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Abstract. With the help of a graph and an associated adjacency m w  the problem of 
semiclassical quantizatlon is discussed for physical systems with a discrete s y m e m .  A general 
expression~for the symmetry-reduced zeta-functions is derived in terms of symmetry-reduced 
moments of the adjacency operator. As an application the uniform semiclassical quantization 
conditions of the Hecht Hamiltonian are discussed within this approach. 

1. Introduction 

During the last few years the problem of semiclassical quantization, in particular of quantum 
systems which are not integrable classically, has received considerable attention because this 
approach yields direct insight into the connection between quantum and classical mechanics. 
Thereby the theoretical concept of a dynamical zeta-function which is associated with a 
physical system and whose zeros determine the semiclassical energy eigenvalues of the 
corresponding Hamiltonian has proved useful 11-31, 

There exist two equivalent ways of defining such a dynamical zeta-function which 
are related by an analytic continuation procedure. In the first place it may be defined 
with the help of a cycle expansion as an infinite product over all primitive cycles of the 
physical system under consideration [I]. In general, the evaluation of a dynamical zeta- 
function with the help of such a cycle expansion constitutes a considerable tkk  even for 
one-dimensional, classically integrable systems as soon as effects of quantum mechanical 
tunnelling are taken into account in a uniform way [4]. This is due to the fact that in this 
approach contributions of infinitely many primitive cycles have to be taken into account. But 
typically due to (approximate) cancellations between contributions of certain long primitive 
cycles and products of contributions of smaller cycles in the end only ~a finite number of 
permutation cycles [1,3] is relevant for the semiclassical quantization. In the secondplace, 
the zeta-function of a physical system may be defined by a determinant involving the unitary 
adjacency matrix of a graph which is approximated by a finite number of vertices. Thereby 
 the graph contains all the information about the topology of relevant (semi-)classical paths of 
the physical system which is needed for the evaluation of semiclassical energy eigenvalues. 
This approach offers the advantage that the cancellations between contributions of primitive 
cycles are taken into account automatically by the finite rank of the adjacency matrix 
and the contributions of the finite number of relevant permutation cycles is obtained in a 
straighforward and simple way. 

If a physical system is invariant with respect to group operations of a discrete group it 
is known that the corresponding dynamical zeta-function factorizes with one factor for each 
irreducible representation. However, so far explicit expressions for these symmetry-reduced 
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zeta-functions have been derived with the help of cycle expansions only by implementing 
the discrete symmetry cycle by cycle with the help of the concept of a 'symmetry-reduced 
phase space' [2,51. In this paper the problem of semiclassical quantization of physical 
systems with a discrete symmetry is approached from the point of view of a given graph 
and an associated adjacency matrix. As a main result, general expressions for symmetry- 
reduced zeta-functions are derived in terms of symmetry-reduced moments of the relevant 
adjacency matrix. These symmetry-reduced moments can be evaluated in a straightforward 
way with the help of the group characters. In particular, for this purpose neither a knowledge 
of irreducible representation matrices of the group nor the concept of a 'symmetry-reduced 
phase space' [2, 51 is required. Furthermore, by considering the special case of quantization 
of the (classically integrable) Hecht Hamiltonian [6] it is shown that, for graphs which 
constitute regular representations of the discrete symmetry group, the evaluation of the 
symmetry-reduced zeta-functions is particularly simple and the non-hivial effects of quantum 
mechanical tunnelling can easily be taken into account in a uniform way. 

The paper is organized as follows. For convenience, in section 2 basic properties 
of dynamical zeta-functions and their connection with semiclassical quantization are 
summarized. In section 3 general expressions for symmefxy-reduced zeta-functions are 
derived in terms of symmetry-reduced moments of the relevant adjacency matrix. As an 
example for the practical relevance of this approach, in section 4 these results are applied 
to the semiclassical quantization of the Hecht Hamiltonian. 

2. Semiclassical quantization and dynamid zeta-functions 

In this section we summarize some basic facts about semiclassical quantization of physical 
systems with the help of a dynamical zeta-function by concentrating on the simple but 
non-trivial case of dynamics of a particle in a double-minimum potential. 

