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Atom-optical gratings induced by multiphoton excitation of electronic Rydberg wave packets
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The formation of atom-optical gratings induced by multiphoton excitation of Rydberg states is discussed for
fast atoms. With the help of semiclassical path-integral methods the correlation between the dynamics of a
laser-excited Rydberg electron and the momentum transferred to the atomic center of mass in a spatially
modulated laser field is exhibited quantitatively. These types of laser excitation processes might offer new
perspectives for the realization of atomic multiple beam splitters and for atom-lithographic applications.
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Atom optics is rapidly emerging as a new field in atomic
and optical physics. Taking advantage of the wave aspects of
the atomic center-of-mass motion, a major effort in this field
of research is directed towards the development of analogues
of optical instruments in which the role of photons is played
by atoms. For the realization of basic atom-optical elements,
such as atomic beam splitters or lenses, an understanding of
the deflection of atoms by laser beams is of central impor-
tance [1—9]. Due to the large mass difference between an
atomic nucleus and its electrons, momentum can be trans-
ferred from a laser field to the atomic center of mass essen-
tially only by excitation of the internal electronic degrees of
freedom [10].The resulting strong correlation between the
internal dynamics of an atom and its center-of-mass motion
offers new perspectives both for the development of atom-
optical instruments and the investigation of the dynamics of
electrons in atoms.

An interesting example in this respect is the excitation of
Rydberg states during the flight of an atom through a
standing-wave laser field. In the case of a one-photon exci-
tation process it has been shown recently that atomic beam
deflection can be described theoretically in a convenient way
with the help of semiclassical path representations [11].
Thereby the probability amplitude as(x), for example, of
finding an atom after the interaction with the laser field at
position x in the initially prepared energetically low-lying
bound state ~g) is represented as a sum of elementary con-
tributions associated with classical Coulomb paths of an ex-
cited Rydberg electron moving in the Coulomb field of the
positively charged core. Depending on whether these el-
ementary probability amplitudes overlap in time or not, ei-
ther the wave or the particle aspects of the electronic dynam-
ics prevail. A dominance of the wave aspects corresponds to
the well-known two-level limit where only two bound
atomic states are coupled almost resonantly by the laser field.
The particle aspects manifest themselves if a large number of
Rydberg states are excited coherently by laser-induced power
broadening [12] and a radially localized electronic Rydberg
wave packet is prepared. Thus a simple correspondence can
be established between certain phase and amplitude modula-
tions of state-selective atomic probability amplitudes pro-
duced by standing-wave laser fields, such as ag(x), and the
corresponding electronic dynamics in the field of the posi-
tively charged ionic core. These spatial modulations manifest
themselves in the diffraction of atoms by laser light in a way
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FIG. 1. Schematic representation of (a) the atomic beam diffrac-
tion setup and (b) the laser-induced excitation process considered.
The squiggly lines indicate the standing-wave laser field.

that is similar to that in which the phase and amplitude grat-
ings of optics manifest themselves in the diffraction of elec-
tromagnetic fields.

In this Rapid Communication it is shown that laser-
induced excitation of Rydberg states via an intermediate,
resonant bound state offers the possibility of generating a
special class of phase and amplitude modulations of state-
selective probability amplitudes. These modulations cannot
be produced by one-photon excitation processes. They are
caused by the simultaneous presence of particle and wave
aspects of the dynamics of a laser-excited Rydberg electron.
With their help, atomic multiple beam splitters might be re-
alized which lead to large momentum transfers. Atomic
beam splitters, which lead to similarly large momentum
transfers but are based on a physically different mechanism,
namely the so called "magneto-optical" effect, have been
discussed recently by Adams et al. [4].

