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Abstract. For all but the simplest open quantum systems, quantum trajectory Monte Carlo 
methods, including qumtum jump and quantum state diffusion (WO) methods. have besides 
their intuitive insight into the measurement process a numerical advantage over direct solutions 
for the density matrix, especially where many d e w s  of freedom are involved. For QSO the 
trajectories are continuous. and often localize to small near-minimum uncenainty wave packets 
which follow approximately classical paths in phase space. The mixed representation discussed 
here takes advantage of this localization to reduce computing space and time by a fmher 
significant factor, using a quantum oscillator representation that follows a classical path. The 
classical part of this representation describes the time evolution of the expectation values of 
position and momentum in classical phase space, while the quantal part determines the degree 
of l o w l i d o n  of the quantum mechanical state around this phase space point. The method can 
be applied whether or not the localization is produced by a measwing apparatus. 

In this letter a numerical method for solving master equations of open quantum systems is 
introduced. It combines two general elements which offer numerical advantages, namely 

(i) a Monte Carlo method for solving the master equation for the density operator of a 

(ii) an appropriately chosen time dependent basis for solving the relevant stochastic 

In the method introduced here the recently developed quantum state diffusion method 
(QSD) [ 1-71 is combined with a representation of the corresponding nonlinear, stochastic 
Schrodinger equation in a basis of eigenstates of a shifted harmonic oscillator. This oscillator 
is centred around the instantaneous position and momentum of the quantum system. 
This way the general phenomenon of localization of QSO state vectors in configuration 
and momentum space [5-7] is taken into account. This approach promises considerable 
advantages in solving QSD equations of realistic open quantum systems with a few degrees 
of freedom. 

The quantum state diffusion (QSD) method describes the time evolution of individual 
quantum systems under the influence of physical processes which destroy quantum 
coherence [I-71. In QSD theory the evolution is represented through a unique correspondence 
between the master equation for the ensemble density operator p( t )  and an ItgLangevin 
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quantum statistical ensemble by stochastic simulation, and 

Schrodinger equation for the quantum state. 
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diffusion equation for the normalized state vector I@@)) of an individual system of the 
ensemble. If H is the Hamiltonian describing the dynamics of a quantum system and L, 
are the Lindblad operators which describe statistically independent decohering processes, 
then the most general master equation is given by [8,9] 

I 1 
P ( t )  = -p, P W 1 t  &'[L", P( t )Lk l+  [Lm/J(t) ,  Lkl). (1) 

n 

The associated QSD equation for an individual quantum system of the ensemble is given by 
the stochastic It6 equation [1-7] . 

Id@@)) = - $ H  I@($)) d t  + C ( L m  - ( L m ) d  I@(r)) 4% 
m 

(2) 

with (Lm)$tl)  = (@( t ) lL , l@( f ) ) .  The complex Wiener processes .$,,(r) [lo] satisfy the 
relations 

1 1 + C ( ( L k ) $ ( i ) L m  - 5LkLm - ?(Lk)ib(r)(Lm)t(r)) I@V)W 
m 

M d t m  = 0 

d5mdSmr = 0 

dc;d&,r = &,,dt. (3 ) 
The density operator of the ensemble p ( r )  and the quantum state of the individual system 
I$@)) are related by 

P ( t )  = M I@(r))(@(t)l (4) 
with M denoting a mean over the ensemble. According to equation (2) the time evolution 
of an individual quantum system under the influence of a decoh&ing process is continous 
but not (almost nowhere) differentiable [lo]. A crucial feature of the unique correspondence 
between equations (2) and (1) is the invariance of both equations with respect to arbitrary 
unitary transformations in the Hilbert space spanned by the Lindblad operators, i.e. 

L, + E = C U , j L j  
i 

with E,,, U ~ ~ U ; ~  = 8,y. It is this invariance property which makes the correspondence 
between any master equation of the general Lindblad form of (1) and the corresponding 
'stochastic It6 equation (2) unique. Furthermore, this uniqueness is essential for a satisfactory 
physical interpretation of the solutions of (2) as the evolution of an individual member of 
the ensemble under the influence of the decohering process irrespective of any measurement 

The numerical method for solving the QSD equation (2) presented in this letter is based 
on a mixed representation of the quantum state vector which is partly classical and partly 
quantal. Advantage is thereby taken of the localization of QSD state vectors in configuration 
and momentum space [5-7,111. This type of localization takes place under quite general 
conditions as long as the Lindblad operatols L ,  are nearly linear in the position and 
canonical momentum operators over domains in phase space with areas of the order of 
fr [7,11]. '&pically, in this case the state vector I@(t)) localizes towards an approximate 
Gaussian wave packet with small or even minimum Heisenberg indeterminacy product of 
position and momentum.. Furthermore, the centre of this wave packet evolves in time 
approximately according to the laws of classical mechanics. 

