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Bifurcations of electronic trajectories and dynamics
of electronic Rydberg wave packets
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With the help of uniform semiclassical approximations the quantitative connection between clas-
sical bifurcation phenomena and the dynamics of an electronic Rydberg wave packet in the presence
of an external static magnetic field is discussed with particular emphasis on nongeneric bifurcations
of the Edmonds-Garton-Tomkins orbit.
PACS number(s): 32.60.+i, 32.80.Rm

I. INTRODUCTION

The development of short and intense laser pulses has
stimulated much interest in coherent laser-induced exci-
tation processes in which a large number of energy eigen-
states of a quantum system are excited coherently and a
nonstationary, localized quantum state is prepared [1].
One of the simplest physical systems in which the dy-
namics of such a wave packet can be studied are Rydberg
atoms. Typically, a short or intense laser pulse excites
coherently a large number of Rydberg states close to a
photoionization threshold from an initially prepared en-
ergetically low lying bound state. Thus an electronic
state is prepared which is well localized with respect to
the radial electronic coordinate. The angular coordinates
are still delocalized due to selection rules for radiative
transitions. This radial Rydberg wave packet evolves in
the Coulomb field of the positively charged ionic core. Its
time evolution may be probed with the help of a typical
pump-probe-type detection scheme.

From the theoretical point of view the dynamics of such
a radial electronic wave packet can be described conve-
niently with the help of a semiclassical path representa-
tion [1]. Thereby the two-photon transition amplitude,
which describes such a pump-probe-type experiment, is
represented as a sum of contributions of all classical tra-
jectories of a Rydberg electron. These trajectories start
from and return again to the atomic core where the ini-
tial laser-induced preparation process takes place. An
interesting situation arises if outside the atomic core re-
gion the dynamics of a laser-excited Rydberg electron is
modified by an external static field and the correspond-
ing classical dynamics is not integrable. In their simplest
form these representations allow one to relate the quan-
tum dynamics of the excited Rydberg electron directly
to the corresponding classical dynamics in the neighbor-
hood of isolated closed orbits [2—4] which start and re-
turn to the nucleus. Thus these representations yield
direct quantitative insights into the connection between
classical and quantum mechanics. However, the simple
"isolated-closed-orbit" approach breaks down if some of
the relevant classical trajectories approach each other. In
this case the resulting strong quantum-mechanical inter-

ference eKects between the contributions of these trajec-
tories have not been taken into account properly. Typi-
cally, this happens at energies at which a classical bifur-
cation phenomenon takes place.

In this paper we study the inHuence of such classical
bifurcation phenomena on the dynamics of an electronic
wave packet in a Rydberg atom. As an example, we
present results for a system which has received consider-
able attention recently, namely the diamagnetic Kepler
problem [5—8]. Due to a discrete reflection symmetry
with respect to a plane through the nucleus and perpen-
dicular to the magnetic field, classically this problem ex-
hibits nongeneric bifurcation phenomena. The classical
dynamics of some of them has been studied by Mao and
Delos [9] recently. An interesting example is the period-4
bifurcation of the Edmonds-Garton- Tomkins orbit which
extends along a straight line through the nucleus in the
symmetry plane. Using uniform semiclassical methods
[10, 11] semiclassical path representations are derived for
the two-photon transition amplitude which describes a
typical pump-probe-type experiment where the dynamics
of an electronic Rydberg wave packet is probed. This way
quantitative insight into the relation between these clas-
sical bifurcation phenomena and the quantum dynamics
of an electronic Rydberg wave packet which moves under
the inHuence of the Coulomb potential of the positively
charged ionic core and the external static magnetic field
is obtained.

The paper is organized as follows. In Sec. II a sum-
mary of results on the semiclassical path representa-
tion of two-photon transition amplitudes which describe
pump-probe-type experiments is given. In Sec. III a
uniform semiclassical path representation is derived for
this two-photon transition amplitude which describes
the short-time behavior of an electronic Rydberg wave
packet in the energy regime where nongeneric bifurca-
tion phenomena of the Edmonds-Garton-Tomkins orbit
take place.

