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Abstract. The influence of core scattering effects on the dynamics of a bifurcating electronic
Rydberg wavepacket is investigated in the diamagnetic Kepler problem. Results are presented for
a spherically symmetric nonhydrogenic core with particular emphasis on nongeneric bifurcations
of the Edmonds—Garton—-Tomkins orbit.

1. Introduction

Due to their large extension in comparison with the Bohr radius, Rydberg systems are well
suited for the controlled preparation of spatially localized electronic wavepackets by laser
fields. Recently studies on their time evolution have received considerable attention as such
an electronic Rydberg wavepacket represents a quantum state which is close to the classical
limit [1]. Its dynamics is dominated by the-1/r) Coulomb potential of the core which

is formed by the nucleus and the residual electrons of the Rydberg system and which has
a typical extension of a few Bohr radii. If an electronic Rydberg wavepacket penetrates
the core it is scattered elastically or inelastically. This scattering can be characterized by a
few quantum defect parameters which are a slowly varying function of energy close to a
photoionization threshold. The dynamics of an electronic Rydberg wavepacket is particularly
interesting in cases where the electrostatic core potential is modified at large distances by
an external field so that the corresponding classical motion is not integrable. The paradigm
in this respect is the diamagnetic Kepler problem [2—6].

In a case where the dynamics outside the core region is not integrable classically, the
dynamics of electronic Rydberg wavepackets can be described theoretically in a convenient
way by combining methods of quantum defect theory as far as the core dynamics is
concerned with semiclassical methods which are capable of describing the dynamical aspects
outside the core region [7]. Relevant quantum mechanical transition amplitudes can then
be represented as a sum of contributions which are associated with all closed orbits of a
Rydberg electron which start from and return again to the nucleus. Two extreme dynamical
regimes can be distinguished.

() If the dynamics of the Rydberg electron outside the core region is determined
completely by the(—1/r) Coulomb potential, the quantum mechanical amplitudes of all
these closed orbits interfere constructively. In this case scattering processes inside the core
are significant as all closed orbits are scattered among each other and interfere constructively.
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(ii) If the classical dynamics of the Rydberg electron outside the core region is not
integrable classically, typically the contributing closed classical orbits are isolated [7-9]. In
this case scattering processes inside the core lead to scatterings between these isolated closed
orbits [7,10,11]. However, besides these scattered contributions there are also unscattered
contributions to the relevant amplitudes. It has been pointed out in [7] and in a recent
investigation [10] that scattered and unscattered contributions exhibit a different scaling
behaviour with respect to the relevant semiclassical paramieten particular, in the
extreme semiclassical limit, i.6.— 0, the scattered contributions become negligibly small
in comparison with the unscattered ones.

Besides these two extreme dynamical regimes, an intermediate situation can be
realized if an electronic Rydberg wavepacket is excited in an energy region where the
relevant closed classical trajectories bifurcate [12—14]. In this case some of the relevant
closed orbits approach each other and are no longer isolated. Thus strong quantum
mechanical interference effects between the associated probability amplitudes take place. In
particular, these interferences affect tidependence of the quantum mechanical probability
amplitudes. Thus in this case core effects are expected to be more significant than in the
situation of isolated closed orbits.

In this paper the influence of core scattering effects on the dynamics of a bifurcating
electronic Rydberg wavepacket is investigated. Generalizing recently developed uniform
semiclassical methods [12] it is shown that core scattering processes can be taken into
account in a straightforward way within a uniform semiclassical framework. Our discussion
will focus on the diamagnetic Kepler problem which is a paradigm for a quantum system
which can be studied in the laboratory and whose classical dynamics is not integrable. In
particular, our discusssion will concentrate on an ungeneric bifurcation of period four of
the Edmonds—Garton—Tomkins orbit. This orbit extends along a straight line through the
nucleus in the symmetry plane perpendicular to the applied static magnetic field. Due to the
location in the symmetry plane this orbit exhibits a bifurcation phenomenon of the butterfly
type. The high order of this bifurcation phenomenon implies strong quantum mechanical
interferences between the relevant probability amplitudes of the closed orbits. Thus effects
of core scattering are expected to be particularly significant in this case.