PI .  
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In order to put the problem into perspective let us consider the simplest non-trivial 
quantum system with one degree of freedom and a Hamiltonian H(Q. P) which is a 
nonlinear perturbation of a linear oscillator &(e. P), namely 

H(Q. P) = Ho(Q, P) + Hi(Q, PI. (6) 
The Lindblad operators L, are assumed to be linear in Q and P. The main idea of the 
mixed representation consists in solving the QSD equation (2) with Hamiltonians of the type 
given in (6) in an appropriately chosen moving basis which is defined by the instantaneous 
expectation values 

of position and canonical momentum. Therefore at each time t the state of the system 
I @ @ ) )  is specified by a ‘classical part’, i.e. the point in classical phase space, 
and a ‘quantal part’ which is determined by the expansion coefficients with respect to the 
instantaneous basis. A convenient choice for these basis states In@)) are the eigenstates of 
the shifted harmonic oscillator 

(8) 
which is centred around the classical phase space point ((Q),, (P),). In terms of the energy 
eigenstates In) of the unshifted harmonic oscillator Ho(Q, P) they are given by 

f‘, t )  = Ho(Q + (e),. P + (P),) 

In(N = exp(-i(QM’/fi + i(PhQ/fi) In). (9) 
The ground state of the shifted harmonic oscillator, i.e. In@) = 0). is a coherent state of 
the original harmonic oscillator HdQ,  P) whereas the basis states with values n(t)  t 0 are 
‘excited coherent states’. In a numerical integration procedure which is based on this mixed 
representation the propagation of the state I@(t))  from time to to time to + At is broken up 
into two steps. In the first step [@(to)) is propagated from to to to + A t  in the basis In(t0)). 
In  the second part of the step the basis is also changed to In(t0 + A t ) )  thus obtaining 

00 

Ip(to + A t ) )  = z c . ( t o  + A t )  In(h + A t ) ) .  (10) 
“dl 

Thus in the mixed representation the state I@( t ) )  is defined by the set of quantities 

[ ( ( Q ) t >  (P),); cn( t ) } .  (11) 
When there is little phase space localization, the mixed reprksentation has little or no 

advantage over a representation of I@@)) in the basis of eigenstates of Ho(Q, P), for 
example. But in the case of significant phase space localization, the mixed representation 
offers considerable advantages. In particular, if the phase space localization is complete, 
the only non-zero quantum amplitude in the mixed representation is the vacuum amplitude 
co(t) which has modulus one. In that case the quantum part of the mixed representation 
can be ignored and it reduces to a pure classical representation. For strong but incomplete 
localization only a few ‘excited coherent states’ are significant and the mixed representation 
constitutes an efficient practical tool for solving the QSD equation (2). It should be 
mentioned that numerical methods for solving the ordinary time dependent Schrodinger 
equation, which are based on wave packet approaches, have a long history particularly 
in the chemical physics literature. Originally in these approaches Gaussian wave packets 
with variable widths are propagated along prescribed classical trajectories (see, for example, 
[12]). However, as the ordinary Schrodinger equation does not exhibit the phenomenon of 
localization in phase space, the applicability of these type of wave packet approaches is 
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very restricted. In particular, it breaks down as soon as an initially localized wave packet 
is spread out over a large fraction of configuration space. 

As an example demonstrating the practical significance of the mixed classical-quantal 
representation consider the onedimensional dynamics of a driven, weakly anharmonic 
oscillator with Hamiltonian 

H ( Q ,  P )=hAwata+h  fa+hf 'a t+hp(a ta ) z .  (12) 

The destruction and creation operators of the harmonic oscillator are denoted a and at. 
The parameters p and f measure the strength of an anharmonic perturbation and an 
oscillating driving force, respectively, and Am is the detuning of the frequency of the driving 
force from the oscillator frequency. In a one-dimensional, adiabatic approximation model 
Hamiltonians of this form have been used to describe various physical phenomena such 
as optical bistability [13] or the weakly relativistic motion of a resonantly driven charged 
particle in a harmonic ion trap [14]. The damping of this driven, weakly anharmonic 
oscillator with rate y ,  for example by radiative decay, can be described by the Lindblad 
operator L = (y) ' /za [15]. Thus, in this case the time evolution implied by (2) is expected 
to lead to localization towards an eigenstate of the destruction operator a, i.e. a coherent 
state with Ic0(t)l2 = 1. 