It has been shown recently that, in the semiclassical approximation, energy eigenvalues 
of quantum systems may be obtained in a convenient way with the help of a finite graph and 
an associated adjacency or transfer matrix (kld(E)li) [3]. Thereby the energy eigenvalues 
are determined by the zeros of the corresponding dynamical zeta-function 

((E) = e-'s/2Det[l - d(E)}. (1) 

For convenience the phase factor e" = det(-A} in (1) is chosen in such a way that the 
unitarity of ( k l d ( E ) l i )  implies real values of ( ( E )  for real values of the energy E .  

As far as the determination of the energy eigenvalues of a quantum system is concerned 
this adjacency or transfer matrix contains all the required information. Physically speaking, 
this matrix and its corresponding graph characterize the topology of the dynamical flow 
of the physical system. One of the simplest non-trivial examples of such a graph which 
determines the uniform quantization conditions of a particle which moves in a double- 
minimum potential is shown in figure 1. The corresponding adjacency matrix is given by 
l4.71 

f 0  
&E) 

The quantities 5'1 and S2 are modified classical actions which characterize the dynamics 
inside the potential wells 1 and 2 and take into account effects of the potential barrier. The 
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~ ~ real-valued reflection coefficient is denoted p .  With each reflection there is associated a 
Maslov index of 1 which leads to the additional phase contributions of magnitude e-&fl. 
Explicit expressions for these quantities are given in [7], for example. Here the vertices 
of the graph correspond to the real-(or complex-)valued classical turning points. Its edges 
are elementary cl&sical (or non-classical tunnelling) paths which connect these tuming 
points. The adjacency matrix element (klA(E)li)  may be interpreted as the semiclassical 
probability amplitude for the transition of the physical system from a quantum mechanical 
state l i )  which is localized around vertex i to state lk)~ which is localized around vertex k 
along an elementary classical path: If two vertices are not connected by an elementary path 
the corresponding aansition probability amplitude is zero. Analogously,,the matrix element 
<k(d"(E)li) is the sum of all probability amplitudes for transitions from state li) to state 
Ik) along (composite) paths of length n. The adjacency operator A ( E )  may be viewed as a 
linear operator acting in the vector space V which is spanned by the localized states { l i ) ] .  

~ 

. 

2 4 

Figurr 1. Double-minimum potential and corresponding graph. 

For energies well above the potential barrier the semiclassical reflection coefficient p 
becomes exponentially small and contributions from the elementary paths 1 + 2 and 4 + 3 
tend to zero. Similarly, for energies we11 below the potential barrier, the conbibutions of 
the non-classical tunnelling paths 1 -+ 3 and 4 -+ 2 become exponentially small. Thus 
the graph of figure 1 and its adjacency matrix yield via the zeros of the corresponding 
dynamical zeta-function, i.e. 

<(E) = cos@, f S,) +pcos(S, - S,) = 0 (2) 

in a simple way the well known uniform quantization condition for a double-minimum 
 potential.^ 

Alternatively the dynamical zeta-function of a physical system may be evaluated by 
applying a so-called cycle expansion to a product representation of equation (1) in terms of 
primitive cycles [3]r This product representation is obtained from (1) with the help of the 
relation 
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Thereby the trace operation Tr(dn(E)) implies that InDet(1 - d ( E ) )  is expressed as a sum 
of contributions of all closed paths of the physical system. Introducing the concept of a 
primitive cycle, we thus obtain from (1) the product representation 
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with w(yP) denoting the semiclassical probability amplitude of the primitive cycle yp .  (A 
cycle is a closed path of the corresponding graph modulo starting point; a primitive cycle 
cannot be represented by a repetition of any shorter cycles.) In general, the number of 
primitive cycles is infinite so that equation (4) involves an infinite product. This implies 
that for real values of the energy E the product representation of (4) is not applicable 
directly because it is not convergent. (For the graph shown in figure 1 it may be shown 
explicitly that (1) and (4) are only equivalent for energies with a positive imaginary part 
[4].) For real values of energy the product representation of (4) is equal to (1) only in the 
sense of an analytic continuation procedure. This analytic continuation can be achieved by 
the mechanism of the so-called cycle expansion [1,2]. Thereby the infinite product of (4) 
is expanded formally, i.e. 

and is evaluated in such a way that contributions from certain long primitive cycles are 
cancelled by products of contributions of smaller cycles. Thus finally all but a finite number 
of terms which correspond to permutation cycles [3] remain. 