The paper is organized as follows. In section 2 basic results on the semiclassical
description of the dynamics of an electronic Rydberg wavepacket are summarized and
generalized to include core scattering effects. In sac8ca uniform semiclassical path
representation is derived in which effects of core scattering in the presence of bifurcation
phenomena are taken into account. Motivated by recent time-resolved studies of the
diamagnetic Kepler problem [15, 16], elastic scattering of an electronic Rydberg wavepacket
by a spherically symmetric ionic core is discussed in detail with particular emphasis on
bifurcations of the Edmonds—Garton—Tomkins orbit.

2. Semiclassical treatment of wavepacket dynamics

In this section, previously developed semiclassical methods [1,7] for describing the
dynamics of laser-excited electronic Rydberg wavepackets in external, homogeneous, static
magnetic fields are summarized briefly and generalized to include core scattering effects.
In the following Hartree atomic units will be used with=% = m, = 1.

Time-resolved pump—probe spectroscopy is a useful experimental technique for
investigating the dynamics of an electronic Rydberg wavepacket [15,16]. Typically, a
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first, weak laser pulse with electric field strength
Ei(1) = &(1)ere' + CC 1)

whose pulse envelope is centred around tim&ith pulse duratiorr; prepares an electronic
Rydberg wavepacket at tinrg by exciting an atom from an initial stajg) of energye,.

The dynamics of this wavepacket is probed at a later tigney another short and weak
laser pulseE;(t) (frequencyw,, pulse envelop&,(¢) and polarizatiore,) which induces a
transition to a final statgf) of energye;. The main theoretical problem in the description

of such a pump—probe excitation process is the determination of the two-photon transition
amplitude [1]

Tro(€) = (fld - ej(e +10 — H)'d - e1]g) (2)

in which the dynamics of the excited Rydberg electron in the absence of a pump and probe
pulse is described by the Hamiltoni&h The atomic dipole operator is denotédIn terms

of this quantity the experimentally observed pump—probe transition probability is given by
2

1 [ i . ~
P = |yr [ e T @ ~ O - 0 3)

with the Fourier transforms of the pulse envelopes dendted) = ffzo dr €<t + 1),
(k =1, 2). For the sake of simplicity it has been assumed &hate, + w1 = €7 + wo.

The two-photon transition amplitude of equation (2) can be evaluated conveniently from
the solution of the inhomogeneous Satlinger equation [1, 17]

(€ — H+I0)|F.) = d-eilg), “)
and the relation

ng(é) = (f|d * e;lFe>- (5)

In the energy region close to a photonionization threshold the solution of equation (4)
is simplified considerably by noting that three characteristic spatial regimes may be
distinguished as far as the dynamics of an excited Rydberg electron is concerned [18, 19],
namely

(i) the core region (X r < r. ~ 1) in which the dynamics of the Rydberg electron is
dominated by electron correlation effects,

(ii) the Coulomb region. < r < r,) in which the(—1/r) Coulomb potential of the
positively charged ionic core prevails and

(i) the asymptotic region (X r, < r) in which any applied external electromagnetic
field is at least as important as the Coulomb potential of the ionic core.

The (global) solution of equation (4) with the appropriate boundary condition can be
constructed by patching together two local solutions of equation (4) which are valid in the
core and Coulomb region on the one hand and in the Coulomb and asymptotic region on
the other hand. Furthermore, if the extension of the Coulomb region is large, .1,
an approximate local solution, which is valid in the Coulomb and asymptotic region, can
be determined semiclassically. Within this general approach it has been shown [1, 7] that
the two-photon transition amplitude

Tro(€) = T + 3 DI Ay (e) (6)
Im

consists of a smooth paﬂtjﬁ? which is a slowly varying function of energy across any
photonionization threshold and a second part which is a rapidly oscillating function of
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energy and which is determined by the implicit relation

2 T
A (€) =/ d(p/ do singY" (8, ¢)* (-1
0 0

x Z VI, 80;, 90,/ 17 (T}, Boj, 9o ) |€12YE"+Sen (7100 90) =147 +3)7/2]
J

x> ¥ (B0 9o) (— D) [2inD§,;1 + ) Xt A (e)i|. )

I'm’ "m"

