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Continuous Stern-Gerlach effect and the quantum-state diffusion model of state reduction
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A quantum-mechanical description of the continuous Stern-Gerlach effect is developed in which environ-
mental effects, as well as effects arising from the continuous measurement of the elecinmrion, are taken
into account. Master equations are presented that describe the behavior of a quantum statistical ensemble of
continuous measurement processes. On the basis of these master equations and with the help of the quantum-
state diffusion model a theoretical description of individual continuous measurement processes is developed.

PACS numbds): 03.65.Bz, 42.50.Lc, 05.30.Ch

I. INTRODUCTION monitored[11-15. In particular, in this context it has been
shown that contingent on those particular measurement
The continuous Stern-Gerlach effe@@SGB [1-6] has  records which involve homodyning or heterodyning with a
been designed as a method to measure continuously and narlassical intense photon source the time evolution of a con-
destructively the spin state of an electron confined in a Pertinuously observed photon source can be described by par-
ning trap in ultrahigh vacuum. In contrast to the classicalticular types of nonlinear, stochastic Sctlimger equations
Stern-Gerlach effect, which is one of its historical corner-[14]. Motivated by the more general question “what is actu-
stones, in the CSGE the spin detection process does not ablly happening during an(arbitrary, individual quantum
sorb the observed electron, so that the dynamics of an indimeasurement['16] recently various classes of nonlinear, sto-
vidual, single electron can be monitored continuously. Thischastic Schrdinger equations have been proposed as general
effect has been used in a series of impressive experiments tlynamical approaches to the process of state reduiti®n
determine fundamental physical constants, such as the ele1]. These equations aim at describing arbitrary quantum
tronic g factor, with unprecedented precision. Furthermore, itmeasurement processes which do not necessarily involve
is a near-ideal realization of a continuous quantum-photon detection processes at all. Typically, these latter, gen-
mechanical measurement process. According to Dehmelt theral approaches to the quantum measurement problem con-
CSGE demonstrates two important poipts2]: (1) for re-  stitute generalizations of traditional quantum mechanics and
duction of the state of an individual quantum system to taket is still an open question which one of these approaches
place no animate observer is required; interaction of the cormight ultimately turn out as being consistent with experi-
tinuously measured physical system with its environment isnent. In particular, in one of these approaches, namely, the
sufficient for this process to occur; a@) the completion of quantum-state diffusion modéQSDM) [20,21], Dehmelt’s
an individual quantum measurement process requires a mingonjectures(l) and (2) are taken into account in a natural
mum, nonzero timeT,,. Therefore the CSGE raises the way. In this phenomenological model any continuous quan-
guestion of how an individual continuous quantum measuretum measurement process is modeled, like any other interac-
ment process should be described theoretiqhigre an “in-  tion of a quantum system with an environment, by a continu-
dividual” measurement process is understood as a singleus, nonlinear stochastic process which is consistent with a
member of a quantum statistical ensemble of measurementaster equation for the density operator of the associated
processes quantum statistical ensemble. Thereby the continuity of the
The quantum theory of measurement is motivated by thetochastic process implies in a natural way that the comple-
idea of the universality of quantum mechanics according tdion of an individual quantum measurement process requires
which this theory should be applicable, in particular, to thea characteristic timd,, [20].
measurement process itself. It has been shown by von Neu- In this paper the controversial discussion about which one
mann[7] and Liders[8] that, as a key element, a dynamical of these general, stochastic approaches to the problem of
model for an ideal quantum measurement process shouktate reduction might ultimately lead to a satisfactory de-
yield the collapse of the quantum-mechanical state into ascription of arbitrary real quantum measurement processes is
eigenstate of the measured observable as the result of a dgpproached from a pragmatic point of view. In the following
namical albeit stochastic process. Within the framework ofa theoretical description of the CSGE is developed with the
traditional quantum mechanics this collapse of the quantumhelp of QSDM in the hope that this application of QSDM
mechanical state occurs instantaneously in the form of and the comparison of its theoretical predictions with this
“quantum jump.” It is difficult to explain this stochastic col- real experiment might ultimately help to falsify or support
lapse of the quantum state by the unitary time evolution im-QSDM as a general model of state reduction. The CSGE as
plied by the Schrdinger equatiorf9]. This is the origin of performed by Dehmelt and Brown and Gabridle 6] is an
the so called quantum measurement probJé@]. In quan-  almost ideal example of a real continuous quantum measure-
tum optical problems substantial progress has been achievedent process which does not involve the detection of pho-
in the theoretical description of individual photoelectric de-tons at all and which has already been realized in the labo-
tection processes by which the state of a photon source imtory. It should be mentioned at this point that there have
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already been investigations of optical analogs of the classicah. Continuous quantum measurements and the quantum-state
Stern-Gerlach effedi22] in which the problem of the theo- diffusion model

retical description of individual photon detection processes is Recently QSDM has been developed by Gisin and Per-
approached with the help of the quantum trajectory approacival [20,21 as a theoretical model for describing continuous
[11]. However, in the CSGE, which we are considering in thequantum measurement processes. In a phenomenological
following, the dynamics of the electron in the Penning trap isway this model aims at answering the question “what is
monitored by purely electronic means by measuring theactually happening during a quantum measuremgmg.
charge-induced currents in the end caps of the trap. Ther&hereby the term “individual” refers to a single member of a
fore this experiment does not involve any photodetectiorguantum statistical ensemble. QSDM is based on two main
process and these quantum optical models do not have direitteoretical elements.

