
Journal of Physics B: Atomic, Molecular and Optical Physics

Bifurcations of electronic Rydberg wavepackets
and core scattering
To cite this article: M W Beims and G Alber 1996 J. Phys. B: At. Mol. Opt. Phys. 29 4139

 

View the article online for updates and enhancements.

You may also like
Trilobites, butterflies, and other exotic
specimens of long-range Rydberg
molecules
Matthew T Eiles

-

Nondispersing radial Rydberg
wavepackets in doubly core-driven two-
electron atoms
Birgit S Mecking and P Lambropoulos

-

Probing and manipulating high-n near-
circular Rydberg wave packets
B Wyker, S Ye, F B Dunning et al.

-

This content was downloaded from IP address 130.83.36.126 on 23/02/2023 at 11:37

https://doi.org/10.1088/0953-4075/29/18/010
/article/10.1088/1361-6455/ab19ca
/article/10.1088/1361-6455/ab19ca
/article/10.1088/1361-6455/ab19ca
/article/10.1088/0953-4075/31/15/009
/article/10.1088/0953-4075/31/15/009
/article/10.1088/0953-4075/31/15/009
/article/10.1088/1742-6596/388/3/032001
/article/10.1088/1742-6596/388/3/032001
/article/10.1088/1742-6596/388/3/032001
/article/10.1088/1742-6596/388/3/032001


J. Phys. B: At. Mol. Opt. Phys.29 (1996) 4139–4150. Printed in the UK

Bifurcations of electronic Rydberg wavepackets and core
scattering

M W Beims† and G Alber‡
† Instituto de F́ısica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre,
Brazil
‡ Theoretische Quantendynamik, Fakultät für Physik, Albert-Ludwigs-Universität, D-79104
Freiburg i. Brsg., Germany

Received 4 April 1996

Abstract. The influence of core scattering effects on the dynamics of a bifurcating electronic
Rydberg wavepacket is investigated in the diamagnetic Kepler problem. Results are presented for
a spherically symmetric nonhydrogenic core with particular emphasis on nongeneric bifurcations
of the Edmonds–Garton–Tomkins orbit.

1. Introduction

Due to their large extension in comparison with the Bohr radius, Rydberg systems are well
suited for the controlled preparation of spatially localized electronic wavepackets by laser
fields. Recently studies on their time evolution have received considerable attention as such
an electronic Rydberg wavepacket represents a quantum state which is close to the classical
limit [1]. Its dynamics is dominated by the(−1/r) Coulomb potential of the core which
is formed by the nucleus and the residual electrons of the Rydberg system and which has
a typical extension of a few Bohr radii. If an electronic Rydberg wavepacket penetrates
the core it is scattered elastically or inelastically. This scattering can be characterized by a
few quantum defect parameters which are a slowly varying function of energy close to a
photoionization threshold. The dynamics of an electronic Rydberg wavepacket is particularly
interesting in cases where the electrostatic core potential is modified at large distances by
an external field so that the corresponding classical motion is not integrable. The paradigm
in this respect is the diamagnetic Kepler problem [2–6].

In a case where the dynamics outside the core region is not integrable classically, the
dynamics of electronic Rydberg wavepackets can be described theoretically in a convenient
way by combining methods of quantum defect theory as far as the core dynamics is
concerned with semiclassical methods which are capable of describing the dynamical aspects
outside the core region [7]. Relevant quantum mechanical transition amplitudes can then
be represented as a sum of contributions which are associated with all closed orbits of a
Rydberg electron which start from and return again to the nucleus. Two extreme dynamical
regimes can be distinguished.

(i) If the dynamics of the Rydberg electron outside the core region is determined
completely by the(−1/r) Coulomb potential, the quantum mechanical amplitudes of all
these closed orbits interfere constructively. In this case scattering processes inside the core
are significant as all closed orbits are scattered among each other and interfere constructively.
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(ii) If the classical dynamics of the Rydberg electron outside the core region is not
integrable classically, typically the contributing closed classical orbits are isolated [7–9]. In
this case scattering processes inside the core lead to scatterings between these isolated closed
orbits [7, 10, 11]. However, besides these scattered contributions there are also unscattered
contributions to the relevant amplitudes. It has been pointed out in [7] and in a recent
investigation [10] that scattered and unscattered contributions exhibit a different scaling
behaviour with respect to the relevant semiclassical parameter ¯h. In particular, in the
extreme semiclassical limit, i.e. ¯h → 0, the scattered contributions become negligibly small
in comparison with the unscattered ones.