Here the laser-induced initial excitation and final de-excitation processes are characterized
by the photoionization and recombination dipole matrix elem&njs andD;’ [1, 19]. The
excited channels are specified by the angular momentum quantum nughbejsof the
Rydberg electron. Their threshold energies are dengtedThese dipole matrix elements

are smooth functions of energy across any threshold. Outside the core region the dynamics
of the excited Rydberg electron is characterized by all classical trajectovidsch start on

a sphere of radiug, ~ 1 (r. < r, < 7,) with initial energy(e — ¢;,,), initial anglesty;, ¢o;,

and a purely radial momentum. According to equation (7) it is the trajectories which return
again to this sphere at later timgsat angles, ¢ which contribute taA;,,(¢). Important
dynamical properties entering equation (7) are the classical ac8igns;, 6o;, ¢o;) and
Maslov indicesy; [20] of these trajectories which are accumulated outside the sphere of
radiusr,. The quantity

dx Ady A dz
J (T, 00j, o)) = 2 8
(%), boj, ¥o;) de A dio A dgo iy 0 o) 8

characterizes the local projection of the Lagrangian manifold, which is generated by this
family of classical trajectories, onto the configuration space. Inside the core region the
dynamics of the Rydberg electron is described by the scattering m@[t,;l’fx which is a
slowly varying function of energy across any photoionization threshold [19]. In equation (7)
it has been assumed that energy differensesof possible inelastic transitions are small in
comparison with the atomic unit of energy, iderd? « 1.

In further simplifications of equation (7) two limiting dynamical cases may be
distinguished.

(i) In the absence of an external electromagnetic field the dynamics of an excited Rydberg
electron is dominated by the Coulomb potential of the ionic corerfor r.. In this case
the relevant classical trajectories of equation (7) are purely radial Kepler orbits of angular
momentum zero whose classical actions are independent of the emission @ngles;).
This implies that all contributions to equation (7) add coherently in phase. Thus in this
special case equations (6) and (7) reduce to the well known result of multichannel quantum
defect theory [1,19]. In particular, in this case the dependend®4€) on the matrixy
indicates that effects of scattering by the ionic core are significant and cannot be neglected.

(i) Typically, in the presence of an external electromagnetic fiéfd. &%) is a
rapidly oscillating function of the final angle®, ¢) at which the classical trajectories
return again to the sphere of radiys Therefore, for low values of the angular momentum
in equation (7) the integration over these final angles can be performed in the stationary
phase approximation. Thus the dominant contributions originate from points of stationary
phase which correspond to closed orbits which start from and return again to the Coulomb
centre [7-9].

A paradigm of this second type of dynamical case is the diamagnetic Kepler problem
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in which the dynamics of the excited Rydberg electron is described by the Hamiltonian [4]
H=H,—yL, + %yzr2 sing?. 9

Here the atomic Hamiltoniat/, dominates the dynamics of the Rydberg electron in the
core and Coulomb region where the influence of the external homogeneous, static magnetic
field B(x) = ye, is negligible. The second and third terms on the right-hand side of
equation (9) are the paramagnetic and diamagnetic interaction termg vd#noting the
magnetic field strength in atomic units. (The atomic unit of magnetic field strength is
By = 471 x 10° T.) In the case of weak magnetic fields, ije.< 1, and for energies

close to the first photoionization threshold the presence of the diamagnetic interaction term
in equation (9) implies that the dynamics of the Rydberg electron in the Coulomb and
asymptotic region is not integrable classically.

In the evaluation of equation (7) one has to take into account that outside the core
region the HamiltoniarH of equation (9) is axially symmetric around the magnetic field
axis. Therefore the-component of the angular momentulm is a conserved quantity.

This implies that in equation (7) classical trajectories with different emission aggljes
interfere constructively so that within the framework of the stationary phase approximation
the closed classical trajectories contributing to equation (7) can be isolated only with respect
to the emission angléy;. Thus solving equation (7) by iteration, a semiclassical path
representation is obtained in whidfy, (¢) is represented as a sum of contributions which
correspond to repeated returns of a Rydberg electron to the core region [7]. Assuming that
all relevant closed orbits are well separated with respect to the emission apdgtesfirst
few terms of this semiclassical isolated-closed-orbit representation are given by
T = T8 + 2 3 D B0 + 8800 + 85000 + 15, ol
LUl m
+tl(l:!-;)mﬁ’tl(3’)/;m + tl(l?;)mﬁ/tl(’:ll/)’;m + - }’Dl(’;t: (10)