II. BASIC EQUATIONS

In this section previously derived results on the semi-
classical path representation of the two-photon transition
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Thereby the Hamiltonian

(~ = sg + ~i = ef + (u2). (1)

H=H~ —pI, +2p r sino (2)

describes the dynamics of an excited valence electron
with polar coordinates (r, 8, &p) in the presence of a uni-
form, static magnetic field. The atomic Hamiltonian is
denoted H~ and I, is the angular momentum in the di-
rection of the magnetic field whose field strength p is
measured in units of Bo ——4.72 x 10 T. The atomic
dipole operator is denoted p, and r i ~2~, ~i ~2~ are po-
larization and frequency of the absorbed (emitted) laser
radiation. With the replacement cz -+ e2 Eq. (1) de-
scribes also one-photon resonant two-photon absorption.
In terms of the matrix element Tfg (e') the transition prob-
ability between initial and final states

~ g) and
~ f) of a

typical pump-probe-type experiment with two nonover-
lapping time-delayed short laser pulses is given by

1
&g~f =

27r
ds e *'~" "~Tg (s)Ei (s —s —(ui )

x f2 (8 —Ef —ld2)

with Z, (e) = j dt e" F;(t + t, ) denoting the Fourier

transform of the laser fields E;(t) = F;(t)e,e ' * +
c.c. (i = 1, 2). The slowly varying envelopes of the laser
pulses Ei 2(t) are assumed to be centered around times
ti and t2 with pulse durations wi and r2 (ri 2 « t2 —ti).
Furthermore, accoording to Fermi's golden rule the time-
independent photoabsorption rate

I' = —2Im[Tgg (
E

( ], (4)

describes resonant excitation by a weak and long laser
pulse from an initial state

~
g).

energy
s

amplitude [1] which describes pump-probe-type exper-
iments for a Rydberg atom in a weak static magnetic
field are summarized.

A quantity of central importance in the description of
atomic processes which involve the absorption and stim-
ulated emission of laser radiation is the resonant part of
the two-photon transition amplitude. For a transition
between initial and final atomic states

~ g) and
~ f) it is

given by (see Fig. 1) [1]

r„(~) = (f ~
g

. e2(~ —H + zo)-'I e,
~ g)

In cases in which the dynamics of an excited valence
electron in the presence of a static external field is modi-
fied significantly only at large distances from the nucleus,
in general three characteristic spatial regimes may be dis-
tinguished.

(1) The atom-laser interaction as well as electron cor-
relation effects are localized in a reaction zone which typ-
ically extends only a few Bohr radii around the atomic
nucleus.

(2) In the surrounding Coulomb zone the dynamics of
a highly excited Rydberg electron is determined domi-
nantly by the Coulomb potential of the positively charged
ionic core.

(3) At sufficiently large distances from the atomic nu-
cleus, i.e., in the asymptotic zone, the static external Beld
becomes at least as important as the Coulomb potential.

If the applied static external field is sufBciently weak the
extension of the Coulomb zone is large in comparison
with the Bohr radius which implies relevant classical ac-
tion much larger than h. Based on this observation a
semiclassical path representation may be derived for the
two-photon transition amplitude by combining semiclas-
sical methods with methods of quantum defect theory.
Thereby this quantity is expressed as a sum of probabil-
ity amplitudes of all classical trajectories which leave the
Coulomb zone with pure radial momentum and return
again to the reaction zone. In the absence of an external
field the rotational symmetry of the Coulomb problem
implies that all trajectories return again to the reaction
zone with the same value of the classical action thus in-
terfering constructively. In this limit the semiclassical
path representation reduces to the well-known results of
quantum defect theory. In the case of a weak external
static magnetic field, i.e. , p « 1, it is found that [1]

Tf, (e) = Tf,
' +(2 ) ). ) d+ (8, )d (8o, )

m

(~g ) ) 1/2 i[n~ S~ —mn~ xv~ —p,„.~/2+m/4j

(5)

All quantities in Eq. (5) have to be evaluated at en-

ergy e = e + mp with the magnetic quantum number
m. Thereby the two-photon transition amplitude is ex-
pressed as a sum of contributions of all isolated closed
orbits j, which start from and return again to the atomic
nucleus with angles 00~. and 0~. The integer n~ counts
the number of traversals of these orbits. The probability
amplitude of the neth return of orbit j to the reaction
zone is determined by the following.

(1) Photoionization and recombination dipole matrix
elements [1], i.e. ,

d' '(8») =).8' ( 1)'&i (8»—o)

FIG. 1. Schematic representation of a pump-probe exper-
iment with two time delayed short laser pulses. (they characterize the atom-laser interaction and possible
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electron-correlatioii effects inside the reaction zone).
(2) The classical action, n~S~, the Maslov index, p,„,,

the number of crossings of the symmetry axis n~v~, and
the cross section

(nj)
2

slnO~ sinOp~

88p sin(uj ) 2

which characterize the classical motion of the excited
Rydberg electron in the Coulomb Geld of the posi-
tively charged ionic core and the external magnetic Geld.

