a Penning trap in which the
electron is confined and~2! a measuring apparatus, i.e., an
vz-shift spectrometer, with which the dynamics of the elec-
tronic z motion is monitored continuously and nondestruc-
tively. This continuous and nondestructive measurement pro-
cess of the electronic spin state has been termed the
continuous Stern-Gerlach effect@1,2#.

The dynamics of the electron which is confined in a Pen-
ning trap is described by the Hamiltonian@6#

HPenning5\v1a1
† a11\vzaz

†az2\v2a2
† a21 1

2 \vssz ,
~5!

with v1 , vz , v2 , andvs denoting the~modified! cyclo-
tron, z, magnetron, and spin frequency. The creation~anni-
hilation! operators of cyclotron,z, and magnetron motion are
denoteda1

† (a1),az
†(az), anda2

† (a2) and sz is the Pauli
spin operator parallel to the applied homogeneous magnetic
field. The spectrum ofHPenning is shown in Fig. 1~a! sche-
matically together with typical values for the characteristic
trap frequencies@3#. In order to enable measurements of
spin-dependent properties of the trapped electron such as the
electronicg factor, spin flips are induced by a weak, inho-
mogeneous, time-dependent magnetic field@26#

B1~x,t !5B1cos~vat !~xe11ye222ze3!, ~6!

with va5(vs2v1). The electronic dynamics is monitored
by observing itszmotion continuously. For this purpose itsz
motion has to be coupled to the spin motion. This is achieved
by applying a weak, inhomogenous magnetic~bottle! field
which can be modeled by@27#

B2~x!5B2F2xze12yze21S z22 x21y2

2 De3G . ~7!

However, this magnetic field leads also to a coupling be-
tween the electronic cyclotron andz motion.

The z motion itself is measured continuously and nonde-
structively by anvz-shift spectrometer. In idealized form this
spectrometer consists of two main elements@compare with
Fig. 1~b!# @1,2#.

~i! A ~deterministic! almost resonant sinusoidal drive volt-
age

U~ t !5U0sin~vt !, ~8!

which is applied between the ring electrode and one of the
end caps of the Penning trap and which forces thez motion
into an approximately coherent state with high mean quan-
tum number.
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~ii ! A resistorR together with an amplifier and a phase
sensitive detector which measures continuously the out-of-
phase quadrature component of the current which is induced
in the other end cap of the Penning trap by the driven elec-
tronic z motion. As far as its electric properties are con-
cerned, the electronicz motion in the Penning trap can be
represented by an effectiveLCR circuit with inductance
L ind , capacitanceC, and resistanceR.

Typically, the characteristic frequencies of the Penning
trap differ at least by factors of the order of 103 ~compare
with Fig. 1!. Therefore in an adiabatic approximation the
description of the electronic dynamics inside the Penning
trap can be simplified considerably. As outlined in Appendix
A, on time scales of the order ofDt with
(2p)/v2!Dt'1s the resulting total Hamiltonian, which
describes the deterministic part of the electronic dynamics in
the CSGE, can be approximated adiabatically by
H5H01Hz1H21H0z with

H05\V1a1
† a11

1

2
\Vssz1\DV~s1a1e

i ~V12Vs!t

1s2a1
† e2 i ~V12Vs!t!,

Hz5\Vzaz
†az1\b* aze

ivt1\baz
†e2 ivt,

H252\v2a2
† a2 ,H0z5\DvS a1

† a11
g

4
szDaz†az .

~9!

Thereby the HamiltonianH2 describes the unperturbed mag-
netron motion which is still decoupled dynamically from the
other degrees of freedom. The HamiltoniansHz , H0 , and
H0z characterize the dynamics of thez motion under the
influence of the external sinusoidal drive voltage, the dynam-
ics of the cyclotron and spin degrees of freedom, and their
anharmonic coupling by the weak, inhomogeneous magnetic
fields. Furthermore, the characteristic trap frequencies are
renormalized according to V15v11Dv/2, Vz
5vz1Dv/2, andVs5vs1gDv/4. The frequencies

Dv5~eB2\v1!/@m2vz~v12v2!#

and

DV5~geB1Amv1\/2!/@4m2~v12v2!#

characterize the strengths of the anharmonic couplings which
are induced by the magnetic fieldsB2(x) andB1(x,t). The
parameterb52 iU 0 /A8\VzL ind describes the effects of the
external~classical! sinusoidal voltage driving thez motion.
The electric chargeQ(t) which is induced in the end cap of
the Penning trap byU(t) and the resulting currentI (t)
through the resistorR are given in terms of the annihilation
and creation operators of thez motionaz andaz

† by @28#

Q5A2\S L indC D 21/4

Re~az!, I5
1

L ind
A2\S L indC D 1/4Im~az!.