with
e, = =1 Y0¥ 6, 0" (=10 (ea)] 2
J

g Sten=mm) w2 Ay gy, 0)(—1)" (12)

ande,, = € + my. Equation (10) generalizes previously derived semiclassical results [7-9]
in which the effects of core scattering have been neglected. The probability amp,f});gde
characterizes the contribution of the Rydberg electron which is associated with rsturn

to the core region without being scattered during its intermediate crossings of the core. The
classical dynamics of the relevant isolated closed orpitscharacterized by their classical
actionsnS;(e,), their number of crossings of the symmetry axisand their Maslov indices

u;”). The amplitude of therth return of trajectoryj is also determined by the classical
cross section

dpe Sinnu;
300 sinu; |

o" (€) = sing; sineoj/ (12)

Hereo; denotes the final value of the return angle of the classical closedjorblie stability
exponent of this closed orbit is denoted and py is the canonical momentum associated
with 6. The cross section of equation (12) determines the range of initial emission angles,
or equivalently the size of the characteristic Fresnel zone [21], within which orbits interfere
constructively. For the sake of simplicity it has been assumed in equation (10) that inelastic
scattering by the ionic core is negligible and that the core is spherically symmetric. Thus
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the scattering matrix of the core is independent of the magnetic quantum numaed
diagonal with respect to the angular momentum quantum nuibe. X,’,'n’"’ = X181 8 -
However, starting from equation (7) it is straightforward to generalize equation (10) to cases
which involve more complicated core scattering processes. In equation (10) the influence of
scattering by the ionic core is described by the terms involving the scattering amplftudes

x1 — 1. As the ionic core, in which the electron correlation effects take place, has a typical
extension of a few Bohr radiif; is nonzero only for low values of the angular momentum
Scaling properties of the Hamiltonian of equation (9) imply that classical actions of relevant
closed orbits are proportional to = y /3 (in units of 4) so thataj(”)(e) =01 ™Y. As

has already been pointed out previously [7] this implies that unscattered contributions to
equation (10) are of order@~%/?) whereas scattered contributions are of ordéx ®) and
become vanishingly small in the semiclassical limit>> 1. At energies at which simw; = 0

the classical cross secti@gﬂ”)(e) tends to infinity indicating that a bifurcation phenomenon
takes place and the relevant closed orbits can no longer be considered as being isolated.
In such a case equation (10) is no longer valid and the integration over angles appearing
in equation (7) has to be performed by using uniform semiclassical techniques [12]. The
resulting strong quantum mechanical interference effects are expected to change the scaling
behaviour of unscattered and scattered contributions so that scattered contributions might
become more significant than in the isolated-closed-orbit case.

3. Bifurcation phenomena and core scattering

In order to investigate core scattering effects in the presence of bifurcation phenomena let
us consider bifurcations of the Edmonds—Garton—-Tomkins orbit in the diamagnetic Kepler
problem in more detail.

The classical dynamics of bifurcations in the diamagnetic Kepler problem has been
investigated in detail in [22]. It has been shown that due to the discrete reflection symmetry
of the HamiltonianH of equation (9) with respect to a plane through the Coulomb centre
and perpendicular to the magnetic field axis the Edmonds—Garton—Tomkins orbit exhibits
nongeneric bifurcation phenomena. This orbit starts from the atomic nucleus and extends
along a straight line in the symmetry plane. Bifurcations of this particular orbit and their
manifestation in the dynamics of an electronic Rydberg wavepacket in the absence of core
scattering effects have already been discussed previously [12]. In figure 1 characteristics of
the bifurcation of period four which occurs at enekgy= —0.5019%/%3 are summarized
briefly. The classical phase space structure of this particular bifurcation phenomenon of
period four, which has been termed ‘Pacman’, has been investigated in detail by Mao and
Delos [22]. As apparent from the energy dependence of the emission @nglewn in
figure 1@), at energye; = —0.5037%%3 a stable and an unstable closed ortit, I,)
are created by a saddle-node bifurcation together with their symmetry-induced reflected
counterpartg/_1, I_5). At energye, the stable orbit$; and/_; coalesce with the Edmonds—
Garton—Tomkins orbifly so that for energies > ¢, only the three closed orbitg (stable)
and1,, I_, (unstable) remain. The coalescence of the three stable closed lgrhits/_; at
energye, is an ungeneric bifurcation phenomenon of period four which is possible because
of the discrete reflection symmetry of the HamiltoniBinin the Coulomb and asymptotic
region. Similar bifurcation phenomena of periods seven and 18 take place at energies
e3 = —0.4194y2° ande4 = —0.4365/%/3.