Besides these two extreme dynamical regimes, an intermediate situation can be
realized if an electronic Rydberg wavepacket is excited in an energy region where the
relevant closed classical trajectories bifurcate [12–14]. In this case some of the relevant
closed orbits approach each other and are no longer isolated. Thus strong quantum
mechanical interference effects between the associated probability amplitudes take place. In
particular, these interferences affect the ¯h-dependence of the quantum mechanical probability
amplitudes. Thus in this case core effects are expected to be more significant than in the
situation of isolated closed orbits.

In this paper the influence of core scattering effects on the dynamics of a bifurcating
electronic Rydberg wavepacket is investigated. Generalizing recently developed uniform
semiclassical methods [12] it is shown that core scattering processes can be taken into
account in a straightforward way within a uniform semiclassical framework. Our discussion
will focus on the diamagnetic Kepler problem which is a paradigm for a quantum system
which can be studied in the laboratory and whose classical dynamics is not integrable. In
particular, our discusssion will concentrate on an ungeneric bifurcation of period four of
the Edmonds–Garton–Tomkins orbit. This orbit extends along a straight line through the
nucleus in the symmetry plane perpendicular to the applied static magnetic field. Due to the
location in the symmetry plane this orbit exhibits a bifurcation phenomenon of the butterfly
type. The high order of this bifurcation phenomenon implies strong quantum mechanical
interferences between the relevant probability amplitudes of the closed orbits. Thus effects
of core scattering are expected to be particularly significant in this case.

The paper is organized as follows. In section 2 basic results on the semiclassical
description of the dynamics of an electronic Rydberg wavepacket are summarized and
generalized to include core scattering effects. In section 3 a uniform semiclassical path
representation is derived in which effects of core scattering in the presence of bifurcation
phenomena are taken into account. Motivated by recent time-resolved studies of the
diamagnetic Kepler problem [15, 16], elastic scattering of an electronic Rydberg wavepacket
by a spherically symmetric ionic core is discussed in detail with particular emphasis on
bifurcations of the Edmonds–Garton–Tomkins orbit.

2. Semiclassical treatment of wavepacket dynamics

In this section, previously developed semiclassical methods [1, 7] for describing the
dynamics of laser-excited electronic Rydberg wavepackets in external, homogeneous, static
magnetic fields are summarized briefly and generalized to include core scattering effects.
In the following Hartree atomic units will be used withe = h̄ = me = 1.

Time-resolved pump–probe spectroscopy is a useful experimental technique for
investigating the dynamics of an electronic Rydberg wavepacket [15, 16]. Typically, a
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first, weak laser pulse with electric field strength

E1(t) = E1(t)e1e−iω1t + CC (1)

whose pulse envelope is centred around timet1 with pulse durationτ1 prepares an electronic
Rydberg wavepacket at timet1 by exciting an atom from an initial state|g〉 of energyεg.
The dynamics of this wavepacket is probed at a later timet2 by another short and weak
laser pulseE2(t) (frequencyω2, pulse envelopeE2(t) and polarizatione2) which induces a
transition to a final state|f 〉 of energyεf . The main theoretical problem in the description
of such a pump–probe excitation process is the determination of the two-photon transition
amplitude [1]

Tfg(ε) = 〈f |d · e∗
2(ε + i0 − H)−1d · e1|g〉 (2)

in which the dynamics of the excited Rydberg electron in the absence of a pump and probe
pulse is described by the HamiltonianH . The atomic dipole operator is denotedd. In terms
of this quantity the experimentally observed pump–probe transition probability is given by

Pg→f =
∣∣∣∣ 1

2π

∫ ∞

−∞
dε e−iε(t2−t1)Tfg(ε)Ẽ1(ε − ε)Ẽ∗

2 (ε − ε)

∣∣∣∣2

(3)

with the Fourier transforms of the pulse envelopes denotedẼi (ε) = ∫ ∞
−∞ dt eiεtEi (t + ti),

(k = 1, 2). For the sake of simplicity it has been assumed thatε ≡ εg + ω1 = εf + ω2.
The two-photon transition amplitude of equation (2) can be evaluated conveniently from

the solution of the inhomogeneous Schrödinger equation [1, 17]