Due to the axial symmetry of the diamagnetic Kepler
problem around the magnetic field axis the contributing
closed orbits form one-parameter families with respect to
the angular coordinate p and are only isolated with re-
spect to the angular coordinate 0. All orbits within such
a family, i.e. , with di8'erent emission angles yp, inter-
fere constructively. The cross section o. ' determines

2
the range of initial emission angles Lop~ within which
orbits interfere constructively (Fresnel zone) [12]. It is
determined by the derivative of the angular momentum
pg with respect to 61p. Scaling properties of the Hamil-
toiuan of Eq. (2) imply that classical actions of closed
orbits are proportional to A = p ~ (in units of h) so

that o . ' = O(A ) and the extension of the Fresnel
zone tends to zero in the semiclassical limit A » 1. The
quantity u~ is the imaginary part of the stability expo-
nent of the closed orbit j. The first term in Eq. (5),
T ', describes the "direct" part of the two-photon am-
pIitude and is approximately energy independent. In the
absence of any closed orbits it is the only contribution to
Tyg It should be mentioned that in practical applications
of Eq. (5) typically only closed trajectories with orbit
times T~ & T are taken into account. Thereby T
is a typical observation time of interest. This amounts
to an averaging of Tfg(s) over an energy interval of the
order of As' —2'/T

As a major approximation in the derivation of Eq. (5)
it has been assumed that the contributions of all relevant
(families of) closed orbits are well separated spatially.
This assumption breaks down if contributing (families of)
orbits approach each other and the corresponding Fres-
nel zones of initial angles start to overlap. This may
happen at particular energies whenever a classical bifur-
cation phenomenon takes place and

JN (~) = d0 G~ (0 e)e' ~+'( '"l

with I"tv+i(0o, E) and G~ (0p, e) denoting polynomials
of degrees (N+ 1) and K. The coetIicients of these poly-
nomials may be determined by the requirements that the
stationary phase points of this uniform integral are iden-
tical with the emission angles of the relevant classical
trajectories. Further, one requires that in the semiclassi-
cal limit, i.e., A = p / » 1, for energies suKciently far
away from the bifurcation energy the stationary phase
evaluation of Jiv (s') reduces to the corresponding result
of the "isolated orbit approximation" as given in Eq. (5).

III. APPLICATION

In this section the "isolated-closed-orbit" representa-
tion of Tjg(e) as given in Eq. (5) is generalized to a
description of bifurcation phenomena in the diamagnetic
Kepler problem with particular emphasis on bifurcations
of period 4, period 7, and period 18 of the Edmonds-
Garton- Tomkins orbit.

The classical mechanics of bifurcation phenomena
which occur in the diamagnetic Kepler problem has been
discussed recently by Mao and Delos [9]. In particular, it
has been shown that, due to the discrete reBection sym-
metry of the Hamiltonian with respect to a plane through
the Coulomb center perpendicular to the magnetic field
axis, nongeneric bifurcation phenomena take place. An
interesting case is the period-4 bifurcation of the periodic
Edmonds-Garton- Tomkins orbit Io (with classical orbit
time To) whose path starts from the Coulomb center and
extends on a straight line in the symmetry plane per-
pendicular to the magnetic field axis. Due to this reOec-
tion symmetry at energy ez ———0.50375' / a saddle-
node bifurcation leads to the creation of a stable and
unstable closed orbit (Ii, I2) and the re8ected counter-
part (I i, I 2). Both pairs of orbits are located close to
the periodic orbit Ip and return to the nucleus approx-
imately at even multiples of the classical orbit time Tp.
At energy z~ ———0.50191' / the stable orbit Iq and its
reHected counterpart I q coalesce with the periodic orbit
Ip and for energies e ) e2 only the unstable closed orbit
I2 and its counterpart I 2 together with orbit Ip remain.
In Fig. 2(a) the emission angles 0p of these closed orbits
are shown as a function of scaled energy 8 = s/p2~ . The
form of these orbits is depicted in Fig. 2(b).