Evaluating the dynamical zeta-funct,ion directly from equation (1) by characterizing a 
physical system by a graph and an associated adjacency matrix offers the advantage that the 
contributions of the finite number of permutation cycles is obtained directly by evaluating the 
determinant involving the adjacency matrix. Thereby the finite dimension of the adjacency 
matrix takes into account automatically the infinitely many relations between contributions 
of certain long primitive cycles and corresponding products of smaller primitive cycles 
which cancel each other in the cycle expansion [3,4]. Explicit expressions for adjacency or 
transfer matrices have been derived recently for onedimensional [4,7] and two-dimensional 
[3] physical systems. 

3. Discrete symmetries and symmetry-reduced dynamical zeta functions 

In this section general expressions- for symmetry-reduced dynamical zeta-functions are 
derived in terms of symmetry-reduced moments of the adjacency matrix of an arbitrary 
graph which is symmetric with respect to a discrete symmetry group. As a main 
result, semiclassical quantization conditions are obtained by this method in a simple, 
straightforward way from a knowledge of the group characters only, without any reference 
to the concept of a ‘symmetry-reduced phase space’ [2,5]. 

The symmetry of a physical system with respect to a discrete symmetry group 8 
manifests itself in the symmetry of the corresponding graph. Thereby each group operation g 
leads to a permutation of the vertices of the graph. The corresponding linear transformations 
U ( g )  (g E 8) in the vector space V which is spanned by the localized quantum states [li)] 
form a representation of the group 8. Thus the discrete symmetry implies 

[A, u(g)l= 0 (g E 8) (6) 
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and the adjacency matrix may be brought into block diagonal form by a unitary 
transformation. This implies that the dynamical zeta-function of (1) factorizes, i.e. 

j-1 

with each factor <,(E) originating frdm an irreducible representation of the discrete 
symmetry goup. The integer r counts the number of inequivalent irreducible~representations 
of dimension dj and equals the number of classes of the group [ S I .  For graphs wit+ a large 
number of vertices, in general this block diagonalization constitutes a:considerable task and 
besides a knowledge of the group characters also $e irreducible representation matrices of 
the group have to be known. 

Expressions for symmetry-reduced zeta-functions have been derived recently by starting 
from the product representation of (4) [Z]. With the help of the concept of a symmetry- 
reduced phase space the discrete symmetry has been implemented cycle by cycle. Thus 
product representations for the corresponding symmetry-reduced zeta-functions are obtained. 
From the practical point of view the evaluation of symmetry-reduced zeta-functions with this 
approach constitutes a considerable task even in the simple case of one-dimensional quantum 
systems as soon as effects'of tunnelling have to be taken into account in a uniform way. 
Thus it seems desirable to derive explicit expressions for symmetry-reduced zeta-functions 
directly from a given graph and an associated adjacency operator. For this purpose we start 
from equation (3) and decompose the basis vectors li) which correspond to the vertices of 
a given graph into irreducible components according to [8] 

In this notation x ( j ) ( g )  is the character of the group element g in the'jth irreducible 
representation. The dimension of this representation i s~dj  and r is equal to the number of 
classes of the group. The order of the group is denoted N .  Evaluating the trace Tr(d"(E)) 
in (3) with the help of the symmetry projectionof (8) we thus find the'reduced zeta-functions 

Thereby the nth, symmetry-reduced moment of the adjacency operator is defined by 

. 

The evaluation of the reduced zeta-function of (9) can be simplified considerably by taking 
into account the finite rank of the unitary adjacency mahix. This may be achieved in a 
convenient way by introducing the quantities ( A Y E ) ) ,  which are defined by the generating 
function 
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These quantities are universal polynomials of the symmetry-reduced moments @?(E)). 
Explicit expressions for them for n 6 4 are given in table 1. Without symmetry-reduction 
the relation between moments of A and these universal polynomials as given in (1 1) has 
already been used by various authors [3,91. Inserting (11) into (9) we finally obtain 
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. 
Now the symmetry-reduced zeta-function is represented as a finite sum invol?ing symmetry- 
reduced moments of the adjacency operator. The upper limit of summation nj is related to 
the rank dA of the unitary adjacency operator by 