(ε − H + i0)|Fε〉 = d · e1|g〉, (4)

and the relation

Tfg(ε) = 〈f |d · e∗
2|Fε〉. (5)

In the energy region close to a photonionization threshold the solution of equation (4)
is simplified considerably by noting that three characteristic spatial regimes may be
distinguished as far as the dynamics of an excited Rydberg electron is concerned [18, 19],
namely

(i) the core region (06 r 6 rc ≈ 1) in which the dynamics of the Rydberg electron is
dominated by electron correlation effects,

(ii) the Coulomb region (rc 6 r 6 ra) in which the(−1/r) Coulomb potential of the
positively charged ionic core prevails and

(iii) the asymptotic region (1� ra 6 r) in which any applied external electromagnetic
field is at least as important as the Coulomb potential of the ionic core.

The (global) solution of equation (4) with the appropriate boundary condition can be
constructed by patching together two local solutions of equation (4) which are valid in the
core and Coulomb region on the one hand and in the Coulomb and asymptotic region on
the other hand. Furthermore, if the extension of the Coulomb region is large, i.e.ra � 1,
an approximate local solution, which is valid in the Coulomb and asymptotic region, can
be determined semiclassically. Within this general approach it has been shown [1, 7] that
the two-photon transition amplitude

Tfg(ε) = T
(s)

fg +
∑
lm

D(+)
lm Alm(ε) (6)

consists of a smooth partT (s)
fg which is a slowly varying function of energy across any

photonionization threshold and a second part which is a rapidly oscillating function of
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energy and which is determined by the implicit relation

Alm(ε) =
∫ 2π

0
dϕ

∫ π

0
dθ sinθYm

l (θ, ϕ)∗(−1)l

×
∑

j

√
J (0, θ0j , ϕ0j )/|J (τj , θ0j , ϕ0j )|ei[2

√
8rs+Sεlm

(τj ,θ0j ,ϕ0j )−(µ>
j +3)π/2]

×
∑
l′m′

Ym′
l′ (θ0j , ϕ0j )(−1)l

′
[

2iπD(−)
l′m′ +

∑
l′′m′′

χl′′m′′
l′m′ Al′′m′′(ε)

]
. (7)

Here the laser-induced initial excitation and final de-excitation processes are characterized
by the photoionization and recombination dipole matrix elementsD(−)

lm andD(+)
lm [1, 19]. The

excited channels are specified by the angular momentum quantum numbers(l, m) of the
Rydberg electron. Their threshold energies are denotedεlm. These dipole matrix elements
are smooth functions of energy across any threshold. Outside the core region the dynamics
of the excited Rydberg electron is characterized by all classical trajectoriesj which start on
a sphere of radiusrs ≈ 1 (rc 6 rs � ra) with initial energy(ε − εlm), initial anglesθ0j , ϕ0j ,
and a purely radial momentum. According to equation (7) it is the trajectories which return
again to this sphere at later timesτj at anglesθ, ϕ which contribute toAlm(ε). Important
dynamical properties entering equation (7) are the classical actionsSεlm

(τj , θ0j , ϕ0j ) and
Maslov indicesµ>

j [20] of these trajectories which are accumulated outside the sphere of
radiusrs . The quantity

J (τj , θ0j , ϕ0j ) = dx ∧ dy ∧ dz

dτ ∧ dθ0 ∧ dϕ0

∣∣∣∣
(τj ,θ0j ,ϕ0j )

(8)

characterizes the local projection of the Lagrangian manifold, which is generated by this
family of classical trajectories, onto the configuration space. Inside the core region the
dynamics of the Rydberg electron is described by the scattering matrixχl′′m′′

l′m′ which is a
slowly varying function of energy across any photoionization threshold [19]. In equation (7)
it has been assumed that energy differences1ε of possible inelastic transitions are small in
comparison with the atomic unit of energy, i.e.1εr

3/2
s � 1.

In further simplifications of equation (7) two limiting dynamical cases may be
distinguished.

(i) In the absence of an external electromagnetic field the dynamics of an excited Rydberg
electron is dominated by the Coulomb potential of the ionic core forr > rc. In this case
the relevant classical trajectories of equation (7) are purely radial Kepler orbits of angular
momentum zero whose classical actions are independent of the emission angles(θ0j , ϕ0j ).
This implies that all contributions to equation (7) add coherently in phase. Thus in this
special case equations (6) and (7) reduce to the well known result of multichannel quantum
defect theory [1, 19]. In particular, in this case the dependence ofTfg(ε) on the matrixχ
indicates that effects of scattering by the ionic core are significant and cannot be neglected.