With the help of time-resolved pump—probe experiments of the type described in
section 2 and by choosing the laser frequency so that ¢; =~ ¢, the manifestation
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Figure 1. Emission angleg of orbits /o, /11 and/., as a function of scaled energy= ¢/y /3
(a) and their form in configuration space with= /x2 + y2y?/3 andz = zy?/3 (b).

of these classical bifurcation phenomena in the time evolution of an electronic Rydberg
wavepacket can be investigated. Furthermore, by selecting the laser polarizations of pump
and probe pulse perpendicular to the homogeneous, static magnetic field and restricting the
observation times of interes; — 1, to times of the order of a few multiples of the orbit

time of the Edmonds—Garton—Tomkins orldf, the corresponding pump—probe signal of
equation (3) is dominated by the contributions arising from these five classical closed orbits
[12]. For the theoretical description of core scattering in the presence of these bifurcation
phenomena equation (10) has to be generalized and a uniform semiclassical description of
the significantly contributing closed orbitl, 7.1, 1., is needed. In the absence of core
scattering a uniform semiclassical description has already been developed previously [12].
In particular, it has been shown that in equation (10) the contributions ofritier@turn of

orbit I and thenth return of orbitslyy, 1., (n > 1) to the Coulomb centre can be described
uniformly by the canonical comparison integral of a cuspoidal butterfly catastrophe [23]

0 .
T (€) = / o G2 (65, €)™ @) (13)
In equation (13) it has been assumed that the main contribution to the integral over the
emission anglé, of the Rydberg electron comes from valugs~ 7 /2 so that the limits

of integration can be extended to infinity. The coefficieats” (¢) and a2 (¢) of the
polynomials

G (0o, €)= Y A)(€)(0o—m/D* (14)
k=0,1,2
and
F200.)= > apm’(€) (0 —m/2)%* (15)
k=0,1,2,3

are smooth functions of energy across the energy rdaege,). They are determined
uniquely by the requirements that

(i) the stationary phase points of this comparison integral are identical with the emission
angles of the relevant classical closed orbits and that

(i) in the semiclassical limit, i.,ex = y~¥3 > 1, for energies sufficiently far
away from the bifurcation energies and e, the stationary phase evaluation &f?" ()
reduces to the corresponding semiclassical result of the isolated-closed-orbit approximation
of equation (10).
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As has been shown in detail in [12], in the energy regime < € < e, the
energy dependence of these coefficients can be determined by these requirements from
the classical properties of the relevant five closed orhitg.,, /., and the corresponding
photoionization and recombination dipole matrix elements. As these coefficients are
slowly varying functions of energy they can be extrapolated beyond this energy regime
by polynomial fits with respect to energy. By this approach the energy dependence of these
coefficients has been determined in [12] for the above-mentioned bifurcation phenomena of
period four, seven and 18.

In general, the canonical comparison integral of equation (13) has to be determined
numerically. In the semiclassical limit, i.2.>> 1, it is a rapidly oscillating function of the
emission anglé®, so that it can be evaluated numerically in a convenient way with the help
of the method of steepest descent [24]. Thereby the original contour of integration, which
extends along the real axis in the complgxplane, is deformed so that it goes through
saddle points of?” (6, €) along paths of steepest descent. Along this deformed integration
contour the real part oF,ff”)(@o, €) remains constant so that the comparison integral is no
longer oscillating rapidly. Typically the dominant contribution to the comparison integral
comes from a small neighbourhood of these saddle points. The contributions from the
saddle points which are not located on the mpahxis might be viewed as contributions
from ghost orbits [25]. Physically speaking, contributions of these ghost orbits arise from
classical trajectories which are almost closed. It should be mentioned that this numerical
approach is more general than the saddle point method in which, in addition to the above-
mentioned deformation of the integration contour, the expofigtit (9o, €) is approximated
by a second-order Taylor expansion around each saddle point. In particular, this numerical
steepest descent approach can be applied irrespective of whether the saddle points coalesce
or are well separated.