~10!

Effects which arise from the continuous measurement
process and coupling of the electron to the surrounding
~macroscopic! environment will be characterized dynami-
cally by Lindblad operatorsL j . Thus the time evolution of
the stater(t), which describes the behavior of a quantum
statistical ensemble in the CSGE, is described by a master
equation of the form of Eq.~3!. The dominant environmental
effects which we shall take into account in the following are
described as follows.

~1! The radiative exchange of energy between the cyclo-
tron motion and the surrounding~thermal! radition field: It
can be described by the Lindblad operators
L15Ak(n̄11)a1 and L25Akn̄a1

† @28#. Thereby k and
n̄5@e\V1 /(kT)21#21 denote the spontaneous decay rate of
the cyclotron motion and the mean number of quanta of the
thermal radiation field at temperatureT. Typically, it is
found thatk'1 s21 @6#. Radiative coupling of the other
electronic degrees of freedom to the thermal radiation field
can be neglected as the corresponding decay rates are van-
ishingly small compared tok.

~2! The dissipative influence of the resistorR on the elec-
tronic zmotion: It can be modeled by the Lindblad operators
L35Akz(n̄z11)az and L45Akzn̄zaz

† @28#. The resistor is
characterized by the effective damping ratekz5R/L ind and
the effective occupation numbern̄z which depends on its
temperature and describes the noise properties of this resistor
within the rotating wave approximation.

~3! The continuous measurement of the out-of-phase
quadrature component of the current induced in the resistor
R: According to Eq.~10! the current can be decomposed into
an in-phase and an out-of-phase quadrature component, i.e.,

FIG. 1. Energy spectrum of an ideal Penning trap and typical
values of the characteristic trap frequencies~a!; schematic represen-
tation of the ‘‘vz-shift spectrometer’’ with which the spin- and
cyclotron-quantum number is measured~b!.
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I5
1

L ind
A2\S L indC D 1/4@2Re~aze

ivt!sin~vt !

1Im~aze
ivt!cos~vt !#. ~11!

Therefore the continuous measurement of the out-of-phase
component of the current can be modeled phenomenologi-
cally by the self-adjoint Lindblad operator

L55AgIm~aze
ivt!.

The parameter 1/g may be interpreted as the mean measure-
ment time@20,21#. However, it should be mentioned that in
this phenomenological description it is not clear how the
actual value ofg can be controlled physically.

The master equation~3! with the Hamiltonian~9! and the
Lindblad operatorsL j ( j51, . . . ,5) yields a unified quantum-
mechanical description of deterministic and stochastic effects
which influence the dynamics of a quantum ensemble in the
CSGE. It is the starting point for the theoretical description
of the CSGE within the theoretical framework of QSDM.
However, from this master equation it is not apparent that the
dynamics of this physical system implies a continuous mea-
surement of the cyclotron- and spin-quantum number. Fur-
thermore, it is not clear which physical quantities determine
the associated characteristic measurement timeTm . These
two aspects are discussed in the next section.

2. Cyclotron and spin motion

In the limit in which the driven electronic oscillation
along thez direction attains equilibrium almost instanta-
neously in comparison with all other time scales thezmotion
can be eliminated adiabatically. This corresponds to the so
called ‘‘quantum Brownian motion limit’’ in which the fluc-
tuations of thez motion, which is viewed as a reservoir, are
fast and large@28#. This dynamical regime is realized in the
limit

l5
kz

uDvu
→`, ~12!

with Dv and @ u b/kz u2Dv/kz# being held constant.
According to Eq.~9! the magnetron motion is decoupled

dynamically from the remaining degrees of freedom. As it
can be taken into account in a simple, straightforward way it
will no longer be considered explicitly in the subsequent
treatment. Thus in the following the density operatorr(t)
will refer to the spin,z, and cyclotron motion only. From the
master Eq.~3! with HamiltonianH of Eq. ~9! and Lindblad
operatorsL j with j51, . . . ,5 asdescribed in Sec. II B 1 the
relation

M
d^āz& t
dt

52 i S ~Vz2v!2 i
kz

2 DM ^āz& t2 ib2 iDvM ^Nāz&

~13!

is obtained withāz5aze
ivt and the cyclotron- and spin-

number operator

N5a1
† a11

g

4
sz . ~14!