physical significance for our subsequent investigation. The (1) A realistic state concepindependent of acts of per-
use of QSDM in this context as a general model of stateception, the state of an individual quantum system is de-
reduction is motivated by Dehmelt's points of vigid) and ~ Scribed completely by a ray in a Hilbert spdegt)). Physi-

(2) which are taken into account by QSDM in a natural way.cal properties of a quantum system are described by self-
In particular, the purpose of this paper is twofold. First of all, adjoint operators in this Hiloert space. The value
quantum-mechanical master equations are derived which déf)=(#(1)|A[4(1)) is interpreted as the value of the physi-
scribe the dynamics of a quantum statistical ensemble df@l quantityA which is assumed at timein the course of a
continuous measurement processes which are performed GH'9!€ continuous quantum measurement process.

an electron in the CSGE. Thereby effects which arise from (2) A stogha_st_m dynamical laWhe time evolu_tlon of the
the coupling of the trapped electron to its surroundimgc- state .of an |nd|v.|dual guantum system is described by a sto-
roscopig environment and the measuring apparatus as Weﬁ‘,haStIC ltoequation of the form

as the relevant nonlinear couplings between cyclotron, spin, i 1

andz motion are taken into account in a consistent quantum-d|#(t)) = — > H[y(t))dt~ EE (LTL (DL

mechanical way. Secondly, on the basis of these master equa- !

tions and the associated QSDM a theoretical description of

individual continuous quantum measurement processes is de- _2<L;r>t|—j)|'r’f(t)>dt+; (Li—(Lpolw(t)dg;,
veloped with particular emphasis on the behavior of the
guantum fluctuations which are peculiar to QSDM. 1)

This paper is organized as follows: In Section Il the
guantum-mechanical treatment of the CSGE is developed. |
Sec. Il A the general theoretical description of individual Mdé=MdgF =0, dgf:(dg?)zzo, d¢;dgg = & dt.
continuous quantum measurement processes within the
framework of QSDM is summarized. In Sec. Il B master TherebyM represents the mean over the statistical probabil-
equations are presented which describe the dynamics of ity distribution and the quantitied )= ((t)|L;| (1)) re-
single electron in a Penning trap under the influence of effer to single realizations of the stochastic process.
fects originating from interaction with its environment and  In Eq. (1) two different types of time evolutions are intro-
the measuring apparatus. These master equations are tdeced, namely, a deterministic one, characterized by a
starting point for the description of individual continuous HamiltonianH, and a stochastic one, characterized by Lind-
measurement processes by QSDM. By adiabatic eliminatioflad operators; and associated Wiener processgs. The
of the electronicz motion a simplified description of the Hamiltonian dynamics applies to the microscopic world. The
cyclotron and spin dynamics is obtained. Thereby an analytistochastic time evolution arises from the interaction of the
cal expression for the characteristic measurement Tigpées ~~ quantum system with it§macroscopig environment and
derived which generalizes Dehmelt's early estinfalewith ~ leads to destruction of quantum coherei28,24. Within
the help of QSDM in Sec. Il numerical simulations of indi- the theoretical framework of QSDM a measurement process
vidual continuous quantum measurement processes are di§-a special case of interaction with an environment. The
cussed. influence of an apparatus which measures the physical quan-

tity A continuously is modeled phenomenologically by a
self-adjoint Lindblad operatdr ;= \/;A. Therefore an ideal
Il. QUANTUM THEORY OF THE CONTINUOUS quantum measurement process of observabige described
STERN-GERLACH EFFECT by the single Lindblad operatdr; and H=0. In this case
Eqg. (1) implies

In the first part of this section basic aspects of the
guantum-state diffusion model as a model for continuous |y(t=0))—|h(t—»))=P | y(t=0))/\p,, 2
guantum-mechanical measurement processes are summa-
rized. In the second part master equations are derived whichith P, denoting the projection operators onto the eigens-
describe the dynamics of a quantum statistical ensemble gfaces of operatok with eigenvaluesy. This collapse of the
continuous quantum measurement processes in the CSGuantum state as a result of an individual quantum measure-
These master equations are the starting point for the descriprent process [8] takes place with probability
tion of individual measurement processes within the framep,=(#(t=0)|P,|#(t=0)). The continuity of the stochastic
work of QSDM. law of Eg. (1) also implies that the completion of this col-

with the complex Wiener processes
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lapse of the quantum state requires a minimum measuremefrieedom is developed by eliminating the electronimotion
time T,, whose magnitude is determined by the quaniity adiabatically. Thereby in a quantum-mechanically consistent
In the absence of any coupling to environments @&g.re- way an analytical expression is derived for the characteristic
duces to the ordinary Schaimger equation of quantum me- measurement timé,, which is required to complete a mea-

chanics. surement of the electronic cyclotron and spin state.
The dynamical law of Eq(1) implies that the density
matrix p(t) =M |(t))(¥(t)| of the associated quantum sta- 1. Cyclotron, magnetron, spin, and z motion
tistical ensemble fulfills the master equatigb] In idealized form the physical system with which the spin
i 1 state of an individual electron in a Penning trap has been
o(t)=— —[H,p(t)]+ = L. p(OLI+L:p(t), LITY. observed continuously and nondestructively by Dehmelt and
p() h[ p(V)] 2; (L p(OL L)L T} co-workerg 1—6] consists of(1) a Penning trap in which the