(ii) Typically, in the presence of an external electromagnetic field eiSεlm
(τ,θ0,ϕ0) is a

rapidly oscillating function of the final angles(θ, ϕ) at which the classical trajectories
return again to the sphere of radiusrs . Therefore, for low values of the angular momentum
in equation (7) the integration over these final angles can be performed in the stationary
phase approximation. Thus the dominant contributions originate from points of stationary
phase which correspond to closed orbits which start from and return again to the Coulomb
centre [7–9].

A paradigm of this second type of dynamical case is the diamagnetic Kepler problem
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in which the dynamics of the excited Rydberg electron is described by the Hamiltonian [4]

H = HA − γLz + 1
2γ 2r2 sinθ2. (9)

Here the atomic HamiltonianHA dominates the dynamics of the Rydberg electron in the
core and Coulomb region where the influence of the external homogeneous, static magnetic
field B(x) = γez is negligible. The second and third terms on the right-hand side of
equation (9) are the paramagnetic and diamagnetic interaction terms withγ denoting the
magnetic field strength in atomic units. (The atomic unit of magnetic field strength is
B0 = 4.71 × 105 T.) In the case of weak magnetic fields, i.e.γ � 1, and for energies
close to the first photoionization threshold the presence of the diamagnetic interaction term
in equation (9) implies that the dynamics of the Rydberg electron in the Coulomb and
asymptotic region is not integrable classically.

In the evaluation of equation (7) one has to take into account that outside the core
region the HamiltonianH of equation (9) is axially symmetric around the magnetic field
axis. Therefore thez-component of the angular momentumLz is a conserved quantity.
This implies that in equation (7) classical trajectories with different emission anglesϕ0j

interfere constructively so that within the framework of the stationary phase approximation
the closed classical trajectories contributing to equation (7) can be isolated only with respect
to the emission angleθ0j . Thus solving equation (7) by iteration, a semiclassical path
representation is obtained in whichTfg(ε) is represented as a sum of contributions which
correspond to repeated returns of a Rydberg electron to the core region [7]. Assuming that
all relevant closed orbits are well separated with respect to the emission anglesθ0 the first
few terms of this semiclassical isolated-closed-orbit representation are given by

Tfg(ε) = T
(s)

fg + 2iπ
∑

l,l′,l′′,m

D(+)
lm {t (1)

ll′;mδl′l′′ + t
(2)

ll′;mδl′l′′ + t
(3)

ll′;mδl′l′′ + t
(1)

ll′;mfl′ t
(1)

l′l′′;m

+t
(1)

ll′;mfl′ t
(2)

l′l′′;m + t
(2)

ll′;mfl′ t
(1)

l′l′′;m + · · ·}D(−)
l′′m (10)

with

t
(n)

ll′;m = −i
∑

j

(2π)3/2Ym
l (θj , 0)∗(−1)l [σ (n)

j (εm)]1/2

×e[n(Sj (εm)−mπνj )−µ
(n)
j π/2+π/4]Ym

l′ (θ0j , 0)(−1)l
′

(11)

andεm = ε + mγ . Equation (10) generalizes previously derived semiclassical results [7–9]
in which the effects of core scattering have been neglected. The probability amplitudet

(n)

ll′;m
characterizes the contribution of the Rydberg electron which is associated with itsnth return
to the core region without being scattered during its intermediate crossings of the core. The
classical dynamics of the relevant isolated closed orbitsj is characterized by their classical
actionsnSj (εm), their number of crossings of the symmetry axisνj and their Maslov indices
µ

(n)
j . The amplitude of thenth return of trajectoryj is also determined by the classical

cross section

σ
(n)
j (ε) = sinθj sinθ0j

/ ∣∣∣∣∂pθ

∂θ0

sinnuj

sinuj

∣∣∣∣. (12)