In order to analyze the basic physical aspects let us con-
sider an idealized (effectively two-dimensional) atomic beam
deflection setup, as shown schematically in Fig. 1(a). A
monochromatic beam of atoms (total mass M, center-of-
mass momentum P;„),which are prepared in an energetically
low-lying bound state ~g), crosses a standing-wave laser
field of the form E(x, t) = 8(y)O(L —y) F(x)exp( —icot)
+c.c. at right angles. [O(y) denotes the Heaviside function. ]
In the following discussion we concentrate on the important
special case F(x) = rosin(kx). However, it should be men-
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tioned that our main results, i.e., Eqs. (1) and (5), are also
valid for more general spatial dependences of the laser field.
During the flight through the laser field each atom is excited
to Rydberg states close to the photoionization threshold by
two-photon excitation via an intermediate resonant bound
state le) [Fig. 1(b)].Typically, thereby, the initially prepared
state Ig) is depleted. It is assumed in the following that the
laser intensity is so small that ionization from the Rydberg
states to continuum states well above threshold is negligible.
To a good degree of approximation this is valid for moderate
laser intensities I, which are much smaller than the atomic
unit, i.e., I(&Io= 1.41&& 10' W cm [12].Furthermore, it is
assumed that the atoms are so fast that their kinetic energy is
much larger than the interaction energy with the laser field
and that during the flight through the interaction region their
motion along the standing wave is negligible, i.e.,
kL(P, /P;„)(&2m (Raman-Nath approximation). Therefore,
approximately, the center of mass of an atom evolves freely
on a straight-line trajectory, with r=L/U;„denoting the time
of flight through the laser field [10].As for fast atoms, this
time of flight can always be chosen much smaller than the
radiative lifetime of the excited bound state Ie). Effects of
spontaneous emission of photons are neglected in the follow-
ing. In this case the x dependence of the laser field leads to a
characteristic x dependence of atomic probability ampli-
tudes. Thus, for the excitation process shown in Fig. 1(b), the
semiclassical path representation of the state-selective prob-
ability amplitude that a fast atom will enter and leave the
laser field at position x in state Ig) or Ie) is given by [13]

goo+ jO

a;(x, r) = dee ~~ (jl(E ~ 'I g)2 77 j —cc+ jo

y= 1 —iy(el(E —.~ 'Ie) (3)

and y= e2™n[14] with the quantum defect u.
As apparent from Eq. (1) the periodic x dependence of the

laser field leads to a corresponding spatial variation of the
parameters A(x), Bcu(x), and y(x) which characterize the
atom-laser interaction. Therefore, during the flight of an
atom through the laser field, the contribution of each return
of a laser-excited Rydberg electron to the reaction zone cen-
tered around the atomic nucleus produces a characteristic
phase and amplitude modulation in state-selective probabil-
ity amplitudes. The corresponding probability amplitudes of
the momentum distribution, which describes atomic diffrac-
tion, are obtained from such a phase and amplitude modula-
tion by Fourier transform, [10] i.e.,

Bohr radii around the atomic nucleus. Compared with the

large size of highly excited Rydberg states this reaction zone
is well localized around the atomic nucleus.

The Nth term in Eq. (1) may be interpreted as the contri-
bution of the Nth return of a laser-excited Rydberg electron
to the reaction zone. The quantity 2+v is the classical action
of a Rydberg electron of energy e(0 which moves along a
classical bound Coulomb orbit with near-zero angular mo-
mentum. With each return to the reaction zone a stimulated
transition to one of the bound states Ig) or Ie) may take
place, thus causing an increase of the probability amplitudes

ag(x, r) and a, (x, 7) Alte. rnatively, with each return to the
reaction zone, a Rydberg electron may be scattered reso-
nantly by the laser field or by the ionic core. These scattering
processes are described by the scattering matrix elements
[13]
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with E= —1/(2v ), j=g,e, and yg=2ca, cp, =co. (Hartree
atomic units are used. )

The first term of Eq. (1), which is determined completely
by the effective two-level Hamiltonian

M= [E + 2a)+ P;„/(2M) ] I g)(g I

+ [E + co+ P;„/(2M) + Bcu(x) —i y(x)/2] le)(e I

+ f1(x)/2le)(gl + fl(x) */2lg)(el (2)

describes laser-induced depletion of the initial state Ig) by
one-photon resonant two-photon ionization via the interme-
diate resonant state Ie). The Rabi frequency is given by
A(x) =2(el p, .F(x) Ig) with the atomic dipole operator p, .
The quadratic Stark shift 8~(x) and the excitation rate

y(x) =2 wl( E= 0
I
p, F(x) I e) I characterize the laser-induced

coupling between the excited state le) and the final Rydberg
states close to threshold. Numerically, y(x) equals the ion-
ization rate from state