(3) electron is confined an(2) a measuring apparatus, i.e., an
w,-shift spectrometer, with which the dynamics of the elec-
The quantum-mechanical mean value of any obsernv@abte  tronic z motion is monitored continuously and nondestruc-
given by T{Ap(t)} and is equal to th#1(A), . In the case of tively. This continuous and nondestructive measurement pro-
the single Lindblad operatdr, = \/;A with H=0 the master cess of the electronic spin state has been termed the
Eq. (3) implies the von Neumann postuldté] continuous Stern-Gerlach effet,2].
The dynamics of the electron which is confined in a Pen-
p(t=0)—>p(t—>oc):§a: P p(t=0)P, . 7 ning trap is described by the Hamiltonia®]
Hpeming=hwsala, +fiwala,~ho_ala + 3w,
In this case coherences between orthogonal eigenspaces of 6)
different eigenvaluesa decay exponentially with a rate ) .
whose magnitude is determined by The master equation With @+, ®;, w_, and ws denoting the(modified cyclo-
(3) is invariant under arbitrary unitary transformations in the!ron. z, magnetron, and spin frequency. The creatianni-
linear space of Lindblad operatof0]. In contrast to other hilation) operators (T)f cyclotrorzlr and magnetron motion are
possible associated continuous stochastic dynamical laws Egenoteda; (a.),a;(a,), anda’(a-) and o, is the Pauli
(1) also exhibits this invariance property. spin operator parallel to the applied homogeneous magnetic
The realistic state concept of QSDM is independent of thdield. The spectrum oH penningis shown in Fig. 1) sche-
actual form of the stochastic dynamical law. One might bematically together with typical values for the characteristic
tempted to think that a replacement of H@) by another trap frequencied3]. In order to enable measurements of
stochastic, dynamical law which leads to the same masteiPin-dependent properties of the trapped electron such as the
equation for the density operatp(t) of the quantum statis- electronicg factor, spin flips are induced by a weak, inho-
tical ensemble does not affect physically observable phemogeneous, time-dependent magnetic fei]
nomena. However, the physical interpretatior) gft)) used
by QSDM implies that this is not the case. This may be seen B1(X,1)=B1cog w,t)(xe, +ye,— 2763, (6)
by considering statistical means of nonlinear functiénef ) i o )
quantum expectation values of the foMF((A),). Accord-  With @a=(ws—w.). The electronic dynamics is monitored
ing to the realistic state concept of QSDM these quantitiedy OPServing it motion continuously. For this purpose #s
are amenable to experimental observation. But they canndf0tion has to be coupled to the spin motion. This is achieved
be evaluated from the associated density operator because ¥ @PPlying a weak, inhomogenous magnébottle) field
generaMF((A),) # M[(F(A)),]. Therefore this physical in- Which can be modeled bj27]
terpretation implies that on the basis of nonlinear functiéns
of observabled\, i.e., by investigating the quantum fluctua- -
: L - B2(x) =B,
tions of a measured quantity in a continuous quantum mea-
surement process, different classes of stochastic dynamical ) o )
laws can be distinguished physically even if they are associtlowever, this magnetic field leads also to a coupling be-

ated with the same master equation for the density operatéween the electronic cyclotron ardmotion.
[29]. The z motion itself is measured continuously and nonde-

structively by anw,-shift spectrometer. In idealized form this
spectrometer consists of two main elemesmpare with
Fig. 1(b)] [1,2].

In this section master equations are derived which de- (i) A (deterministi¢ almost resonant sinusoidal drive volt-
scribe the dynamics of an electron in the CSGE under thegge
influence of a measuring apparatus and other temperature-
dependent dissipativémacroscopig environmental effects. U(t)=Ugsin(wt), (8
First of all a detailed description is developed which includes
the electronic cyclotron, magnetron, spin, anthotion and  which is applied between the ring electrode and one of the
its coupling to thew,-shift spectrometell,2] which consti- end caps of the Penning trap and which forceszimeotion
tutes the measuring apparatus. Based on this descriptionigto an approximately coherent state with high mean quan-
simplified treatment of the cyclotron and spin degrees ofum number.

x2+y?

. @)

p

—Xze,—yze,+ ;.