Ensemble means are evaluated from the density operator
r(t), i.e.,M ^•&5Tr(z,1,s)$•r(t)% with the symbolM indi-
cating the average over the quantum statistical ensemble. In
the case of large and rapid fluctuations of thez motion to a
good degree of approximation the density operatorr(t) fac-
torizes, i.e.,r(t)5W(t)^ rz

01O(l21/2) @28#. Thereby rz
0

denotes the stationary density operator of thezmotion in the
absence of the magnetic bottle field as defined in Eq.~B2! of
Appendix B andW(t)5Trz$r(t)% is the reduced density op-
erator of the cyclotron and spin motion. In the stationary
limit, i.e., for t@1/kz , this approximate factorization of
r(t) implies the relation

M ^Im~ āz!& t52
Im~b!

~kz/2!2
DvM ^N& t ~15!

for resonant driving of thez motion, i.e.,Vz5v. Therefore
in this limit continuous measurement of the out-of-phase
quadrature component, i.e., Im(āz), is equivalent to mea-
surement of the cyclotron and spin-quantum numberN.

As outlined in Appendix B, in this limit of rapid damping
and large fluctuations of thez motion, a master equation can
be obtained forW(t) by adiabatic elimination of thez mo-
tion, namely,

dW~ t !

dt
52 i /\@H̃0 ,W~ t !#1

1

2 (
j51,2

$@L j ,W~ t !L j
†#

1@L jW~ t !,L j
†#%2G†N,@N,W~ t !#‡. ~16!

The Hamiltonian H̃0 is obtained from H0 by
renormalizing the characteristic trap frequencies,
i.e., V1→Ṽ15V11DvM ^nz&0 and Vs→Ṽs5Vs
1(g/2)DvM^nz&0. For an electronicg factorg52 this renor-
malization does not affect the frequency difference
(V12Vs) which determines the frequency of the time-
dependent, inhomogeneous magnetic fieldB1(x,t). The
mean number of quanta of thez motion in equilibrium is
denotedM ^nz&0 and is given by Eq.~B3!. As outlined in
Appendix B, the characteristic measurement rateG and mea-
surement timeTm51/G are determined by the fluctuations of
the z motion around its equilibrium quantum number
M ^nz&0 . Explicitly it is given by @compare with Eq.~B9!#

G5
~Dv!2

~kz/2!

ubu2

~kz/2!2 S 112n̄z12
g

kz
D @11O~l21!#. ~17!

The master Eq.~16! together with the explicit expression
for the characteristic measurement rateG of Eq. ~17! are one
of the main results of this paper. In the limit of negligible
influence of the measurement of the out-of-phase component
of the current through the resistor, i.e.,g/kz!1, and negli-
gible noise of the resistor, i.e.,n̄z!1, Eq. ~17! yields Deh-
melt’s estimate for the minimum timeTm which is required
for completing an individual quantum measurement process
@2#. Thus for large damping of thez motion the actual value
of the phenomenological rateg, which characterizes the out-
of-phase measurement of the current, becomes irrelevant for
the dynamics of the cyclotron and spin measurement process.
This implies that under these circumstances the relevant
characteristic measurement timeTm can be varied in a con-
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trolled way over a large range of values by varying the ex-
ternal resistorR, the magnitude of the driving voltageU0 , or
the magnitude of the inhomogeneous, static magnetic bottle
field B2 of Eq. ~7!. This fact will become important in the
discussion of possible experimental tests of peculiar theoreti-
cal predictions of QSDM in Sec. III. However, it should be
mentioned that in the context of the master Eq.~16! the time
Tm51/G characterizes only an ensemble property, namely,
the time scale on which coherences between orthogonal
eigenspaces of operatorN are destroyed. Only if an indi-
vidual measurement process is described by a continuous
stochastic dynamical law, such as in QSDM, does this time
scale attain physical significance also for an individual mea-
surement process and determines the minimum time it takes
to complete an individual measurement process in agreement
with Dehmelt’s point of view.