Hereθj denotes the final value of the return angle of the classical closed orbitj . The stability
exponent of this closed orbit is denoteduj and pθ is the canonical momentum associated
with θ . The cross section of equation (12) determines the range of initial emission angles,
or equivalently the size of the characteristic Fresnel zone [21], within which orbits interfere
constructively. For the sake of simplicity it has been assumed in equation (10) that inelastic
scattering by the ionic core is negligible and that the core is spherically symmetric. Thus
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the scattering matrix of the core is independent of the magnetic quantum numberm and
diagonal with respect to the angular momentum quantum numberl, i.e. χl′m′

lm = χlδll′δmm′ .
However, starting from equation (7) it is straightforward to generalize equation (10) to cases
which involve more complicated core scattering processes. In equation (10) the influence of
scattering by the ionic core is described by the terms involving the scattering amplitudesfl =
χl − 1. As the ionic core, in which the electron correlation effects take place, has a typical
extension of a few Bohr radii,fl is nonzero only for low values of the angular momentuml.
Scaling properties of the Hamiltonian of equation (9) imply that classical actions of relevant
closed orbits are proportional toλ = γ −1/3 (in units of h̄) so thatσ (n)

j (ε) = O(λ−1). As
has already been pointed out previously [7] this implies that unscattered contributions to
equation (10) are of order O(λ−1/2) whereas scattered contributions are of order O(λ−1) and
become vanishingly small in the semiclassical limit,λ � 1. At energies at which sinnuj = 0
the classical cross sectionσ (n)

j (ε) tends to infinity indicating that a bifurcation phenomenon
takes place and the relevant closed orbits can no longer be considered as being isolated.
In such a case equation (10) is no longer valid and the integration over angles appearing
in equation (7) has to be performed by using uniform semiclassical techniques [12]. The
resulting strong quantum mechanical interference effects are expected to change the scaling
behaviour of unscattered and scattered contributions so that scattered contributions might
become more significant than in the isolated-closed-orbit case.

3. Bifurcation phenomena and core scattering

In order to investigate core scattering effects in the presence of bifurcation phenomena let
us consider bifurcations of the Edmonds–Garton–Tomkins orbit in the diamagnetic Kepler
problem in more detail.

The classical dynamics of bifurcations in the diamagnetic Kepler problem has been
investigated in detail in [22]. It has been shown that due to the discrete reflection symmetry
of the HamiltonianH of equation (9) with respect to a plane through the Coulomb centre
and perpendicular to the magnetic field axis the Edmonds–Garton–Tomkins orbit exhibits
nongeneric bifurcation phenomena. This orbit starts from the atomic nucleus and extends
along a straight line in the symmetry plane. Bifurcations of this particular orbit and their
manifestation in the dynamics of an electronic Rydberg wavepacket in the absence of core
scattering effects have already been discussed previously [12]. In figure 1 characteristics of
the bifurcation of period four which occurs at energyε2 = −0.501 91γ 2/3 are summarized
briefly. The classical phase space structure of this particular bifurcation phenomenon of
period four, which has been termed ‘Pacman’, has been investigated in detail by Mao and
Delos [22]. As apparent from the energy dependence of the emission angleθ0 shown in
figure 1(a), at energyε1 = −0.5037γ 2/3 a stable and an unstable closed orbit(I1, I2)

are created by a saddle-node bifurcation together with their symmetry-induced reflected
counterparts(I−1, I−2). At energyε2 the stable orbitsI1 andI−1 coalesce with the Edmonds–
Garton–Tomkins orbitI0 so that for energiesε > ε2 only the three closed orbitsI0 (stable)
andI2, I−2 (unstable) remain. The coalescence of the three stable closed orbitsI0, I1, I−1 at
energyε2 is an ungeneric bifurcation phenomenon of period four which is possible because
of the discrete reflection symmetry of the HamiltonianH in the Coulomb and asymptotic
region. Similar bifurcation phenomena of periods seven and 18 take place at energies
ε3 = −0.4194γ 2/3 andε4 = −0.4365γ 2/3.

With the help of time-resolved pump–probe experiments of the type described in
section 2 and by choosing the laser frequency so thatε ≈ ε1 ≈ ε2 the manifestation
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Figure 1. Emission anglesθ0 of orbitsI0, I±1 andI±2 as a function of scaled energyε̃ = ε/γ 2/3

(a) and their form in configuration space with̃ρ =
√

x2 + y2γ 2/3 and z̃ = zγ 2/3 (b).