B. Master equations for the continuous Stern-Gerlach effect
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®) Thereby the Hamiltoniafl _ describes the unperturbed mag-
©,/@m)~wg/(2m)~ 51GHz netron motion which is still decoupled dynamically from the
other degrees of freedom. The Hamiltoniadg, H,, and
Ho, characterize the dynamics of ttemotion under the
w_/@n)~ 35kHz influence of the external sinusoidal drive voltage, the dynam-
ics of the cyclotron and spin degrees of freedom, and their
anharmonic coupling by the weak, inhomogeneous magnetic
fields. Furthermore, the characteristic trap frequencies are
renormalized according to Q,=w,+Aw/2, Q,
=w,tAw/2, andQ = ws+gAw/4. The frequencies

n= w,/(@m) ~w, /(2r)~ 60MHz

n=2
n=1

n=0 Aw=(eBfiw,)[Mw(w;—w_)]
L and

AQ=(geBVmw Al2)/[[4m*(w,—w_)]

C (b)

characterize the strengths of the anharmonic couplings which
are induced by the magnetic fiel#s(x) andB;(x,t). The

parameteB= —iU/ 8/ Q,L;,q describes the effects of the

external(classical sinusoidal voltage driving the motion.
The electric charg®(t) which is induced in the end cap of

:-5,5 E the Penning trap byJ(t) and the resulting curreni(t)
through the resistoR are given in terms of the annihilation
)

w=0,(}) and creation operators of tlzemotion a, and a;‘ by [28]
Lind —-1/4 1 Lind 1/4
Q=\2% < | Rda), 1= NEDD < | m@,).
FIG. 1. Energy spectrum of an ideal Penning trap and typical ind (10)

values of the characteristic trap frequendi@s schematic represen-

tation of the “w,-shift spectrometer” with which the spin- and  Effects which arise from the continuous measurement
cyclotron-quantum number is measursl process and coupling of the electron to the surrounding
y . . - (macroscopit environment will be characterized dynami-
(i) A resistor R together with an amplifier and a phasefga"y by Lindblad operator ;. Thus the time evolution of

sensitive detector which measures continuously the OUt'Othe statep(t), which describes the behavior of a quantum

phase quadrature component of the current which is ir'duce&'ﬂtistical ensemble in the CSGE, is described by a master
in the other end cap of the Penning trap by the driven elec: '

tronic z motion. As far as its electric properties are con- equation of the form of E(3). The dominant environmental
; . L7 prop effects which we shall take into account in the following are
cerned, the electroniz motion in the Penning trap can be

) ST described as follows.
representeq by an effecnybCR circuit with inductance (1) The radiative exchange of energy between the cyclo-
Ling, Capacitance&s, and resistance.

Typically, the characteristic frequencies of the Pennin tron motion and the surroundingherma) radition field: It

%an be described by the Lindblad operators
trap differ at least by factors of the order of*l@ompare = =t
with Fig. 1). Therefore in an adiabatic approximation the Ill__ hf;(+n,?;%)a1 f:lln(; L= \/?‘L (28] There(;)yx and ¢
description of the electronic dynamics inside the Pennin =[e —1] enote the spontaneous decay rate o

trap can be simplified considerably. As outlined in Appendix he cyclotror_l mO“O'_” and the mean number qf quan_ta_of the
A, on tme scales of the order ofAt with thermal radiation field at temperature. Typically, it is

~1 o1 iafi i
(27)/w_<<At~1s the resulting total Hamiltonian, which found thatx~1 s~ [6]. Radiative coupling of the other

describes the deterministic part of the electronic dynamics iﬁlectromc degrees of freedom to the thermal radiation field

the CSGE, can be approximated adiabatically bycan be neglected as the corresponding decay rates are van-

H=He+H.+H_+H~. with ishingly small compared ta. .
0"z 0z (2) The dissipative influence of the resis®mn the elec-

: 1 Q. 0ot tronic z mgtion: It can be modelgd by the Lindblad operators
Ho=fQ a8, + 5700, +hAQ (0 a e s Ls=Vk,(n,+1)a, and L,= V«,n,al [28]. The resistor is
_ characterized by the effective damping rate=R/L;,q and
+o_a1e*'(9+’95)‘), the effective occupation number, which depends on its
, , temperature and describes the noise properties of this resistor
H,=%Q,ala,+4B*a ' +hpBale ', within the rotating wave approximation.
(3) The continuous measurement of the out-of-phase
a'a quadrature component of the current induced in the resistor
27z R: According to Eq.(10) the current can be decomposed into
(9 an in-phase and an out-of-phase quadrature component, i.e.,

g
a1a++ —0;,

H_=-%w_a'a_,Hy=fidw 2
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1 Ling| ¥4 _ . Ensemble means are evaluated from the density operator
= \/ﬁ(?) [—Re(a,e'“")sin(wt) p(t), i.e, M(-)=Try 1 o{-p(t)} with the symbolM indi-

ind cating the average over the quantum statistical ensemble. In
+1Im(ae'“t)cog wt)]. (11)  the case of large and rapid fluctuations of theotion to a

good degree of approximation the density operaia) fac-
Therefore the continuous measurement of the out-of-phasgrizes, i_e_,p(t)zw(t)®pg+ o(x Y2 [28]. Therebypg

component of the current can be modeled phenomenologienotes the stationary density operator ofzhmotion in the

cally by the self-adjoint Lindblad operator absence of the magnetic bottle field as defined in(B@) of
ot Appendix B andW(t) =Tr{p(t)} is the reduced density op-
Ls=\yim(a,e'"). erator of the cyclotron and spin motion. In the stationary

, limit, i.e., for t>1/k,, this approximate factorization of
The parameter 3/ may be interpreted as the mean measure-

. X t) implies the relation
ment time[20,21]. However, it should be mentioned that in p(t) imp

this phenomenological description it is not clear how the . Im(B)
actual value ofy can be controlled physically. M(Im(a,) )= — WACONNN% (19
zZ