III. NUMERICAL SIMULATION OF INDIVIDUAL
MEASUREMENT PROCESSES

Based on the stochastic dynamical law of Eq.~1!, which
is associated with the master equation of Sec. II B 1 or Eq.
~16!, in this part individual measurement processes are dis-
cussed for the CSGE.

In Fig. 2 a typical single realization of the stochastic dy-
namical law of Eq.~1! is shown which is associated with the
master equation of the cyclotron, spin, andz motion as dis-
cussed in Sec. II B 1. In this example the orders of magni-
tude of the characteristic parameters are chosen similarly as
in the experimental runs of Refs.@3,4#. In particular, the
value of the characteristic measurement rate isG512.0
s21. This simulation exhibits the characteristic features of
the experimental observation. The spin flips which take place
on the time scale of minutes are clearly visible. The upwards
spikes originate from thermal excitations of the cyclotron
motion by thermal radiation~‘‘cyclotron grass’’@4#!. The re-
sulting fluctuations take place on a time scale of the order of
1/@k(11n̄)#5(1/3)s. The qualitative similarity between
^Im(aze

ivt)& t @Fig. 2~a!# and̂N& t @Fig. 2~b!# in this single
realization indicates that measurement of the out-of-phase
component of the current through the resistor is equivalent to
measurement of the cyclotron- and spin-quantum numberN.

In Fig. 3 the structure of the ‘‘cyclotron grass’’ of an
individual measurement process is investigated in more de-
tail. The measured quantity^N& t is evaluated with the help of
the QSDM which is associated with the master equation
~16!. In particular, in Fig. 3~a! fluctuations of the cyclotron

FIG. 2. A single realization of the stochastic
law of QSDM @Eq. ~1!#: ^Im(aze

ivt)& t ~a! and
^N& t ~b!. The initial state is
uc&05ua15(1.0,0),az5(0,10.0),sz511& and
the characteristic parameters areDv51.0,
DV50.1, k52.0, n̄50.5, kz520.0, n̄z50,
g52.0,b5(0,2100.0)~all rates and frequencies
are in units of 1 s21).
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motion are resolved on the time scale of seconds for
G512.0 s21, i.e., for a case like the one shown in Fig. 2. In
Fig. 3~b! the characteristic measurement timeTm51/G is
decreased significantly so thatTm!1/@k(11n̄)#. Therefore
measurement of the cyclotron quantum numbera1

† a1 ,
which requires at least a time of the order ofTm , can be
completed in the time intervals between successive thermal
excitations of the cyclotron motion. In this case of a ‘‘com-
plete’’ measurement of the cyclotron-quantum number al-
most instantaneous quantum jumps occur between the ther-
mally activated cyclotron states.

The behavior of the fluctuations of^N& t and
^Im(aze

ivt)& t is investigated in Fig. 4. According to the re-
alistic state concept used in QSDM the fluctuations of these
quantities are characterized by the associated variances
D (2)(N)5M ^N& t

22(M ^N& t)
2 and D (2)

„Im(aze
ivt)… and all

corresponding higher moments. In general these quantities
cannot be evaluated from the associated density operator
which describes a quantum statistical ensemble of measure-
ments@18,29#. In Fig. 4~a! the time evolution ofD (2)(N) ~for
the cyclotron and spin motion! andD (2)

„Im(aze
ivt)… ~for the

cyclotron, spin, andz motion! are shown. For times

t@1/kz for which thez motion has reached equilibrium both
variances approach each other. This indicates that relation
~15! between the out-of-phase component of the current
through the resistor, namely,̂ Im(aze

ivt)& t , and the
cyclotron- and spin-quantum number^N& t is not only valid
for ensemble means but also applies on the level of indi-
vidual measurement processes provided condition~12! is ful-
filled. Furthermore, it shows that forl→` the behavior of
the quantum fluctuations of the measured quantity can be
described consistently either in the larger system which in-
cludes cyclotron, spin, andz motion or the smaller system
which takes into account the cyclotron and spin degrees of
freedom only. In Fig. 4~b! the quantityM ^Im(aze

ivt)& t of
the larger system~cyclotron, z, and spin motion! is com-
pared withM ^N& t of the smaller system~cyclotron and spin
motion!. It is apparent that after the establishment of equi-
librium, i.e., for times t@1/kz , both quantities approach
each other. This demonstrates that in this examplel is large
enough for Eq.~15! to be valid approximately.