Opo
sin(n, u, ) = 0

pj (b)

7=—0.5032

I,—unstable

for the contribution of the neth return of an electron

along a closed orbit j. This implies that o. . ' ~ oo. In2.
this case the contribution of overlapping trajectories, for
example ((j i, n~i), (j2, nz2), . . . , (j~, n~N. )j, to the two-
photon transition amplitude may be determined by using
uiuform semiclassical approximation techniques [10, 11].
A comparison integral with which, for a given value of
the magnetic quantum number m, the contributions of
these N (families of) closed orbits can be described in a
uniform way is given by

o
oo

o
0—
03

0 o
0& o

—stable

I,—stable

o
o

-0.5050

-2

o
I -0.2 0.5

P

FIG. 2. Initial starting angles Oo of orbits IO,I~q, I~2 as a
function of scaled energy e = s/p (a) and their form (h)
with p = Q~'+ y'p'~' and z = zp'~'.
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In the energy range c —e1 —e2 and for a given value
of the magnetic quantum number m the contributions of
the five closed orbits (I„n,) with (s = 0, +1,k2) and
n~1 ——n~2 ——1, n0 ——2 = n, for example, to the two-
photon transition amplitude can be described with the
help of the comparison integral of a cuspoidal butterHy
catastrophe [13],

J(n)
( ) do G( ) (g )

zE6 (OO, K)

with the polynomials

k=0, 1,2

k=0, 1,2,3
(13)

In Eq. (11) we have assumed that the main contribution
to the integral comes from angles Oo a/2 so that the
limits of integration may be extended to infinity. The
special form of these polynomials already take into ac-
count the reHection symmetry of the diamagnetic Ke-
pler problem. As shown in the Appendix, in the energy
regime e1 & e & c2 the parameters of these polynomials
are determined by the classical properties of the relevant
five closed orbits by the requirement that Eq. (11) has
to reduce to the corresponding part of the "closed-orbit
representation" as given in Eq. (5) for A » 1 and for
energies suKciently far away from the bifurcation ener-
gies. These parameters are slowly varying functions of
energy across the bifurcation region. Their relation to
the dipole matrix elements and classical properties of
the relevant trajectories which appear in Eq. (5) are
summarized in the Appendix. Similar bifurcation phe-
nomena of period 7 and period 18 take place around en-
ergies c3 ———0.4194' / and c4 ———0.4365' / . In Fig.
3 the energy dependence of sin(nouo) is shown. Accord-
ing to Eq. (S) whenever this quantity tends to zero the
"isolated-closed-orbit" representation of Eq. (5) breaks
down and a bifurcation phenomenon which involves the
Edmonds-Carton- Tomkins orbit I0 takes place. Fig-
ure 3 shows that as far as contributions with n0 & 10

o
stable (b) Z=-O.42a

o
0N o-

able o
PN o-

are concerned these are the only bifurcation phenom-
ena of orbit I0 which take place in the energy regime
—0.55 & e' & —0.4. The form of the stable and unstable
periodic orbits which are involved in the bifurcations at
energies e4 and r3 are shown in Fig. 4.

The inHuence of these classical bifurcation phenomena
on the time evolution of an electronic wave packet may be
studied with the help of a pump-probe-type experiment
[1]. Thereby a first short laser pulse centered around time
ti (pulse duration 7i, frequency cui, and polarization ei)
prepares a radial electronic wave packet by exciting a
large number of atomic Rydberg states coherently from
an initially prepared energetically low-lying bound state.
As soon as this electronic wave packet leaves the Coulomb
zone it is split into various fractions by the combined ac-
tion of the Coulomb and external magnetic Beld. These
various fractions return to the reaction zone at different
times thereby moving along one of the classical closed
orbits. They may be probed by a second short laser
pulse centered at time t2 (pulse duration r2, frequency
w2, and polarization e2) which induces an atomic tran-
sition to some energetically low-lying bound state or to
continuum states well above the photoionization thresh-
old. after a time delay At = t2 —t1. The probability of
Bnding the atom in the Bnal state is large whenever the
time delay between both laser pulses is a multiple of one
of the classical orbit times of the closed orbits. By chang-
ing the polarizations and frequencies of pump and probe
pulse the relevant emission angles and the mean excited
energy of the generated electronic wave packet may be
varied. Thus, for example, choosing the polarizations of
pump and probe pulse orthogonal to the magnetic Beld
axis, an excited Rydberg electron is emitted from the re-
action zone dominantly with Oo 7r/2 and is probed by
the second laser pulse if it returns again with 0 = n/2.
In this case the two-photon transition amplitude may be
approximated uniformly by

0.5
tV

P

o
—0.2 0.5

P

I

1.2

o (c) 7=—0.444 (d) 7=-0.444

O-

o
Q N

stable
gN

I

—0.60

C.