I e) to continuum states close to
threshold according to the "golden rule. " These quantities
describe the laser-induced electronic excitation process
which takes place in a reaction zone extending only a few

with P„=~2lk (I integer) for j=g and P„=k~2lk for
j=e. Thus, the internal dynamics of an excited Rydberg
electron which moves in the Coulomb field of the positively
charged ionic core may be used in a controlled way to pro-
duce suitable phase and amplitude modulations. Alterna-
tively these modulations of state-selective probability ampli-
tudes or the corresponding momentum distribution of the
scattered atoms may be used to investigate the dynamics of
Rydberg electrons in atoms.

As a practical example let us consider a case in which
Rydberg states are excited resonantly via the intermediate
bound state

I
e). Furthermore, let us assume that the

Rabi frequency of the bound-bound transition lg)~le) is
much larger than the field-induced ionization rate, i.e.,
y(x)(&IA(x)l [Fig. 1(b)]. Under these conditions Rydberg
states in energy intervals of width y(x) around the mean
energies E (x)= E~lfl(x)l/2&0 with E= E~+2ru are ex-
cited significantly. These mean excited energies correspond
to one-photon transitions from the dressed atom-field states

I
~) of the resonantly coupled bound states Ig) and Ie). As-

suming linear dependences of the effective quantum number
v on energy within each of these energy intervals of width

y(x), Eq. (1) simplifies to
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with @=[eg+P;,/(2M)]r The .effective quantum numbers
of the mean excited Rydberg states are denoted
v(x)+=[—2m+(x)] ' . An analogous expression can be
derived for a,(x, r). Thereby T (x) are the classical orbit
times of Coulomb orbits of near-zero angular momentum and
energies e (x). Due to the spatial variation of the laser field,
all these quantities depend on the position x at which an
atom crosses the laser field. Equation (5) exhibits clearly the
phase and amplitude modulations of the state-selective tran-
sition amplitude ag(x, r) which are produced by repeated
returns of an excited Rydberg valence electron to the reaction
zone centered around the atomic nucleus. Equation (5) to-
gether with its more general form given in Eq. (1) are the
main results of this Rapid Communication.

The physical interpretation of the terms appearing in Eq.
(5) is straightforward: Due to ac-Stark splitting between the
resonantly coupled states ~g)and ~e) during the flight of an
atom through the laser field, a Rydberg electron is excited
either with mean energy e+(x) or e (x). The probability
amplitudes of these two pathways of excitation are denoted
by the signs "~." The first term in curly brackets on the
right hand side of Eq. (5) describes depletion of the initially
prepared state ~g) via these two pathways. The Nth term of
the sum describes the contribution from the Nth return of an
excited Rydberg electron to the reaction zone. With each
return to this reaction zone a stimulated transition to the
strongly coupled bound states ~e) and ~g) may take place.
This leads to an increase of the state-selective probability
amplitudes ag(x, r) and a,(x, r) at multiples of the mean
classical orbit times T (x) of the excited Rydberg states. As
apparent from the Heaviside functions in Eq. (5) a contribu-
tion from the Nth return of an excited Rydberg electron with
mean energy E (x) can occur only if the time of flight of the
atom through the laser field exceeds the N-fold of the corre-
sponding mean classical orbit time, i.e., r)NT (x). Fur-
thermore, with each return to the reaction zone a Rydberg
electron may be scattered by the core in the presence of the
laser field. The integer r enumerates these possible scattering
events, which may take place in the time interval r=L/U;„
between the initial excitation and final stimulated transition
to one of the bound states ~e) or ~g). The binomial coeffi-
cient in Eq. (5) equals the number of r fold laser-ass-isted
scattering events that are possible during N returns of the
excited Rydberg electron to the reaction zone.