FIG. 3. Time-resolved structure of the ‘‘cyclotron grass’’ in an
individual quantum measurement process with intial condition
uc&05ua15(1.0,0),sz511&, and DV50.1, k52.0, n̄50.5;
G512.0 ~a!, G56400.0~b! ~rates are in units of 1 s21).

FIG. 4. Time dependence ofD (2)(N) ~full curve! and
D (2)

„Im(aze
ivt)… ~dotted curve! as evaluated from Eq.~ 16! and

Sec. II B 1~a!; analogous comparison betweenM ^N& t ~full curve!
and M ^Im(aze

ivt)& t ~dotted curve! ~b!. The parameters are
Dv51.0, DV50.1, k51.0, n̄50.5, kz540.0, n̄z50, g51.0,
b5(0,100.0)~all rates and frequencies are in units of 1 s21). The
statistical means have been estimated by 2000 realizations.
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In Fig. 5 the behavior of the fluctuations of^N& t around
its mean value is investigated in more detail. For the cyclo-
tron and spin motion the dependence ofD (2)(N) on the ratio
between the characteristic measurement timeTm51/G and
the other relevant environmental time scale, namely, 1/k, is
shown in steady state. This result is based on numerical so-
lutions of the stochastic law of Eq.~1! which is associated
with the master equation~16!. For the sake of comparison
also the quantityS (2)(N)5M ^N2& t2(M ^N& t)

2 is shown
which can be evaluated from the density operatorW(t) of
the corresponding quantum statistical ensemble directly. Fig-
ure 5 demonstrates that in the limit of ‘‘complete’’ continu-
ous measurements in whichTm is much smaller than all
other relevant characteristic time scales, i.e.,G@k, the vari-
anceD (2)(N) approachesS (2)(N). Therefore it is expected
that in this limit all stochastic dynamical laws of state reduc-
tion which are based on the realistic state concept used in
QSDM and which are consistent with the master equation
~16! will yield the same fluctuations as QSDM. However, for
‘‘incomplete’’ measurements in whichTm is of the same or-
der as or larger than all other relevant time scales,
i.e., G<k, the variancesD (2)(N) differ significantly from
S (2)(N). Therefore in this limit these variances cannot be
evaluated from the density operatorW(t) and are a peculiar
property of the particular stochastic dynamical law of
QSDM. As in the CSGE the characteristic measurement time
Tm can be varied in a controlled way over a large range of
values, these specific theoretical predictions of QSDM con-
cerning the fluctuation behavior of the measured quantity
should be amenable to experimental tests.

IV. CONCLUSION

A consistent quantum-mechanical treatment of the CSGE
has been developed in which the dominant interactions of an
electron in the Penning trap with its environment and the
measuring apparatus have been taken into account. Starting

from the quantum-mechanical master equation for the cyclo-
tron, magnetron, spin, andz motion it has been shown that it
is the cyclotron- and spin-quantum number of Eq.~14! which
is measured continuously in this experimental setup. Further-
more, an explicit expression has been derived for the char-
acteristic measurement timeTm which determines the time
scale on which reduction from a pure state into a mixed state
takes place according to von Neumann’s projection postulate
@7#. This master equation has been used as a starting point for
describing the dynamics of individual continuous quantum
measurement processes within the theoretical framework of
QSDM. Thereby the continuity of the relevant stochastic,
nonlinear process for the quantum state implies in a natural
way thatTm also determines the time scale required for com-
pleting an individual quantum measurement process and
whose significance for the CSGE has already been recog-
nized by Dehmelt@2#. As is apparent from Eq.~17!, this
characteristic measurement timeTm can be varied in a con-
trolled way over a large range of values. Thus it is possible to
realize both ‘‘complete’’ and ‘‘incomplete’’ continuous mea-
surement processes depending on whetherTm is much
smaller or much larger than all other relevant environmental
time scales. In particular, incomplete continuous measure-
ment processes might turn out useful for testing theoretical
predictions of QSDM as far as quantum fluctuations of
^N& t are concerned. Due to the realistic state concept QSDM
is based on, in such incomplete measurements these fluctua-
tions cannot be evaluated from the density operator of the
associated quantum statistical ensemble and are peculiar
properties of QSDM.
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APPENDIX A