—0.50
I-0.45

I
—0.40

-0.20

unstable

0.45

P

stable

0.45

P

I

1.10

FIG. 3. Energy dependence of sin(nouo) with the imagi-
nary part of the stability exponent uo of orbit Io.

FIG. 4. Unstable and stable orbits involved in the bifur-
cations of periods 7 and 18 which take place at energies c4
[(a) and (b)] and ss [(c) and (d)I.
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Ty (4)=T'1+ )
m=+1 n=2, 4,6,8, 10

J( )( )
O o

C4)—

7 =-0.04/y, E=—0.48, y=10

+J!'~ )+J!') ))
C)0—

(i4)

The quantity I' is the photoionizationiza ion rate which accord-

are summarized in Table I. Th
g p p-probe transition probabilit has b

d -11 fy rom Eqs. (14) and (3).

C3
C3

7 =0.04/y, E=—0.50, y=10
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nantly from a fraction of the initially prepared electronic
wave packet which has evolved along t;he periodic orbit
Io for eight periods. The adjacent broad peak is due to
fractions of the electronic wave packet which have evolved
along the bifurcated orbits I~2 for two periods, i.e, . 4T2.
The recombination peak at At —15.7/p originates pre-
dominantly from a fraction of the electronic wave packet
which has evolved along the Edmonds-Garton- Tomkins
orbit Io for nine periods. The corresponding probability
of this contribution only is shown by the dotted curve in
Fig. 6. The dashed curve in Fig. 6 shows the G.nal-state
probability without this contribution. The significantly
excited energy regime includes also energy c4 around
which a bifurcation phenomenon of period-18 takes place.
The stable and unstable closed orbits which are involved
in this bifurcation phenomenon are shown in Figs. 4(c)
and 4(d). Due to quantum-mechanical interferences the
recombination peak of these bifurcating orbits alone, i.e. ,
the dotted. curve of Fig. 6, exhibits an asymmetric line
shape. Comparing the dashed and dotted curves it is ap-
parent that the oscillations of the full curve of Fig. 6 for
time delays At ) 15.9/p are due to quantum-mechanical
interferences between the probability amplitudes of the
unstable orbits which are generated in the classical bifur-
cation phenomena of period 4 and period 18 and. whose
form is shown in Figs. 2(b) and 4(c).

In conclusion, we have shown that with the help of uni-
form semielassiea/ path representations of relevant atomic
transition probability amplitudes typical pump-probe-
type experiments in which the dynamcis of an electronic
wave packet is investigated can be described even in cases
in which classical bifurcation phenomena take place. This
approach allows one to connect the classical aspects of
these bifurcation phenomena quantitatively in a straight-
forward way with the quantum-mechanical time evolu-
tion of the laser-prepared electronic wave packet.
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APPENDIX

For the uniform semiclassical description [10, 11] of
the contributions of orbits (I„n,) to the two-photon
transition amplitude of Eq. (5) with s = 0, +I, k2,
2n~q ——2n~2 ——no = n and a given value of the mag-
netic quantum number m we start from the comparison
integral Js (z) of Eq. (11). The five saddle points of the
polynomial Fs (go, e) are given by

TABLE I. Polynomial fits of parameters entering uniform integrals of Eq. (14) for
m = +1 with AF2 —— c —Fq, Ac 7

—— c —cq and AC9 ——- c —c4, furthermore
Ao e '[ " + /(I'/2) = [0.7829 0 5767&e—2+. 0.090197Ae2] g(n/2)sin(2uo)/sin(nus) for

n = 2, 4, 6, 8, 10, Ao e '[ / + / ]/(I'/2) = [0.7654 —0 6127K.e7+27.27931Ae&] for n = 7,
and As e ' /(I'/2) = [0.7548 —0.3505Aes + 42.59304Aes] for n = 9.