In Fig. 2(a) the time evolution of the probability of ob-
serving an atom after its flight through the laser field either in
state ~g) or ~e) is shown (full curve). The laser field is as-
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FIG. 2. Time evolution of total probability P(r) (a) and
momentum distributions Pi(r) at times r=0.4T (b), r=0.6T (c),
aud r= T (d), with P(r) = X/P/(r) aud Pi(r) = ~ag(P, , r)

~

+
~
a,(P„,r)

~
(P,= lk). The classical orbit time corresponding to

the mean excited energy E' 6g+2co= —10 a.u. is T=0.7X10
a.u. =1.7 ns. The other parameters are: Ao= 10 a.u. ,
yo = 4 x 10 a.u. , aud Ba/(x) = 0, a = 0.

sumed to be of the form F(x)= Fosinkx, with Ao and yo
indicating the maximum values of Rabi frequency and ion-
ization rate. In this example the energies of the excited
Rydberg states are located sufficiently well below the ioniza-
tion threshold so that effects of dispersion of the generated
Rydberg wave packets can be neglected for the interaction
times shown. If an atom crosses the standing-wave laser field
at a position x at which the initial state ~g) is depleted on a
time scale small in comparison with the mean classical orbit
times of the excited Rydberg states, i.e., 1/y(x)(& T~(x), two
radially localized electronic Rydberg wave packets with
mean energies e (x) are generated. The maxima appearing
after the initial depletion of the bound states ~g) and ~e) in
Fig. 2(a) are due to stimulated transitions of these electronic
Rydberg wave packets to one of these bound states. These
transitions take place during one of the subsequent returns of
these wave packets to the reaction zone centered around the
atomic nucleus. In the remaining curves inserted in Fig. 2(a)
the separate contributions of the initial depletion of states

~g) and ~e) (dotted curve), the first and second returns of the
faster electronic Rydberg wave packet (dashed curves), and
the first return of the slower electronic Rydberg wave packet
(chain dashed curve) are shown.

In Figs. 2(b —d) momentum distributions of atoms dif-
fracted by the standing-wave laser field are shown for the
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three interaction times that are indicated by arrows in Fig.
2(a). In Fig. 2(b) the interaction time r between an atom and
the laser field is so small that the electronic Rydberg wave
packets have not yet returned to the atomic nucleus. Thus the
momentum distribution shows characteristic features of one-
photon resonant two-photon ionization in a standing-wave
laser field. According to Eq. (5) the maxima of the momen-
tum distribution appear approximately at the classical values
P„=~(flak)(Aor/2). It is the Rabi oscillations between the
bound states ~g) and ~e) which lead to the large momentum
transfer in this case. The suppression of the oscillatory de-
pendence on the transferred momentum, which is character-
istic for two resonantly coupled states [10], originates from
the depletion of the bound states ~g) and ~e). In Fig. 2(c) the
time of flight r is sufficiently large so that the faster Rydberg
wave packet with mean energy e (x) and mean orbit time
T (x) has just returned to the atomic nucleus. Thus the time

(r T) a—vailable for stimulated transitions of this wave
packet to one of the bound states ~g) or ~e) is not yet long
enough to lead to a significant momentum transfer from the
laser field to the atomic center of mass. Thereby, the quantity
T is the smallest mean return time of all atoms that cross
the laser field, i.e., T = min„(T (x)). This implies that in the
momentum distribution, in addition to the maxima originat-
ing from the initial depletion process, a maximum centered
around P„=O also appears. A further increase of the time of
flight leads to a splitting of this central maximum as shown
in Fig. 2(d). Now four well-pronounced maxima appear in
the momentum distribution of the diffracted atoms. The two
outermost peaks are due to depletion of the bound states. The
central maxima now originate from the first return of the
faster wave packet to the atomic nucleus. According to Eq.
(5) these maxima appear approximately at the classical val-
ues P„=~(flak)[Ao(r —T )/2].

