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Abstract. With the help of the exact classical path repre- 
sentation of the time dependent propagator the dynamics 
of a charged particle in a Penning trap in the presence of 
an additional classical, time-dependent electric field is in- 
vestigated. In this way the connection between quantum 
and classical dynamics is exhibited in a clear way. The 
possibility of localizing a particle in the ground state of a 
Penning trap with unit probability by a suitably chosen 
electric field is discussed. 

PACS: 32.80.Pj; 32.90.+a; 35.80.+s 

The quantum dynamics of charged particles which are 
confined by external electromagnetic fields is a physical 
problem of current interest. Taking advantage of the fact 
that for Lagrangians which are at most quadratic in 
space and velocity variables the quantum dynamics can 
be constructed exactly from the knowledge of the corre- 
sponding classical dynamics [1, 2, 3, 4, 5] the time evolu- 
tion of wave packets in an ideal Paul trap has been 
discussed recently in a series of papers [6, 7]. These one- 
dimensional studies show that this exact relation be- 
tween classical and quantum dynamics offers the possi- 
bility of using the Paul trap in a simple way as a device 
for the preparation of various interesting experiments, 
for example for the well defined preparation of wave 
packets or the preparation of squeezed states of a 
charged particle [7]. Though this exact relation between 
quantum dynamics and classical dynamics also applies 
to the Penning trap [8] much less is known about the 
dynamics of wave packets in this case. 

In this letter the quantum dynamics of a structureless 
charged particle in a Penning trap in the presence of 
an additional time dependent, classical electric field is 
discussed. Within the dipole approximation this problem 
is equivalent to the dynamics of a three-dimensional an- 
isotropic harmonic oscillator whose equilibrium position 
varies with time. This implies that the exact path integral 
representation of the time dependent propagator of this 

problem can be constructed completely by a knowledge 
of the corresponding classical dynamics. With the help 
of this propagator the time evolution of an initially pre- 
pared Gaussian wave packet is studied. It is shown that 
in certain cases, by the application of a suitably chosen 
electric field in combination with a sudden change of 
the trap parameters, it is possible to localize a charged 
particle in the ground state of a Penning trap with unit 
probability. Furthermore, the use of the classical path 
integral representation of the propagator exhibits in a 
natural way the connection between the quantum dy- 
namics of the charged particle in the Penning trap and 
its corresponding classical dynamics. 

In the dipole approximation the Lagrangian which 
describes the classical dynamics of a structureless 
charged particle (mass M and charge q) in an ideal Pen- 
ning trap (with magnetic field B = B e~ and electric quad- 
rupole field V(x, y, z) = ~ x (2z 2 - x 2 - y2) with q~ > 0) in 
the presence of an additional, time dependent classical 
electric field E(t) is given by 

M 2 1 2 2  x, t) =-T + Mco (x +y2) 

- :  2z2 +½co~L~+qx.E(t)" (I) 

The z-component of the angular momentum is L~ 
= xpy-yp~ and the cyclotron and quadrupole-frequen- 
cies are co~ = qB/(Mc) and co~ = ] / /~/M. The correspon- 
ding modified cyclotron and magnetron frequencies are 
given by co + = co j 2  + f2 and co_ = co j 2 -  f2 with f2 

2 2 =1/~-~2/4-coJ2. In terms of this Lagrangian the exact 
path integral representation of the propagator which de- 
scribes the quantum mechanical time evolution of the 
charged particle is given by 

[ (/  11'2 a(x, t ;x0,  to)= Det 27ch cgx~-x"o]] eiS(x'~;x°'t°)l~" (2) 

It is completely determined by properties of the unique 
classical trajectory xc~(t) which fulfills the classical equa- 
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tions of motion of the Lagrangian of (1) and which starts 
at position x o at time to and reaches position x at time 
t. Its classical action 

S(x, t; x o, to)-- j d,L(/~,/(z), xol(z), z). (3) 
to 

is a quadratic function of the variables (x-Xo). An ex- 
plicit expression for this classical action has been given 
by Papadopoulos and Jones [5]• From a knowledge of 
this propagator the time evolution of any initially pre- 
pared state O(Xo, to) of a charged particle in a Penning 
trap is determined by 