In this appendix the derivation of the adiabatic Hamil-
tonian of Eq.~9! is outlined. It describes the dynamics of an
electron in the CSGE adequately on time scalesDt which are
long in comparison with all oscillatory time scales in the
Penning trap, i.e.,Dt@(2p)/v1 ,(2p)/vz ,(2p)/v2 .

The starting point is the total HamiltonianH which de-
scribes the complete deterministic dynamics of an electron in
a Penning trap under the additional influence of the inhomo-
geneous magnetic fieldsB1(x,t) andB2(x) of Eqs. ~6! and
~7!, i.e.,

H5
1

2m
@p2eA~x,t !#21eF~x!2

g

4

e\

m
s•B~x,t !. ~A1!

The total vector potential is given by

A~x,t !5
B0

2
~2yex1xey!1B1cos@~vs2v1!t#~2yzex

1xyez!1
B2

2 S z22 x21y2

4 Dez`~2xex1yey!,

~A2!

FIG. 5. Steady state dependence ofD (2)(N)5M ^N& t
2

2(M ^N& t)
2 ~lower curve! and S (2)(N)5M ^N2& t

2(M ^N& t)
2 ~upper curve! on characteristic environmental time

scale and measurement time, i.e.,G/k. The parameters are
DV51.0, k51.0, n̄50.5 ~rates are in units of 1 s21). The bars
indicate the 95%-confidence intervals.
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with the corresponding total magnetic field
B(x,t)5rotA(x,t). The electrostatic quadrupole potential of
the Penning trap is given by

F~x!5F0~2z
22x22y2!. ~A3!

With the help of the relations

x5A \

2m~v12v2!
~a1

† 1a11a2
† 1a2!,

y52 iA \

2m~v12v2!
~a1

† 2a12a2
† 1a2!,

z5A \

2mvz
~az

†1az!,

px5
i\

4
A2m~v12v2!

\
~a1

† 2a11a2
† 2a2!,

py5
\

4
A2m~v12v2!

\
~a1

† 1a12a2
† 2a2!,

pz5
i\

2
A2mvz

\
~az

†2az! ~A4!

between position and canonical momentum operators on the
one hand and creation and annihilation operators on the other
hand this Hamiltonian can be transformed to the normal co-
ordinates of the ideal Penning trap. In typical cases of ex-
perimental interest the characteristic frequencies of the dy-
namics in the Penning trap differ at least by three orders of
magnitude so that a simple Hamiltonian can be derived
which describes the dynamics in the Penning trap properly
on time scalesDt which are large in comparison with the
slowest characteristic time scale, namely, the magnetron time
scale@(2p)/v2#,1023 s. If one keeps only terms in the
Hamiltonian which are slowly varying on this time scale and
neglects all terms of the order of (vz /v1) in comparison
with 1 the adiabatic Hamiltonian of Eq.~9! is obtained@30#.

APPENDIX B

In this appendix the derivation of the master equation for
the reduced density operator of the cyclotron and spin dy-
namicsW(t) is outlined.

The starting point is the master equation of the CSGE
effect as given in Sec. II B 1, i.e.,

dr

dt
5~L01Lz1L0z!r~ t !, ~B1!

with the Liouville operators

L052 i /\@H0 ,.#1 1
2 ( j51,2~@L j ,.L j

†#1@L j .,L j
†# !,

Lz52 i /\@Hz ,.#1 1
2 ( j53,4,5~@L j ,.L j

†#1@L j .,L j
†# !,

and

L0z52 i /\@H0z ,.#.

For the sake of simplicity the magnetron motion, which de-
couples dynamically from the other degrees of freedom, will
not be considered explicitly. ForH0z50 the stationary state
of the z motion rz

0 is determined by the relation

Lzrz
050. ~B2!