of these classical bifurcation phenomena in the time evolution of an electronic Rydberg
wavepacket can be investigated. Furthermore, by selecting the laser polarizations of pump
and probe pulse perpendicular to the homogeneous, static magnetic field and restricting the
observation times of interest,t2 − t1, to times of the order of a few multiples of the orbit
time of the Edmonds–Garton–Tomkins orbit,T0, the corresponding pump–probe signal of
equation (3) is dominated by the contributions arising from these five classical closed orbits
[12]. For the theoretical description of core scattering in the presence of these bifurcation
phenomena equation (10) has to be generalized and a uniform semiclassical description of
the significantly contributing closed orbitsI0, I±1, I±2 is needed. In the absence of core
scattering a uniform semiclassical description has already been developed previously [12].
In particular, it has been shown that in equation (10) the contributions of the 2nth return of
orbit I0 and thenth return of orbitsI±1, I±2 (n > 1) to the Coulomb centre can be described
uniformly by the canonical comparison integral of a cuspoidal butterfly catastrophe [23]

J (2n)
m (ε) =

∫ ∞

−∞
dθ0 G(2n)

m (θ0, ε)e
iF (2n)

m (θ0,ε). (13)

In equation (13) it has been assumed that the main contribution to the integral over the
emission angleθ0 of the Rydberg electron comes from valuesθ0 ≈ π/2 so that the limits
of integration can be extended to infinity. The coefficientsA

(2n)
km (ε) and a

(2n)
km (ε) of the

polynomials

G(2n)
m (θ0, ε) =

∑
k=0,1,2

A
(2n)
km (ε)(θ0 − π/2)2k (14)

and

F (2n)
m (θ0, ε) =

∑
k=0,1,2,3

a
(2n)
km (ε)(θ0 − π/2)2k (15)

are smooth functions of energy across the energy range(ε1, ε2). They are determined
uniquely by the requirements that

(i) the stationary phase points of this comparison integral are identical with the emission
angles of the relevant classical closed orbits and that

(ii) in the semiclassical limit, i.e.λ = γ −1/3 � 1, for energies sufficiently far
away from the bifurcation energiesε1 and ε2 the stationary phase evaluation ofJ (2n)

m (ε)

reduces to the corresponding semiclassical result of the isolated-closed-orbit approximation
of equation (10).
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As has been shown in detail in [12], in the energy regimeε1 < ε < ε2 the
energy dependence of these coefficients can be determined by these requirements from
the classical properties of the relevant five closed orbitsI0, I±1, I±2 and the corresponding
photoionization and recombination dipole matrix elements. As these coefficients are
slowly varying functions of energy they can be extrapolated beyond this energy regime
by polynomial fits with respect to energy. By this approach the energy dependence of these
coefficients has been determined in [12] for the above-mentioned bifurcation phenomena of
period four, seven and 18.

In general, the canonical comparison integral of equation (13) has to be determined
numerically. In the semiclassical limit, i.e.λ � 1, it is a rapidly oscillating function of the
emission angleθ0 so that it can be evaluated numerically in a convenient way with the help
of the method of steepest descent [24]. Thereby the original contour of integration, which
extends along the real axis in the complexθ0-plane, is deformed so that it goes through
saddle points ofF (2n)

m (θ0, ε) along paths of steepest descent. Along this deformed integration
contour the real part ofF (2n)

m (θ0, ε) remains constant so that the comparison integral is no
longer oscillating rapidly. Typically the dominant contribution to the comparison integral
comes from a small neighbourhood of these saddle points. The contributions from the
saddle points which are not located on the realθ0-axis might be viewed as contributions
from ghost orbits [25]. Physically speaking, contributions of these ghost orbits arise from
classical trajectories which are almost closed. It should be mentioned that this numerical
approach is more general than the saddle point method in which, in addition to the above-
mentioned deformation of the integration contour, the exponentF (2n)

m (θ0, ε) is approximated
by a second-order Taylor expansion around each saddle point. In particular, this numerical
steepest descent approach can be applied irrespective of whether the saddle points coalesce
or are well separated.