The master equatiof8) with the Hamiltonian(9) and the

Lindblad operators,;(j=1,. .. ,5) yields a unified quantum- ¢, resonant driving of the motion, i.e.,Q,= w. Therefore
mechanical description of deterministic and stochastic effects, ihis limit continuous measurement of the out-of-phase
which influence the dynamics of a quantum ensemble in thﬁuadrature component, i.e., lay, is equivalent to mea-

CSGE. It is the starting point for the theoretical descriptiong,-ament of the cyclotron and spin-quantum numer
of the CSGE within the theoretical framework of QSDM.  A¢ gutlined in Appendix B, in this limit of rapid damping

However, from this master equation it is not apparent that the, |4 large fluctuations of themotion, a master equation can

dynamics of this physical system implies a continuous meapg gpiained fo(t) by adiabatic elimination of the mo-
surement of the cyclotron- and spin-quantum number. Furgq, namely.

thermore, it is not clear which physical quantities determine

the associated characteristic measurement fiime These dW(t) . 1 :
two aspects are discussed in the next section. = —i/A[Ho,W(D)]+ 5 > {[L;, W(t)L]]
dt 2]:1'2 l
2. Cyclotron and spin motion +[LjW(t),LT]}—F[N,[N,W(I)]]. (16)

In the limit in which the driven electronic oscillation ~
along thez direction attains equilibrium almost instanta- The Hamiltonian H, is obtained from Hy, by
neously in comparison with all other time scalesthmotion ~ renormalizing the  characteristic  trap  frequencies,
can be eliminated adiabatically. This corresponds to the sbe., Q,—Q,=0,+AwM(n,), and Q—Q=0,
called “quantum Brownian motion limit” in which the fluc- + (g/2)AwM{n,),. For an electronig factorg=2 this renor-
tuations of thez motion, which is viewed as a reservoir, are malization does not affect the frequency difference
fast and larg¢28]. This dynamical regime is realized in the (2, —Q,) which determines the frequency of the time-

limit dependent, inhomogeneous magnetic fidg(x,t). The
mean number of quanta of the motion in equilibrium is

= Kz (12) denotedM({n,)q and is given by Eq(B3). As outlined in

[Aw| Appendix B, the characteristic measurement fa@nd mea-

surement tim& ,= 11" are determined by the fluctuations of
with Aw and[| B/«,|?> Aw/«,] being held constant. the z motion around its equilibrium quantum number
According to Eqg.(9) the magnetron motion is decoupled M(n,),. Explicitly it is given by[compare with Eq(B9)]
dynamically from the remaining degrees of freedom. As it
can be taken into account in a simple, straightforward way itr_ (Aw)* |BI?
will no longer be considered explicitly in the subsequent” = (k,/2) (k,/2)2
treatment. Thus in the following the density operapdt)
will refer to the spinz, and cyclotron motion only. From the The master Eq(16) together with the explicit expression
master Eq(3) with HamiltonianH of Eq. (9) and Lindblad  for the characteristic measurement rhtef Eq. (17) are one
operatord_; with j=1,...,5 asdescribed in Sec. I B 1 the of the main results of this paper. In the limit of negligible
relation influence of the measurement of the out-of-phase component
o(a) of the current through the resistor, i.e/x,<1, and negli-
az . . Kz — S - gible noise of the resistor, i.en,<1, Eq.(17) yields Deh-
dt _I((Qz_w)_' 2 M@ —if-iAeM(Na)  oies estimate for the minimum time€,, which is required
(13 for completing an individual quantum measurement process
B _ [2]. Thus for large damping of the motion the actual value
is obtained witha,=a,e'“" and the cyclotron- and spin- of the phenomenological ratg which characterizes the out-
number operator of-phase measurement of the current, becomes irrelevant for
the dynamics of the cyclotron and spin measurement process.
This implies that under these circumstances the relevant
characteristic measurement tirfig, can be varied in a con-

1+2ﬁz+2%)[1+0(>\—1)]. 17)

M

N=a1a++%az. (14)
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@

Im<a, exp(i w t)>

FIG. 2. A single realization of the stochastic
law of QSDM [Eq. (1)]: {Im(a,e'“Yh), (@ and
0 1 2 3 4 5 [ 7 8 '9 10 11 12 13 14 15 18 <N>t (b) The initial state is
time (min) [¥)o=|as = (1.0,0) @, =(0,10.0)s,= +1) and
() the characteristic _parameters arAw_= 1.0,
AQ=0.1, ¥=2.0, n=0.5, «,=20.0, n,=0,

L v=2.0, 3=(0,—100.0)(all rates and frequencies

are in units of 1 §1).