dA = njdj. (13) 
j=1 

This relation may be obtained from (1) by formally multiplying each adjacency matrix 
element by a factor z. Then the finite rank dA of the unitary adjacency operator implies that 
Det(1 -A(@) is a polynomial in the variable z of order zdA which, together with equation 
(7), implies (13). Similarly, the phase Sj in (12) may be obtained from (7) by considering 
the limit z --f CO, thus obtaining 

which implies S = E:=, djSj. Thus all quantities (dy(E)), with n z nj are zero. From the 
point of view of the cycle expansion of the dynamical zeta-function these infinitely many 
relations between symmetry-reduced moments of the adjacency operator reflect the fact 
that an adjacency matrix of finite rank implies automatically that contributions of certain 
long primitive cycles are cancelled by contributions of certain shorter ones [ 2 4 .  The 
general expression for the factorization of the dynamical zeta-function, which is obtained 
from (7) and (10)+12), is the main result of this section. It allows the evaluation of the 
reduced dynamical zeta-function directly from the group characters and the given graph. 
A knowledge of the irreducible representation matrices of the group or the concept of a 
'symmetry-reduced phase space' [2,5] is not quired.  Furthermore, in cases in which the 
number of vertices of the graph equals the order of the discrete group the evaluation of 
the symmetry-reduced moments is greatly simplified. In this case the graph constitutes a 
regular representation of the symmetry group and any vertex of the graph can be reached 
from an arbitrarily chosen vertex, for example vertex II), by one of the group operations. 
Thus, equation (10) reduces to 

860 

In the following section we discuss the semiclassical quantization of a classically integrable 
physical system which may be represented by such a graph. In particular, it is shown that 
this approach allows to take into account the non-trivial effects of quantum mechanical 
tunnelling in a straightforward and uniform way. 
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Table 1. Explicit expressions for the first few polynomials (d:), in terms of the corresponding 
symmetry-reduced moments of the adjacency operalor (a:). 

1 Cdj) 
2 (dj)* - (A:) 
3 
4 

(A,)) - 3(dj)(d:) + Z(d:) 
(dj)4 - 6(djrz(d;) + 3(d3'+ S(dj)(dj) - 6(d$ 

4. Application 

As an example, in this section we discuss the semiclassical quantization of the Hecht 
Hamiltonian [6] 

H ( J ) = a J 2 + b ( J ~ + . I ~ + J ~ - $ J 4 )  (16) 

with the help of a graph and an associated adjacency matrix. This model Hamiltonian 
has been used successfully for the description of rotational spectra of non-rigid octahedral- 
symmetric molecules like s& [IO]. In the case of s& the parameters a and b assume the 
values a = 0.091 083 cm-' and b = 1.81 x cm-'. Here, J is the body-fixed angular 
momentum operator of the molecule, and both H ( J )  and J z  are conserved quantities. 
Therefore, on the energy shell and for fixed value of 5' the dynamics are one-dimensional, 
so that this Hamiltonian describes a classically integrable dynamical system. Classically, 
at energy Es = OSbP the dynamics evolve along~separatrices with '12 stable and 12 
unstable fixed points. Correspondingly, for energies E < Es there exist eight stable 
periodic orbits and for E > Es their number is reduced to six [10-12]. Semiclassical 
quantization conditions for this Hamiltonian which are valid either well below or well 
above this threshold have already been derived by &ter a d  Pat.terson [IO]. Semiclassical 
quantization conditions which are valid uniformly-across this threihald ha?e been derived 
recently by Robbins et al [I 1,121 from the point of view of periodic orbit theory. With the 
help of elaborate sumhation techniques these authors derived analytical expressions for the 
semiclassical energy eigenvalues by.determining the poles of the density of states. 