Within this uniform semiclassical approximation the isolated-closed-orbit expression of
equation (10) can be generalized in a straightforward way to the case of core scattering
effects in the presence of bifurcation phenomena by replacing the diverging contributions
of the coalescing closed orbits by the relevant canonical integral. Let us consider laser
excitation of a Rydberg electron from an initially prepared energetically low lying bound
state|g〉 with angular momentum zero in more detail. Let us also assume that the final
state |f 〉 is an s-state and that the polarizations of pump and probe pulses are equal
and perpendicular to the magnetic field so that the possible magnetic quantum numbers
of the excited Rydberg electron are given bym = ±1. This implies that the dominant
contribution to the pump–probe transition probability of equation (3) originates from the
orbits I0, I±1, I±2, if the significantly excited energy range is concentrated aroundε1 ≈ ε2

and if the observation times of interest, i.e.(t2 − t1), are of the order of the classical orbit
time of the Edmonds–Garton–Tomkins orbitT0. Furthermore, for the sake of simplicity it
will be assumed that the ionic core is spherically symmetric and that scattering phase shifts
are negligible for angular momental > 2, i.e. fl = 0 for l > 2. Therefore in this case
only the scattering phase shift forl = 1 is relevant. Thus the first few terms of the uniform
semiclassical path representation for the two-photon transition amplitude are given by

Tfg(ε) = T
(s)

fg + 2iπ
∑

m=±1

D(+)

1m {t (1)

11;m + J (2)
m (ε) + t

(3)

11;m + J (4)
m (ε) + t

(1)

11;mf1t
(1)

11;m

+J (2)
m (ε)f1t

(1)

11;m + t
(1)

11;mf1J
(2)
m (ε) + t

(1)

11;mf1t
(1)

11;mf1t
(1)

11;m + t
(1)

11;mf1t
(3)

11;m
+t

(3)

11;mf1t
(1)

11;m + t
(1)

11;mf1J
(2)
m (ε)f1t

(1)

11;m + J (2)
m (ε)f1t

(1)

11;mf1t
(1)

11;m
+t

(1)

11;mf1t
(1)

11;mf1J
(2)
m (ε) + t

(1)

11;mf1t
(1)

11;mf1t
(1)

11;mf1t
(1)

11;m + · · ·}D(−)

1m . (16)
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Equation (16) is one of the central results of this paper. The uniform canonical integral
J (2n)

m (ε) has the property that forλ = γ −1/3 � 1 and for energiesε1 < ε < ε2 it reduces
to those contributions of the amplitudet (2n)

11;m of equation (11) which arise from the classical
closed orbitsI0, I±1 andI±2. Inserting equation (16) into equation (3) yields the pump–probe
transition probability with which the time evolution of an electronic Rydberg wavepacket
can be investigated.

Figure 2. Pump–probe transition probabilityPg→f (1t) in units of(2π
∑

m=±1 |D(+)
1m E∗

2D(−)
1m E1|

×τ1τ2)
2 with ε = εg +ω1 = εf +ω2 = −0.49γ 2/3, γ = 5×10−6 (≡ 2.36 T),τ1 = τ2 = 0.04/γ ,

andα1 = 0.66 (full curve). The broken curve shows the corresponding result forα1 = 0.

In figure 2 the pump–probe transition probabilityPg→f (1t) is shown as a function of
the time delay1t = t2 − t1 between pump and probe pulse. The magnetic field strength
is γ = 5 × 10−6 which impliesλ = γ −1/3 ≈ 100 so that the semiclassical approximation
is expected to be valid. The quantum defect of the excited Rydberg states with angular
momentuml = 1 is the same as for the rubidium atom, namelyα1 = 0.66. The laser
polarizations are chosen perpendicular to the applied magnetic field and the mean excited
energy and the pulse durations of pump and probe pulse are chosen so that for time delays
1t of the order of a few multiples ofT0 ≈ 1.8/γ = 8 ps the dynamics of the electronic
Rydberg wavepacket is dominated by the five closed, classical orbitsI0, I±1 and I±2 and
their bifurcations. The recombination peaks of figure 2 at multiples ofT0 are associated
with subsequent returns of the excited electronic Rydberg wavepacket along orbitI0. The
first significant peak in figure 2 appears at1t ≈ 2T0. In comparison with this recombination
peak the contribution of the first return along orbitI0 is negligible. The magnitude of this
maximum is determined by