T
0 1 2 3 4 &5 6 7 B8 9 10 11 12 13 14 15 186
time (min)

trolled way over a large range of values by varying the ex- In Fig. 2 a typical single realization of the stochastic dy-
ternal resistoR, the magnitude of the driving voltag#,, or  namical law of Eq(1) is shown which is associated with the
the magnitude of the inhomogeneous, static magnetic bottimaster equation of the cyclotron, spin, andotion as dis-
field B, of Eq. (7). This fact will become important in the cussed in Sec. Il B 1. In this example the orders of magni-
discussion of possible experimental tests of peculiar theoretiude of the characteristic parameters are chosen similarly as
cal predictions of QSDM in Sec. Ill. However, it should be jn the experimental runs of Ref§3,4]. In particular, the
mentioned that in the context of the master Eif) the time  yajue of the characteristic measurement ratel'is 12.0
Tm=1/I' characterizes only an ensemble property, namelys-1 Thjs simulation exhibits the characteristic features of
the time scale on which coherences between orthogonghe experimental observation. The spin flips which take place
eigenspaces of operatdt are destroyed. Only if an indi- o e time scale of minutes are clearly visible. The upwards
o L§°pikes originate from thermal excitations of the cyclotron
scale attain physical significance also for an individual mea?nOtlon by thermal radiatioff cyclotron grass’[4)). The re-

surement process and determines the minimum time it takesultlng fluctuations take place on a time scale of the order of

to complete an individual measurement process in agreemef[?{[K(lJ:St)]:(1,/3)5' The qualltat!ve S|m|llar|ty. be.tween
with Dehmelt's point of view. (Im(aze_ )>.t [I_:lg. 2@] andN), [Fig. 2(b)] in this single
realization indicates that measurement of the out-of-phase
component of the current through the resistor is equivalent to
measurement of the cyclotron- and spin-quantum nuriber

In Fig. 3 the structure of the “cyclotron grass” of an

Based on the stochastic dynamical law of Ef, which  individual measurement process is investigated in more de-
is associated with the master equation of Sec. Il B 1 or Eqtail. The measured quantit\N), is evaluated with the help of
(16), in this part individual measurement processes are disthe QSDM which is associated with the master equation
cussed for the CSGE. (16). In particular, in Fig. 8) fluctuations of the cyclotron

IIl. NUMERICAL SIMULATION OF INDIVIDUAL
MEASUREMENT PROCESSES
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FIG. 3. Time-resolved structure of the “cyclotron grass” in an (2'):|G' 4.ith|me dependence oA®(N) (full curve) and
individual quantum measurement process with intial condition®' (Im(a;€'“")) (dotted curvg as evaluated from Ed. 16) and
|y)o=|as=(1.0,0)5,=+1), and AQ=0.1, k=2.0, N=0.5; Sec. I B 1(a); ar:alogous comparison betwelhN), (full curve)
I'=12.0(a), T =6400.0(b) (rates are in units of 1s"). and M(Im(a,e'”)), (dotted curve (b). The parameters are

Aw=1.0, AQ=0.1, k=10, n=0.5, «,=40.0, n,=0, y=1.0,
motion are resolved on the time scale of seconds fof=(0,100.0)(ll rates and frequencies are in units of 15 The
r=12.0 S—l, i.e., for a case like the one shown in Fig. 2. In statistical means have been estimated by 2000 realizations.

Fig. 3(b) the characteristic measurement tifig=21/1" is

decreased significantly so that,<1/[«(1+n)]. Therefore t>1/k, for which thez motion has reached equilibrium both
measurement of the cyclotron quantum numiag€ra.,  variances approach each other. This indicates that relation
which requires at least a time of the order of,, can be (15 between the out-of-phase component of the current
completed in the time intervals between successive thermahrough the resistor, namely{Im(a,'“"));, and the
excitations of the cyclotron motion. In this case of a “com- cyclotron- and spin-quantum numbgX), is not only valid
plete” measurement of the cyclotron-quantum number alfor ensemble means but also applies on the level of indi-
most instantaneous quantum jumps occur between the thefidual measurement processes provided cond{ti@is ful-
mally activated cyclotron states. filled. Furthermore, it shows that for— the behavior of

The behavior of the fluctuations of(N); and the quantum fluctuations of the measured quantity can be
(Im(a,e'")), is investigated in Fig. 4. According to the re- described consistently either in the larger system which in-
alistic state concept used in QSDM the fluctuations of theseludes cyclotron, spin, angd motion or the smaller system
guantities are characterized by the associated varianceghich takes into account the cyclotron and spin degrees of
AP(N)=M(N)2— (M(N))? and A®(Im(a,e'“!)) and all  freedom only. In Fig. &) the quantityM(Im(a,e'“!)), of
corresponding higher moments. In general these quantitiee larger systenfcyclotron, z, and spin motiopis com-
cannot be evaluated from the associated density operatpared withM(N), of the smaller systerntyclotron and spin
which describes a quantum statistical ensemble of measuresotion). It is apparent that after the establishment of equi-
ments[18,29. In Fig. 4(a) the time evolution of\(®(N) (for librium, i.e., for timest>1/k,, both quantities approach
the cyclotron and spin motiorandA®)(Im(a,e'Y)) (for the  each other. This demonstrates that in this exarpie large
cyclotron, spin, andz motion) are shown. For times enough for Eq(15) to be valid approximately.
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o_ from the quantum-mechanical master equation for the cyclo-
tron, magnetron, spin, armdmotion it has been shown that it
is the cyclotron- and spin-quantum number of Eigl) which
is measured continuously in this experimental setup. Further-
more, an explicit expression has been derived for the char-
acteristic measurement ting,, which determines the time
scale on which reduction from a pure state into a mixed state
takes place according to von Neumann’s projection postulate
[7]. This master equation has been used as a starting point for
describing the dynamics of individual continuous quantum
measurement processes within the theoretical framework of
QSDM. Thereby the continuity of the relevant stochastic,
©7] nonlinear process for the quantum state implies in a natural
way thatT,, also determines the time scale required for com-
pleting an individual quantum measurement process and
whose significance for the CSGE has already been recog-
nized by Dehmelff2]. As is apparent from Eq(l7), this