Alternatively, these uniform semiclassical quantization conditions may also be obtained 
in a straightforward and simple way with the help of a suitably chosen graph and an 
associated adjacency matrix which constitute a regular representation of the octahedral 
symmetry group. Such a graph can be constructed by inspection of the classical paths of 
the angular momentum J for fixed values of energy and 5'. For energies E < E$ there 
exist eight classical periodic orbits which describe precession of the system around one of 
the eight stable fixed points of the angular momentum [12]. They are indicated in figure 2 
by dashed lines. The topology of the six classical periodic orbits which exist for energies 
E > E, is indicated by solid lines in figure 2. If we characterize these dynamical aspects 
by a graph which constitutes a regularrepresentation of the octahedral symmetry group, we 
have to take into account that any vertex must be reachable from any other one by application 
of one of the group operations. Furthermore, it is a natural requirement that vertices which 
belong to closed paths and are associated with classical periodic orbits of the physicai system 
are connected by group elements which belong to an Abelian and therefore cyclic subgroup. 
(In semi-simple Lie groups, for example, this requirement defines the natural geodesics of 
the group manifold [13].) This implies that the six classical periodic orbits which exist for 
energies E > E$ may be associated in a natural way with the six different fourfold rotations 
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(usually denoted C,) of the octahedral symmetry group [SI. Therefore each of these orbits 
consists of four vertices of the =pph which are all connected by only one of the six possible 
fourfold rotations which generates an Abelian subgroup. A corresponding graph is shown 
in figure 2. The number of vertices, namely 24, equals the order of the symmetry group. 
In figure 2 these vertices are visualized by points on the faces of a cube. The six closed 
paths on these faces whose vertices are connected by solid lines represent the six classical 
periodic orbits of the physical system which exist for energies E > E$. Analogously, the 
eight classical periodic orbits which exist for energies E < Es may be associated with the 
eight possible threefold rotations (usually denoted C,) of the octahedral symmetry group 
[SI. The corresponding closed paths of the graph are indicated by dashed lines in figure 2. 
For energies E < Es the solid lines of figure 2 represent non-classical elementary tunnelling 
paths, whereas the dashed lines represent classically allowed elementary paths. For energies 
E > E, the situation is reversed. An adjacency matrix which is symmetric with respect 
to the octahedral symmetry group may be obtained easily from this graph by associating 
with each solid line a probability amplitude W I  = -2: and with each dashed line a 
probability amplitude 02 = pe@r/*). In analogy with the tunnelling problem discussed in 
section 2, p is the reflection coefficient which tends to 1 for energies well below Es and 
becomes exponentially small for energies well above E,. Each reflection implies a Maslov 
index of 1. The modified classical action s characterizes the dynamics along an elementary 
path. Explicit expressions for these quantities as a function of energy, suitably continuated 
for E > E,, are given in [121. 
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Figure 2. Graph of the Hecht Hamiltonian 

With the help of this graph and the general expression for the reduced zeta-functions 
as given in (12) and (15), we can easily perform the symmetry reduction and obtain the 
uniform semiclassical quantization conditions of the Hecht Hamiltonian. The evaluation of 
the symmetry-reduced moments of the adjacency operator is 5eatly simplified by noting that 
only two group elements start from each vertex. This implies that, for n = 1 for example, 
the sum in (15) consists of two terms only. For convenience, in table 2 the characters 
of the five classes of the octahedral group (rows) are summarized for the five irreducible 
representations (columns). Furthermore, as we are dealing with a regular representation the 
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integers nj appearing in (12) are given by nj = dj < 3 [8]. Thus we simply obtain the 
following reduced dynamical zeta-functions 

~~ 

<&(E) = 2cos (y) 

with 
conditions of the Hecht Hamiltonian [II, 121. 

'= cos@). Their zeros determine the well known uniform quantization 

Table 2. Character table of the five classes (rows) of the octahedral group for the five 
inequivalent inducible represenrations (colums). 

E 8C3 3C2 6Cz 6C4 

Ai 1 1 1 1 I 
A? I 1 1 -1 -1 
E 2 -1 2 0 0  
TI 3 0 -1 -1 1 
Tz 3 0 -1 1 -1 

This example demonstrates that the use of a graph and an associated adjacency matrix 
provides not only a practical but also a physically illuminating method for semiclassical 
quantization of systems with a discrete symmetry. Thereby the graph characterizes the 
topology of the dynamic flow of the physical system. As this approach allows the inclusion 
of effects of quantum mechanical tunnelling in a stnightforward way, it may prove useful 
in the future. development of a uniform semiclassical theory of multidimensional tunnelling. 
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