~(x, t)= 5 d3xo 6(x, t; Xo, to)~(Xo, to). (4) 

This expression shows that it is the quantum mechanical 
interference between the contributions of all classical tra- 
jectories which start from any initial point Xo at time 
to and reach point x at time t which determines the 
wave function at point x. In general, ~/,(x, t) has to be 
determined from (4) by numerical integration. In the fol- 
lowing we concentrate on the time evolution of initially 
prepared Gaussian wave packets of the form 

~' (Xo, to) = (2 re)- 3/4 [D e t (0-0)] - 1/2 eipo . x/h 
- e - ( X -  xo) ~'~e 2(~_ ~o)t4 (5 )  

with the spatial variance matrix 

/ <Ax2> < xAy> ) 
i<A;d,> <AYe> ; 

0 (a z  2) 

For simplicity we restrict our following discussion to 
initial conditions without any correlations between the 
z and the x, y directions, i.e. (d xA z )= (A yA z ) =  0. In 
this case the quadratic dependence of the classical action 
of (3) on the variables (x -xo )  implies that (4) reduces 
to a Gaussian integral and can be evaluated easily. Thus 
we find for the time evolution of the probability density 
of the charged particle in the Penning trap 

[0 (x, t)[ 2 = (2 re)- 3/2 [D e t(o (t))] -* 

• e -  ( x -  x~,m) T~ ( o -  "-ix- ~o,(o)/2 (6 )  

with the time dependent spatial variance matrix 

~r2 (t) = U (ao 2 cos z [co ( t -  to)] + r~ ao z sin z [co ( t -  to)]) u r .  

The orthogonal matrix U describes a rotation around 
the magnetic field z-axis with angle co~ t/2. The diagonal 
3 x 3 matrices co and ro 2 are given by (o00) 

co= 0 O 0 
0 0 co~ 

and 

r2 = 2Mr2 

0 
2MCO~ 

and determine the characteristic frequencies and the spa- 
tial variances of the ground state of the Penning trap. 
Besides the rotation matrix U, the time dependent spatial 
variance matrix 0 -2 (t) has the same form as for a driven 
forced three dimensional harmonic oscillator with fre- 
quency ~ in the x - y  plane and with frequency co~ in 
the z-direction. This can be understood easily, because 
the Lagrangian of (1) can be transformed into this prob- 
lem by a rotation around the magnetic field axis with 
frequency coc/2. The initial canonical momentum P0 is 
related to the initial velocity/~o of a particle in the trap 
by Po = M i% + M coc ( - Yo e~ + Xo er)/2. 
Within the framework of the dipole approximation (6) 
implies that 

(1) an initially prepared Gaussian state remains always 
Gaussian, 
(2) the mean values xcl(t) and pcl(t) fulfill the classical 
equations of motion of the Lagrangian of (1) and 
(3) the width of the Gaussian wave packet oscillates 
with time. These oscillations of the width are independent 
of the applied external electric field. They are a typical 
quantum phenomenon and arise from quantum mechan- 
ical interferences between probability amplitudes of the 
classical trajectories which contribute to tp(x, t) accord- 
ing to (4) [7]. 

This special form of the time evolution of a Gaussian 
wave packet suggests a mechanism for localizing a 
charged particle in the ground state of a Penning trap 
with the help of a suitably chosen external (classical) 
electric field. The basic idea of this "coherent cooling 
mechanism" rests on the fact that according to the classi- 
cal equations of motion which are derived from the La- 
grangian of (1) for given initial values of position and 
velocity, xo and i%, we can always find an electric field 
which brings the particle to rest. 

In Fig. 1 a the time evolution of the mean position 
of a charged particle in the plane perpendicular to the 
magnetic field direction is shown. Its initial mean posi- 
tion and velocity are indicated by the cross and the ar- 
row in Fig. 1 a. The time evolution in the absence of 
the applied electric field is shown by the dashed curve. 
The applied electric field is circularly polarized and in 
resonance with the magnetron frequency, i.e. 