Within this uniform semiclassical approximation the isolated-closed-orbit expression of
equation (10) can be generalized in a straightforward way to the case of core scattering
effects in the presence of bifurcation phenomena by replacing the diverging contributions
of the coalescing closed orbits by the relevant canonical integral. Let us consider laser
excitation of a Rydberg electron from an initially prepared energetically low lying bound
state|g) with angular momentum zero in more detail. Let us also assume that the final
state |f) is an s-state and that the polarizations of pump and probe pulses are equal
and perpendicular to the magnetic field so that the possible magnetic quantum numbers
of the excited Rydberg electron are given lay= £1. This implies that the dominant
contribution to the pump—probe transition probability of equation (3) originates from the
orbits Iy, 111, 1o, if the significantly excited energy range is concentrated areurd ¢,
and if the observation times of interest, i@ — t,), are of the order of the classical orbit
time of the Edmonds—Garton—Tomkins orBi. Furthermore, for the sake of simplicity it
will be assumed that the ionic core is spherically symmetric and that scattering phase shifts
are negligible for angular momenta> 2, i.e. f; = 0 for [ > 2. Therefore in this case
only the scattering phase shift fbe= 1 is relevant. Thus the first few terms of the uniform
semiclassical path representation for the two-photon transition amplitude are given by

Tre(e) = T\ + 2im Y Dty + 12 + 113, + IP(€) + 141, ittt
m==%1

2 (1) (1) 2 (1) (€8] @ (€8] 3)
+Jn(1 )(e)fltll;m + tll;m flJn(1 )(6) + tll;m fltll;m fltl];m + tll;m fltll;m
[©) (€3] D 2 @ 2 @ (€3]
01 1111 F 111 1130 () filh1,, + PO fili D, filiT,

@ (1) 2 @ (1) (Y] (1) (=)
+tll‘mf1t11;m fl‘]n(q )(E) + tll‘mfltllzm fltll:mfltll;m Ll }Dlm : (16)
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Equation (16) is one of the central results of this paper. The uniform canonical integral
JV(e) has the property that for = y =3 » 1 and for energies; < ¢ < e; it reduces

to those contributions of the amplitudg_f’g, of equation (11) which arise from the classical
closed orbitdy, 711 and/.,. Inserting equation (16) into equation (3) yields the pump—probe
transition probability with which the time evolution of an electronic Rydberg wavepacket
can be investigated.

0.25

0.12

Pg—-)f

YAt

Figure 2. Pump—probe transition probabilit§,_, s (A7) inunits of 27 >, _ 4 |D§;’)£§DE)81\
><‘L’1‘L’2)2 withe = €gtwy =€ptwp = —0.49}/2/3, y =5x 106 (=236T),71 =12 =0.04/y,
anday = 0.66 (full curve). The broken curve shows the corresponding resul¢fet O.

In figure 2 the pump—probe transition probabil®y_, ;(Ar) is shown as a function of
the time delayAr = t, — 1, between pump and probe pulse. The magnetic field strength
is ¥y = 5 x 10°% which impliesx = y~%3 ~ 100 so that the semiclassical approximation
is expected to be valid. The quantum defect of the excited Rydberg states with angular
momentum/ = 1 is the same as for the rubidium atom, namely= 0.66. The laser
polarizations are chosen perpendicular to the applied magnetic field and the mean excited
energy and the pulse durations of pump and probe pulse are chosen so that for time delays
At of the order of a few multiples ofy ~ 1.8/y = 8 ps the dynamics of the electronic
Rydberg wavepacket is dominated by the five closed, classical dghifs; and I, and
their bifurcations. The recombination peaks of figure 2 at multiple§yoére associated
with subsequent returns of the excited electronic Rydberg wavepacket alongoorbite
first significant peak in figure 2 appears/at ~ 2Ty. In comparison with this recombination
peak the contribution of the first return along orhjtis negligible. The magnitude of this
maximum is determined by

(i) the strong quantum mechanical interference effects between the contributions of the
second return of orbif, and the first returns of orbits.; and I, which are described by
J@(€) in equation (16) and