(~) i/3ao
(n) y/3
1
( ) /a~
(n) y/3
3

n=2, 4,6,8,10

n[4.81932 + 1.72917Ae2 + 0.404900Ae2] (valid also for n=7, 9)
(n/2) [3.64531&e2 + 4.3475Ae2]

(n/2)[0. 12806 + 1.68839Ae2 + 57 0401&e.2]

(n/2) [-0.897465 — 13.9418&e2 — 118.585Ae2]

a'" '/'
1
( ) /a~
( ) /a3

n=7
17.2791&Kg + 34.8845&F7

2.01800 + 6.92242K~7 + 55.1622Am 7

-7.22128 — 48.4066AZ7 — 377.328Am 7

(9) ~/~
ag

(9) ~/3a2
(9)a3

19.3214&F9 — 6.88528&29
2.05444 + 14.7159AZ9 + 481.593&cg
-7.27442 — 68.0996&29 - 1169.93&Zg

2

6
8
10
7

A(rr) —i [ 7(rr/2)(rr/2)+rr/2]/( —I /2)
1.91009 + 4.82352&F2
1.90955 + 8.21149&ay
1.9O954 + 13.9209AZ,
1.90953 + 21.914&F2
1.90954 + 32.191&82

A(7) —i[—24(rr/2)+rr/2] /( P/2)
1.8046 - 9.5159&F7

A(&) —i[—31(rr/2)+rr/2]
/( p/2)

1.55491 - 13.24845Arg

-'[-'("/')( /')+ /']/( —r/2)e
-2.77874 — 11.6394&22
-2.63547 - 6.15000&22
-2.39696 — 3.06552&22
-2.06434 + 15.9449&82
-1.64413 - 26.2375&22

A(7) —i[—24(rr/2)+rr/2]/( p/2)
-5.96347 + 7.50162AZ7 +152.8735&87

A(9) —i[—31(rr/2)+rr/2]/( p/2)
-4.89546 + 20.8087&Zg
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X. =&

f P

a2 (t. ) +
3a3 (e) (

2
- X/2

a2 (e) a1(e)
3a3 (e) 3a3 (r)

2 - i/2

!

~ a2 (e) (
a& (e)

sas(e) ~ 3us(e)

(s = 0)

(s =+I)

(s = +2),

with X, = eo, —vr/2 and (s = 0, +I, +2). For simplicity of notation we have suppressed the superscript (n) in the

coefficients a& (e'). The corresponding second derivatives are given by

BIl" 2,() (s = 0)
Bg2 2[aq(z) + 6aq(e)X, + 15as(e)X, ) (s = +I, +2).

n[Sg (e) —S2 (e)]
G3 E;

[(( o2 —~/2)' —(t oi —~/2)']' ' (A1)

In the energy regime eq & e & e2 the saddle points
Oo, with (s = 0, +1, +2) are required to be real valued
and are identified with the emission angles of the corre-
sponding orbits I, with (s = 0, +I, +2). Furthermore,
the corresponding classical actions S,(e) are set equal to
Iis" (Ho„e). This implies the relations

ao (e) = So (e),
aq(e) = 3as(e)(goy —vr/2) (Ho2 —vr/2)

[(0» —~/ ) +(~» —"/ ) ]
3as(e) 2 2

2

I

which determine the energy dependence of the coeK-
cients of the polynomial I"s" (go, e) in this energy regime.
As these coef6cients are smooth functions of energy
across the bifurcation energies ez and c2 they can be
extrapolated easily with the help of polynomial fits with
respect to energy.

The energy dependence of the coefFicients of the poly-
nomial Gs (Oo, e) are determined by the requirement
that in the energy regime e~ & c & e2 in the semiclassical
limit, i.e., A = p / )& 1, the uniform comparison inte-

gral jz ) (e) should reduce to the corresponding "isolated-
closed-orbit" contributions of orbits I, (s = 0, +I, +2) as
given in Eq. (5). This implies the relations

~2~(n) - 1/2
g(n) (g q d(+) (g qd( —) (g q

—imnsmv, (2 )2 (n, ) 6 ' i[—p~, m/2+sr/4 —sgn(8 I 6 /800, )7I./4]

Os

(A2)

for (s = 0, +I, +2) and

Ao (e) = Gs(")(goo, e),

[G,'"'(goo, e) —G,'"'(t)o2, e)]Xg [Gs"'(goo, e) —G,'"'(Ooi, e)]X2
X2(X2 X2) X (X22 —X/2)

[G.'"'(0- ) —G'"'(0- )] [G'"'(0 ) —G'"-(~- ')]
X (X2 —X2) X'(X' —X,')

(A3)

Again these quantities are slowly varying functions of energy across the bifurcation energies and can be extrapolated

beyond this energy regime by polynomial fits with respect to energy.
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