In the case of exact resonance, i.e.,Vz5v, this stationary
state gives rise to the following stationary values of the cor-
relation functions characterizing the dynamics of thez mo-
tion:

M ^az&0e
ivt52 i

b

kz/2
, M ^nz&05u^az&0u21n̄z1

g

2kz
,

M ^az
2&0e

2ivt5
g

2kz
2S b

kz/2
D 2,

^~Dnz!
2&05U b

kz/2
U2S 112n̄z1

g

kz
D1S n̄z1 g

2kz
1
1

2D
2

2
1

4
1

g

2kz
F g

2kz
22ReS b

kz/2
D 2G ,

M Š~az2^az&!Dnz‹05
g

2kz
M ^az

†&0e
22ivt

1M ^az&0S 11n̄z1
g

2kz
D ,

M Š~az
†2^az

†&!Dnz‹05M ^az
†&0S n̄z1 g

2kz
D

1
g

2kz
M ^az&0e

2ivt, ~B3!

with M ^•&05Trz$.rz
0%, nz5az

†az , andDnz5nz2M ^nz&0 .
In the following we want to investigate the dynamical

regime in which the anharmonic coupling between thez mo-
tion and the cyclotron and spin degrees of freedom does not
disturb this equilibrium of thezmotion significantly. In order
to derive an equation of motion for the reduced density op-
eratorW(t)5Trz$r(t)% of the cyclotron and spin degrees of
freedom we define the projection operator

P •5rz
0

^Trz$•%. ~B4!

Furthermore, it will be convenient to include part of the in-
teraction HamiltonianH0z in H0 by redefining

H̃05H01\DvNM^nz&05\Ṽ1a1
† a11

1

2
\Ṽssz ,

H̃0z5\DvNDnz , ~B5!

with the renormalized frequenciesṼ15V11DvM ^nz&0 ,
Ṽs1Dv g/2M ^nz&0 , andN as given by Eq.~14!. The pro-
jection operatorP fulfills the elementary relations
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PL̃05L̃0P ,

PLz5LzP50,

and

PL̃0zP50.

The resulting reduced density operatorW(t) obeys the~ex-
act! Nakajima-Zwanzig equation@28#

dW

dt
5L̃0W~ t !1E

0

`

dt8K~ t2t8!W~ t8!1I ~ t !, ~B6!

with the memory kernel

K~t!5Trz$L̃0ze
~12P !~L̃01Lz1L̃0z!~12P !tL̃0zrz

0%.

The influence of initial correlations is described by the term

I ~t!5Trz$L̃0ze
~12P !~L̃01Lz1L̃0z!~12P !t~12P !r~0!%.

In the limit of strong damping of thez motion, i.e.,
l5kz /uDvu→` with @ ub/kzu2(Dv/kz)# remaining con-
stant, I (t) andK(t) decay so rapidly that the Markov ap-
proximation can be employed in Eq.~B6!. Furthermore, in
this limit (L̃01Lz1L̃0z) can be approximated byLz in
the memory kernel. This corresponds to the so called ‘‘quan-
tum Brownian motion limit’’ of the Nakajima-Zwanzig equa-
tion @28# in which the rapidly dampedzmotion is eliminated
adiabatically. Thus Eq.~B6! simplifies to

dW

dt
5L̃0W~ t !

2†N,@N,W~ t !#‡~Dv!2E
0

`

dtM ^Dnz~t!Dnz~0!&0

1@W~ t !,N#N~Dv!2E
0

`

dtM ^@Dnz~t!,Dnz~0!#&0 .

~B7!

With the help of the quantum fluctuation-regression theorem
@28# it can be shown in a straightforward way that for
Vz5v the relevant correlation functions of thez motion,
which describe fluctuations of the cyclotron and spin degrees
of freedom due to their coupling to thez motion, are given
by

E
0

`

dtM ^@Dnz~t!,Dnz~0!#&050 ~B8!

and

E
0

`

dtM ^Dnz~t!Dnz~0!&0

5^~Dnz!
2&0 /kz1u^az&0u2S 112n̄z12

g

kz
D Ykz . ~B9!

Thus the equation of motion for the reduced density operator
W(t) of Eq. ~16! is obtained. We want to point out that Eq.
~B8! is necessary for obtaining a physically acceptable mas-
ter equation forW(t) in canonical Lindblad form@25#.
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