(ii) the fraction of the Rydberg wavepacket which has been scattered after its first return
to the core region and returns along orlit again at time 2. This latter process is
described by the first term in the third line of equation (16).
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Comparison with the broken curve in figure 2, in which the corresponding result is
shown fora; = 0 (i.e. in the absence of core scattering processes), demonstrates that these
two contributions interfere destructively. The second maximum of figure 2 which appears at
At =~ 5.4/y originates from the third return of a fraction of the excited electronic wavepacket
along orbitly with zero, one or two intermediate scatterings of the Rydberg electron by the
ionic core. Due to the bifurcation between orbits 7.1 and I.» the contribution which
involves one intermediate scattering is large. This can be seen again by comparison with
the broken curve. Similarly all subsequent maxima appearing in figure 2 can be interpreted
in a straightforward way on the basis of the uniform semiclassical path representation of
equation (16). In particular, the large maximum/sst ~ 13/y is due to a bifurcation of
period seven of the Edmonds—Garton—Tomkins orbit which has been mentioned above and
has been discussed in detail in [12].

0.003

0.002

Ps—)f

0.001

2.0 3.0 7.0 8.0 9.0 10.0

Figure 3. Pump—probe transition probabili#§, . ; (Ar) in units of 27 »_,,_ 4 |DL?S§D§:")€1\
x1172)2 for a window resonance with = ¢, + @1 = €7 + w2 = —05y%/3, y = 10%(=
0471 mT), 11 = 1o = 0.04/y, @1 = 0.5, ep = —0.5025/%/3, T'p = .

Additional interesting effects arise if the laser-excited Rydberg series is perturbed by
channel coupling. In figer3 a model problem involving an isolated perturber is investigated
in more detail. The resulting time dependence of the pump—probe transition probability
P, s(At) is depicted by the full curve. Again, as in figure 2, the laser polarizations
of pump and probe pulse are perpendicular to the magnetic field axis and the quantum
defects for angular momentum states witk 2 are assumed to be vanishingly small. The
excited energy range and the observation times of interest are chosen so that the dominant
contribution comes from the five closed orblgs .1, I.,. The isolated perturber is assumed
to be located in the energy range in which all these five closed orbits exist. Furthermore,
its width I'p is assumed to be so small that it is equal to the Larmor angular velocity of
the Rydberg electron in the applied static magnetic field,li;,e= y. Its mixing into the
excited Rydberg states with angular momentum 1 leads to an energy dependence of the
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guantum defect of the form [19]

Lr/2 ) . (17)

1
o1(€) =g — — arctan(
b4 € —€p

If this perturber is not coupled directly to the initial and final stgigsand|f) by pump

and probe pulses, it gives rise to a window resonance. The energy dependence of the
guantum defectr;(¢) implies an additional energy dependence of the photoionization and
recombination dipole matrix elements and of the scattering amplifiyde e#71© — 1 of
equation (16). According to equation (3) this additional energy dependence leads to time
delays in the time evolution of the laser-excited electronic Rydberg wavepacket. In figure 3
the effects of these time delays on the pump—probe transition probability are investigated
for such a window resonance. The corresponding time dependence in the absence of a
window resonance is depicted by the broken curve. The first maximum of the broken curve
shows the contribution of the second return of odgiand the first return of orbité,; and

> which are described by @ (¢) in equation (16). Effects which are caused by the time
delays resulting from the energy-dependent quantum defect of equation (17) are apparent
from the full curve in figure 3. In particular, the time delays of the contributions associated
with the first returns of orbit$.; and /., are so significant that these contributions overlap
with the corresponding amplitude of the third return of orkjtwhich is centred around

At = 5.2/y. The constructive interference between these contributions is clearly visible.

In conclusion, it has been shown that the influence of core scattering on the dynamics
of an electronic Rydberg wavepacket can be described in a convenient way with the help
of quantum defect theory and semiclassical methods. The connection between quantum
dynamics and the corresponding classical motion is then exhibited quantitatively. In
cases where the corresponding classical dynamics is dominated by bifurcation phenomena,
uniform semiclassical methods have to be used for a satisfactory theoretical description.
In the case of the diamagnetic Kepler problem it has been shown that the effects of
core scattering can be enhanced significantly in the presence of bifurcation phenomena.
Furthermore, core scattering processes do not only lead to the appearance of additional
recombination peaks in time resolved studies of wavepacket dynamics but they can also
lead to significant time delays, in particular if they are due to channel couplings involving
perturbers with lifetimes of the order of the inverse Larmor frequency.
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