FIG. 5. Steady state dependence af@(N)=M(N)? characteristic measurement tirfig, can be varied in a con-
—(M(N),)? (lower curve and 3 @(N)=M(N?), trolled way over a large range of values. Thus it is possible to
—(M{N))? (upper curvg on characteristic environmental time realize both “complete” and “incomplete” continuous mea-
scale and measurement time, i.d/x. The parameters are surement processes depending on whetligr is much
AQ=1.0, k=1.0, n=0.5 (rates are in units of 1 §"). The bars smaller or much larger than all other relevant environmental
indicate the 95%-confidence intervals. time scales. In particular, incomplete continuous measure-

ment processes might turn out useful for testing theoretical

In Fig. 5 the behavior of the fluctuations @), around predictions of QSDM as far as quantum fluctuations of
its mean value is investigated in more detail. For the cyclo{N), are concerned. Due to the realistic state concept QSDM
tron and spin motion the dependenceAddf)(N) on the ratio  is based on, in such incomplete measurements these fluctua-
between the characteristic measurement tifge=1/' and tions cannot be evaluated from the density operator of the
the other relevant environmental time scale, namely, i  associated quantum statistical ensemble and are peculiar
shown in steady state. This result is based on numerical sgroperties of QSDM.
lutions of the stochastic law of E¢l) which is associated

© T T T T T T
5 8 7 8 9 10
'/«

with the master equatiofil6). For the sake of comparison ACKNOWLEDGMENTS
also the quantityS?(N)=M(N2),—(M(N);)? is shown _
which can be evaluated from the density operatt) of This work was supported by the Deutsche Forschungsge-

the corresponding quantum statistical ensemble directly. Figheinschaft. Stimulating discussions with J. S. Briggs, N. Gi-
ure 5 demonstrates that in the limit of “complete” continu- Sin: |- C. Percival, and G. Werth are acknowledged.
ous measurements in which,, is much smaller than all
other relevant characteristic time scales, & «, the vari- APPENDIX A

(2) (2) it
that Inthis it el stochasti cynarmical aws of st redc-, " 1S appendix the derivtion of the adiabatic Hami-
tion which are based on the ryealistic state concept used i'honian of Eq.(9) is outlined. It describes the dynamics of an
QSDM and which are consistent with the masterpequation(_:'h:“(:tron in the CSGE adequately on time scalesvhich are
(16) will yield the same fluctuations as QSDM. However, for long in comparison with all oscillatory time scales in the

’ ; ! < Penning trap, i.eAt>(27)/ 0w, ,(27) w,,(27) w_ .
incomplete” measurements in which,, is of the same or- The gstart?ng point i(s th)e t(;ta(l H;milio%ialz which de-
der as or larger than all other relevant time scales

e T'=x th . QA@(N) diff anificantly f 5cribes the complete deterministic dynamics of an electron in
"%’) Sk, the varances .( .) her signiicantly from- Penning trap under the additional influence of the inhomo-
3¥)(N). Therefore in this limit these variances cannot be

evaluated from the density operatd(t) and are a peculiar ?76)”?2”3 magnetic field3, (x,t) andB,(x) of Egs.(6) and
property of the particular stochastic dynamical law of "’ "

QSDM. As in the CSGE the characteristic measurement time g eh

T, can be varied in a controlled way over a large range oH= ﬁ[p—eA(x,t)]ZJreCD(x)— ame B(x,t). (A1)
values, these specific theoretical predictions of QSDM con-

cerning the fluctuation behavior of the measured quantityl.

should be amenable to experimental tests. he total vector potential is given by

B
IV. CONCLUSION A(x,t)= 70( —yet+xg)+Bicod (ws— o, )t](2yze

A consistent quantum-mechanical treatment of the CSGE B,
has been developed in which the dominant interactions of an +Xxye,) + >
electron in the Penning trap with its environment and the
measuring apparatus have been taken into account. Starting (A2)

x2+y?
7 |e/N—xetye),

2_

z
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with  the  corresponding  total magnetic field and
B(x,t) =rotA(x,t). The electrostatic quadrupole potential of BT
the Penning trap is given by Zo= ~1/h[Ho,..].
For the sake of simplicity the magnetron motion, which de-
couples dynamically from the other degrees of freedom, will
not be considered explicitly. Fdfl,,=0 the stationary state

of the z motion pg is determined by the relation

/ h % 0°%=0
X 2m(w+_w_)(a+JrapLa,Jra,),

In the case of exact resonance, i8.,= w, this stationary
state gives rise to the following stationary values of the cor-

. f + - relation functions characterizing the dynamics of thmo-
y=-1V 2m(w+—w,)(a+ a;—a_+a-), tion:

D(x)=Dy(222—x>—y?). (A3)