In figure 1 the time evolution of the real and imaginary parts of the expectation value 
a(t) = ( a ) @ )  is shown as evaluated from (2) with the mixed representation method for two 
realizations of the decohering Wiener process t(r). As a weakly delocalized initial state 
I$(t = 0)) = In(t = 0) = 12) has been chosen with a(t = 0) = 10. The two realizations 
shown in figure 1 converge to two different stationary states, because the initial state and 
the parameters of the Hamiltonian (12) lead to bistable dynamics. The bars centred around 
the expectation values a( t )  indicate the uncertainties A Re[&)] and AIm[a(t)] which are 
a measure for the degree of localization of the quantum state /@@))in phase space. In 
the case of complete localization I$(?)) becomes a coherent state and both uncertainties 
assume the value 4. The dashed curve in figure 1 clearly shows complete localization in 
phase space towards a coherent state in the stationary limit. Thus with increasing time the 
mixed representation becomes purely classical with Ico(t)12 = 1. The time evolution of 
the dotted curve in figure 1 is more complicated but nevertheless it also localizes in phase 
space. In particular, this realization of the QSD equation (2) performs strong oscillations and 
converges very slowly towards the second stationary state. This different stability behaviour 
of the two stable stationary states is characteristic of bistable behaviour. Furthermore, in 
the course of its time evolution the dotted curve also passes the neighbourhood of a nearby 
unstable stationary state whose position is known from previous semiclassical treatments 
[ 13,141 and is indicated by an arrow in figure 1. 

The actual saving in computation time and space implied by the mixed classicalquantal 
representation discussed here depends mainly on two factors, namely the initial condition 
I@(t  = 0)) and the magnitude of typical values of a(t)  of the problem considered. The 
more closely the initial condition resembles a coherent state and the larger are typical 
values of a@), the larger the saving. Compared with an expansion in terms of energy 
eigenstates of Ho(Q, P), for example, in the ideal case of complete localization in one 
space dimension the maximum saving in space and computation time per time step Ar 
is expected to be a factor of the order of m, for large values of la(t)[*. This is 
due to the fact that in the unshifted harmonic oscillator basis of Ho(Q, P) at least of the 
order of basis states are needed to represent this coherent state properly. As an 
example for a non-ideal situation. consider the time evolution of I$(t)) shown by the dotted 
curve in figure 1. Despite the complicated bistable dynamics and the moderate values of 
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Figure 1. Time evolution of real and imaginary parts of the expectation value m ( t )  = ( a ) @ )  as 
evaluated from equation (2) for two realizations of F ( t )  (dashed and doned curves) with identical 
initial conditions u(t = 0) = 10 and A Re[& = O)] = Alm[u(r = 0)) = 2.5, The bars indicate 
the uncertainties AReln(t)l and A Im[u(r)l. Stable (s) and unstable (U) stationary states az 
positioned at the lips of the corresponding mows. The values of the parameters are fi = 0. l y .  
f = -6y and AOJ = -5y.  

a@), even in this case comparisons with calculations performed with a simple expansion of 
I@@)) in energy eigenstates of P) indicate a saving in computation time of at least 
a factor of 2. This modest value is mainly due to the delocalized nature of the initial state. 
Thus it might be considered as a lower bound. In realistic applications to the dynamics of 
charged particles in ion traps, for example, typical initial conditions are well represented 
by minimum uncertainty wave packets. Therefore in such cases the time gain increases 
significantly. Nevertheless, a rough estimate based on this lower bound indicates at least a 
saving of a factor of the order of 2 D  for similar systems with D degrees of freedom. Thus 
the mixed classicalquantal representation discussed here promises considerable advantages 
in solving QSO equations of realistic open quantum systems with a few degrees of freedom. 

In summary, a mixed classicalquantal method for solving QSD equations numerically 
has been introduced. Advantage is thereby taken of the localization of solutions to small 
near-minimum uncertainty wave packets which follow approximately classical paths in phase 
space. In particular, in open quantum systems with a few degrees of freedom this proposed 
numerical method is expected to reduce computing time and space by a significant amount. 
In comparison with the simulation methods [16-18] this conclusion is also supported by 
a recent comparison 1161 which has shown that, even if no advantage is taken of this 
localization of solutions, simulations of the dynamics of open quantum systems by QSO 
equations are as efficient numerically as the recently proposed quantum jump methods 
[17,18]. Therefore the method proposed here is well suited for realistic numerical studies 
on the time evolution of individual dissipative quantum systems. Applications of this method 
to the two dimensional motion of charged particles in a Penning trap are in progress and 
will be presented elsewhere. 
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