E (t) = (g/] / /~)  exp ( - ( t - -  tp)z/(2 z2)) 
• [e~ cos (co _ (t - tp)) - ey sin (co o. (t-- tv))]. 

As apparent from Fig. I a after application of this electric 
field in the mean the particle comes to rest in the center 
of the Penning trap. In Fig. l b  the corresponding time 
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Fig. 1. a Time evolution of (x±d) (t)((X±cl) (t). B = 0) for 0 < t < T 
with (full curve) and without (dashed curve) applied, time dependent 
electric field; tp=12n/co_, z=2n/co , T-24n/co_, oJ+/2n 
=580.6kHz, co /2n=33.7kHz; b Time evolution of the spatial 
variances with ( A x z) (0) = ( A y2) (0) = 2 x ( A xA y) (0) = 2 (in units 
of the width of the ground state ~ ) .  Characteristic frequen- 
cies as in a 
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Fig. 2. Time evolution of the spatial variances with (AxZ)(O) 
=(Ay2)(0)=4, (AxAy)(O)=O and (Az2)(O)=9 (in units of the 
corresponding widths of the ground state) 

evolution of the variances (Ax2)( t ) ,  (Ay2) ( t )  and 
( A x A y ) ( t )  is shown. 

Although after the interaction with the circularly po- 
larized electric field in the mean the charged particle 
is positioned in the center of the Penning trap with zero 
mean velocity, the corresponding spatial variances are 
still oscillating. However, under certain circumstances 
an instantaneous change of the parameters of the Pen- 
ning trap may be used to "freeze" these oscillations of 
the spatial variances and localize the charged particle 
with unit probability in the ground state of a newly confi- 
gured Penning trap. For  this purpose it is necessary that 
a time tl can be found at which the variances fulfill 
the relations 

(A x 2) (tl) = (A y2)(t~) 
(A xA y)  ( t , )=  0. (7) 

If at this instant of time the trap parameters are changed 
instantaneously from (B, ~b) to (B', ~b') in such a way that 

h 
(A x 2) (tl) = (A yZ) (tl) = 2 Mr2' 

and 

h 
(A z2) ( t0  = 2M~O'z 

(the primes indicate the new characteristic frequencies 
corresponding to (B', ~')), the state ¢(x, tt) is the ground 
state of the new trap with parameters (B', 4~'). It should 
be mentioned that the spatial variances of this new 
ground state can be much smaller than the correspon- 
ding variances of the ground state of the original Penning 
trap with parameters (B, ~b). The conditions of (7) can 
be fulfilled most easily if ( A x a ) ( t o ) = ( A y a ) ( t o )  and 
(A xA y)(to) = 0, initially, which implies (A x z) (t) 
= (A yZ)(t) and (A xA y ) ( t ) = 0  for all subsequent times. 
Figure 2 shows the time evolution of the non-zero spatial 
variances ( A x 2 ) ( t ) = ( A y 2 ) ( t )  and (Az2) ( t )  in such a 
case. 
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The strongest localization of a charged particle by 
this "coherent cooling mechanism" would be achieved, 
if the trap parameters were changed at a time t~ where 
(A x2 ) ( t l )=  (A y2)(t  0 and (A Z2)(tl) assume their mini- 
mum values. 

For  the experimental realization of the "coherent  
cooling mechanism" discussed above besides the initial 
preparation of a sufficiently symmetric Gaussian wave 
packet two points seem to be of major importance. First 
of all, the application of the classical electric field at 
time tp has to be synchronized with the initial prepara- 
tion time to of the charged particle in the trap. Further- 
more, the trap parameters have to be changed instantan- 
eously on the time scales determined by 2~/g2 and 2~z/co~. 
This may be achieved by a suitable change of the static 
electric quadrupole field, for example. Considering typi- 
cal trap parameters both conditions might be fulfilled 
by using ions, because in this case the fundamental fre- 
quencies of the trap are sufficiently small (typically of 
the order of Mhz or tess). 
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