The main features exhibited by these momentum distribu-
tions suggest the use of resonant multiphoton excitation of
Rydberg states as a means for realizing atomic multiple beam
splitters that split an atomic beam coherently into two or
more parts and, in addition, lead to large momentum trans-
fers. As far as the practical feasibility of such a beam splitter
is concerned, let us consider the parameters used in Fig. 2 in
more detail. The momentum splittings shown in Figs. 2(b—d)
are achieved with times of flight r of the order of 1 ns and a
Rabi frequency Ao and excitation rate yo which correspond
to typical laser intensities of the order of 10 —10 W cm
in the case of sodium atoms, for example. As may be seen
from Fig. 2(a) these parameters imply an efficiency of the
beam splitter of the order of 30%. As in the case of other
atomic beam splitter s [4] the Ram an-Nath condition
kLP„/P;„(«27r places an upper limit on the maximum mo-
mentum splitting, which can be predicted reliably within our
model (for sodium atoms, for example, with U;„=1000
ms ', L=S p, m, and k=2m/k=600 nm, kLP„/P;„
= (P„/Ak)2. 5&& 10 is found). In order to achieve a large
momentum transfer within the validity of the Raman-Nath
approximation, a large spatial period of the standing-wave
laser field is desirable. Such large periods, which are signifi-
cantly larger than the wavelength of the laser field
X=2m.c/co (c is the speed of light), can be produced, for
example, by crossing two laser beams at a small angle
[2,15,16]. Furthermore, it should be taken into account that
experimental imperfections such as an initial velocity spread
of the atomic beam or effects of a more realistic (nonrectan-
gular) envelope of the laser field will tend to broaden the
momentum distributions shown in Figs. 2(b —d) slightly.

This work was supported by the SFB 276 of the Deutsche
Forschungsgemeinschaft.

[1]P. J. Martin, B. G. Oldaker, A. H. Miklich, and D. E. Pritchard,

Phys. Rev. Lett. 60, 515 (1988).
[2] T. Sleator, T. Pfau, V. Balykin, O. Carnal, and J. Mlynek, Phys.

Rev. Lett. 68, 1996 (1992).
[3] G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham,

M. Prentiss, and K. K. Berggren, Phys. Rev. Lett. 69, 1636
(1992).

[4] T. Pfau, C. S. Adams, and J. Mlynek, Europhys. Lett. 21, 439
(1993); C. S. Adams, T. Pfau, Ch. Kurtsiefer, and J. Mlynek,
Phys. Rev. A 48, 2108 (1993).

[5] S. Nic Chormaic, V. Wiedemauu, Ch. Miniatura, J. Robert, S.
Le Boitex, V. Lorent, O. Goceix, S. Fernon, J. Reinhardt, and

J. Baudou, J. Phys. B 26, 1271 (1993).
[6] P. Marte, P. Zoller, and J. L. Hall, Phys. Rev. A 44, R4118

(1991).
[7] M. A. M. Marte, J. I. Cirac, and P. Zoller, J. Mod. Opt. 3$,

2265 (1991).
[8] S. Dyrting and G. J. Milburn, Phys. Rev. A 47, R2484 (1993).
[9]A survey of recent work is given in Appl. Phys. B 54, 321

(1992).
[10]A. P. Kazantsev, G. A. Ryabenko, and G. I. Surdutovich, Phys.

Rep. 129, 75 (1985).
[11]G. Alber, Phys. Rev. Lett. 69, 3045 (1992); 70, 2200 (1993).
[12] G. Alber and P. Zoller, Phys. Rep. 199, 231 (1991).
[13]Without effects of atomic motion a similar model has been

discussed previously by G. Alber, Th. Haslwanter, and P. Zol-

ler, J. Opt. Soc. Am. B 5, 2439 (1988).
[14] M. J. Seaton, Rep. Frog. Phys. 46, 167 (1983).
[15]R. G. De Voe, Opt. Lett. 16, 1605 (1991).
[16]D. M. Giltner, R. W. Mc Gowan, N. Melander, and S. A. Lee,

Opt. Commun. 107, 227 (1994).