With the help of the relations

i . B — Y
ot _ __ 3 & — 2 -
S Zﬁ (a;+az) M<aZ>0e IKZ/2, M<n2>0 |<a2>0| +nz+ 2sz
Mo, '
2
2 2iet_ Y _|[ P
it 2mio,—w ) . M@0 =2, " 2]
px_z 7 (ay—a,t+ta_—a_),
2 _ _ 1 2
((Any)?)y= £ (1+2nz+l + nz+l+—
i 2me,—w.) . , K12 Ky 2k, 2
PEgN T (@vrasmaimal), Loy B
4 2k,| 2k, KkA2) |’
i [2mw
=\ 7 (@—ay) (A4)

M((az_<az>)Anz)0:% M<a;r>oe_2iwI

between position and canonical momentum operators on the
one hand and creation and annihilation operators on the other +M(a,)o
hand this Hamiltonian can be transformed to the normal co-
ordinates of the ideal Penning trap. In typical cases of ex-
perimental interest the characteristic frequencies of the dy-

— Y
1+ n,+ Z—KZ),

M{(al—(al))An,)=M(al),

namics in the Penning trap differ at least by three orders of
magnitude so that a simple Hamiltonian can be derived
which describes the dynamics in the Penning trap properly
on time scalesAt which are large in comparison with the
slowest characteristic time scale, namely, the magnetron time_

_ oy

N+ =—

z 2KZ)

lM(a) e?et,  (B3)
z/0 ’

+
2k,

_ 0 o —at _
scale[(2m)/w_]<1072 s. If one keeps only terms in the With M(-)o=Trf.p;}, n,=a;a,, andAn,=n,—M(n,)o.
Hamiltonian which are slowly varying on this time scale and !N the following we want to investigate the dynamical
neglects all terms of the order ofs(/w.) in comparison '€9ime in which the anharmonic coupling betweenzhmgo-

: . - e . : tion and the cyclotron and spin degrees of freedom does not
with 1 the adiabatic Hamiltonian of E¢9) is obtained 30} disturb this equilibrium of the motion significantly. In order

to derive an equation of motion for the reduced density op-
eratorW(t) =Tr,{p(t)} of the cyclotron and spin degrees of
In this appendix the derivation of the master equation forfreedom we define the projection operator
the reduced density operator of the cyclotron and spin dy-
namicsW(t) is outlined.
The starting point is the master equation of the CSG
effect as given in Sec. IIB 1, i.e.,

APPENDIX B

7-=pdaTr-}. (B4)

EFurthermore, it will be convenient to include part of the in-
teraction HamiltoniarHy, in Hg by redefining

d ~ ~ 1 .
d_Ft):("%jL Lot Lo p(t), (B1) Ho=Ho+AAwNM(n) =10 ala, + zﬁﬂsﬂz,
with the Liouville operators Ho,=#AwNAN,, (B5)

Lo=—ilh[Ho, ]+ 3Zj_1 AL}, .L]T+[L L], with the renormalized frequencie®, =Q, + AwM(n,)o,

Q+Awgl2 M{n,)o, andN as given by Eq(14). The pro-

Lo t t SosT 2/0, ! :
Ly=—ili[H,, ]+ 322544, .L]]+ L., LD, jection operator/ fulfills the elementary relations

I
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PLy= L3P =0,
and
PZ0s?=0.

The resulting reduced density operaW(t) obeys the(ex-
ach Nakajima-Zwanzig equatiof28]

dw . o

Fz,%W(t)va dt’K(t—t")W(t")+I1(t), (B6)
0

with the memory kernel

K(7)=Trf Zo,et =0+ 72t 701N & o0y,

The influence of initial correlations is described by the term

|(7)=Trf Zpgeh= 10t 72+ ) A=A17(1 = ) p(0)}.

In the limit of strong damping of thez motion, i.e.,

1991

aw_ Z oW
gt~ %o (t)

CININ WO T A w)? f:drwAnz(r)Anz(o»o

-I—[W(t),N]N(Aw)ZJ:dTM([AnZ(T),AnZ(O)]>O.

(B7)

With the help of the quantum fluctuation-regression theorem
[28] it can be shown in a straightforward way that for
(),= w the relevant correlation functions of themotion,
which describe fluctuations of the cyclotron and spin degrees
of freedom due to their coupling to themotion, are given

by
FdTW[Anz( 7),An,(0)])o=0 (B8)
0
and

fdeM<AnZ(T)Anz(O)>O
0

A=k,/|Aw|— with [|B8/k,|*(Aw/k,)] remaining con-
stant,|(7) andK(7) decay so rapidly that the Markov ap-

proximation can be employed in E@B6). Furthermore, in /KZ. (B9)

this limit (£y+ %,+ %y,) can be approximated by, in

the memory kernel. This corresponds to the so called “quanThus the equation of motion for the reduced density operator
tum Brownian motion limit” of the Nakajima-Zwanzig equa- W(t) of Eq. (16) is obtained. We want to point out that Eq.

=((Any)?)o/ Kz +[(az)0l?

1+2n,+ 27
Kz

tion [28] in which the rapidly damped motion is eliminated

adiabatically. Thus EqB6) simplifies to

(B8) is necessary for obtaining a physically acceptable mas-
ter equation foW(t) in canonical Lindblad forni25].
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