(i) the strong quantum mechanical interference effects between the contributions of the
second return of orbitI0 and the first returns of orbitsI±1 andI±2 which are described by
J (2)

m (ε) in equation (16) and
(ii) the fraction of the Rydberg wavepacket which has been scattered after its first return

to the core region and returns along orbitI0 again at time 2T0. This latter process is
described by the first term in the third line of equation (16).
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Comparison with the broken curve in figure 2, in which the corresponding result is
shown forα1 = 0 (i.e. in the absence of core scattering processes), demonstrates that these
two contributions interfere destructively. The second maximum of figure 2 which appears at
1t ≈ 5.4/γ originates from the third return of a fraction of the excited electronic wavepacket
along orbitI0 with zero, one or two intermediate scatterings of the Rydberg electron by the
ionic core. Due to the bifurcation between orbitsI0, I±1 and I±2 the contribution which
involves one intermediate scattering is large. This can be seen again by comparison with
the broken curve. Similarly all subsequent maxima appearing in figure 2 can be interpreted
in a straightforward way on the basis of the uniform semiclassical path representation of
equation (16). In particular, the large maximum at1t ≈ 13/γ is due to a bifurcation of
period seven of the Edmonds–Garton–Tomkins orbit which has been mentioned above and
has been discussed in detail in [12].

Figure 3. Pump–probe transition probabilityPg→f (1t) in units of(2π
∑

m=±1 |D(+)
1m E∗

2D(−)
1m E1|

×τ1τ2)
2 for a window resonance withε = εg + ω1 = εf + ω2 = −0.5γ 2/3, γ = 10−9(≡

0.471 mT), τ1 = τ2 = 0.04/γ , α1 = 0.5, εP = −0.5025γ 2/3, 0P = γ .

Additional interesting effects arise if the laser-excited Rydberg series is perturbed by
channel coupling. In figure 3 a model problem involving an isolated perturber is investigated
in more detail. The resulting time dependence of the pump–probe transition probability
Pg→f (1t) is depicted by the full curve. Again, as in figure 2, the laser polarizations
of pump and probe pulse are perpendicular to the magnetic field axis and the quantum
defects for angular momentum states withl > 2 are assumed to be vanishingly small. The
excited energy range and the observation times of interest are chosen so that the dominant
contribution comes from the five closed orbitsI0, I±1, I±2. The isolated perturber is assumed
to be located in the energy range in which all these five closed orbits exist. Furthermore,
its width 0P is assumed to be so small that it is equal to the Larmor angular velocity of
the Rydberg electron in the applied static magnetic field, i.e.0P = γ . Its mixing into the
excited Rydberg states with angular momentuml = 1 leads to an energy dependence of the
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quantum defect of the form [19]

α1(ε) = α1 − 1

π
arctan

(
0P /2

ε − εP

)
. (17)

If this perturber is not coupled directly to the initial and final states|g〉 and |f 〉 by pump
and probe pulses, it gives rise to a window resonance. The energy dependence of the
quantum defectα1(ε) implies an additional energy dependence of the photoionization and
recombination dipole matrix elements and of the scattering amplitudef1 = e2iπα1(ε) − 1 of
equation (16). According to equation (3) this additional energy dependence leads to time
delays in the time evolution of the laser-excited electronic Rydberg wavepacket. In figure 3
the effects of these time delays on the pump–probe transition probability are investigated
for such a window resonance. The corresponding time dependence in the absence of a
window resonance is depicted by the broken curve. The first maximum of the broken curve
shows the contribution of the second return of orbitI0 and the first return of orbitsI±1 and
I±2 which are described byJ (2)

m (ε) in equation (16). Effects which are caused by the time
delays resulting from the energy-dependent quantum defect of equation (17) are apparent
from the full curve in figure 3. In particular, the time delays of the contributions associated
with the first returns of orbitsI±1 andI±2 are so significant that these contributions overlap
with the corresponding amplitude of the third return of orbitI0 which is centred around
1t ≈ 5.2/γ . The constructive interference between these contributions is clearly visible.

In conclusion, it has been shown that the influence of core scattering on the dynamics
of an electronic Rydberg wavepacket can be described in a convenient way with the help
of quantum defect theory and semiclassical methods. The connection between quantum
dynamics and the corresponding classical motion is then exhibited quantitatively. In
cases where the corresponding classical dynamics is dominated by bifurcation phenomena,
uniform semiclassical methods have to be used for a satisfactory theoretical description.
In the case of the diamagnetic Kepler problem it has been shown that the effects of
core scattering can be enhanced significantly in the presence of bifurcation phenomena.
Furthermore, core scattering processes do not only lead to the appearance of additional
recombination peaks in time resolved studies of wavepacket dynamics but they can also
lead to significant time delays, in particular if they are due to channel couplings involving
perturbers with lifetimes of the order of the inverse Larmor frequency.
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