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A pure-state analysis of spontaneous emission of photons by a one-dimensional harmonic oscillator in
a spherically symmetric cavity is presented. Using a classical path representation with respect to pho-
ton paths the transition between the limiting cases of coupling to a single cavity mode and the continu-

um limit is discussed analytically.

PACS number(s): 42.50.Md, 42.50.Ar

Recent progress in the realization of optical cavities
with high-quality factors has stimulated much experimen-
tal and theoretical work [1-9] in the field of cavity quan-
tum electrodynamics. In this context an understanding of
the spontaneous emission of photons by atoms inside a
cavity is of great interest. Depending on the size of the
cavity we may distinguish two limiting dynamical re-
gimes: In the small-cavity limit the atomic spontaneous
decay rate I' is much smaller than the frequency
difference between adjacent cavity modes Aw. In this case
only one mode of the radiation field is excited significantly
by the spontaneous decay process and, typically, energy is
exchanged periodically between the atom and the field
mode. This case is adequately described by the single-
mode Jaynes-Cummings model [4,5]. In the large-cavity
limit, i.e., > Aw, the cavity is so large that many cavity
modes are excited coherently by the spontaneous decay
process. Thus a localized photon wave packet is generat-
ed. In the limit of an infinitely large cavity (continuum
limit) this generation of a photon wave packet is connect-
ed with an irreversible exponential decay of the atom.
However, if the cavity is finite, eventually the photon wave
packet is reflected at the boundary of the cavity and re-
turns to the atom with which it may then exchange ener-
8y.

In this paper we study a model problem where non-
Markovian cavity-size effects, and in particular the transi-
tion between the limiting cases of the coupling to a single
cavity mode and the continuum limit, can be studied
analytically, namely, a one-dimensional (material) har-
monic oscillator that is coupled to the quantized radiation
field inside a spherical cavity [10]. Using an analogy be-
tween a harmonic oscillator and a large number of two-
level atoms [11] this system might approximately de-
scribe, for example, the interaction of two-level atoms
with the quantized radiation field in cases where only a
few of these two-level atoms are excited. In the following
it is shown that the difficulties arising from the coupling of
the harmonic oscillator to a large number of cavity modes
and the corresponding large eigenvalue problem for the
dressed states [7] may be overcome with the help of a
classical path representation [12]. This approach is in the
spirit of the “photon wave-packet interpretation” which
has been used by Parker and Stroud for the interpretation
of multimode corrections to the single-mode Jaynes-
Cummings model in a spherically symmetric cavity [6].
Thereby the state of the coupled oscillator-field system is

46

represented as a sum of contributions of all classical paths
of a spontaneously emitted photon in the cavity. As an ex-
ample the time evolution of a spontaneously generated
photon wave packet is discussed. In particular, it is shown
that repeated harmonic-oscillator-photon scatterings sig-
nificantly influence this time evolution.

The Hamiltonian of a one-dimensional harmonic oscil-
lator (frequency wo) that is located in the center of a
spherically symmetric cavity with radius R and perfectly
conducting walls and which interacts with the modes of
the quantized electromagnetic field (frequencies w,,n
=1,...)is given by

H=hawobdbo+ )+ X haw.blb,
n=l1,...
+ X (anbobi+aXbib,) )

n=1,...

in the dipole and rotating-wave approximation. The
operators b, and b, are the destruction and creation
operators of the harmonic oscillator (n=0) and of the
electromagnetic field modes (n=1,...) and the coupling
constants are denoted a,. In the following we shall be in-
terested in cases where only the coupling to highly excited
modes of the cavity is significant, i.e., wo= w, =ncn/R
(n>1).

The time evolution of the oscillator-field system may be
described in a basis of coherent states |Bo,B1,...) with
balBo,B1, .. ) =BulBo.B1,...) (n=0,1,...). According to
Eq. (1) the time evolution of a coherent state is given by

IW)I =|ﬁ0(l),ﬂ1([), ...) with
Ba(1) =12 Une "M UL Bt =0) . )

The unitary matrix U, (n,/=0,1, ...) characterizes the
transformation of the Hamiltonian of Eq. (1) to normal
modes and A; are the dressed energies of the coupled
harmonic-oscillator-field system. From Eq. (1) we find
the explicit expressions (m =0,1, ...)

|a"|2 -1/2
Um= |1+ T EEE—
i n=t... |hon—Aml?
EL -1/2
=|- , (3)
dA | nmn,
Qp
Uym=——"""U n=1,...),
"‘m hwg—Am " (
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with A,, being determined by the relation f(A,,) =0 with

la,|?
fAm)=hoo—Am— X, )

n=i, . .. hw,,—Am ’
If the harmonic oscillator couples only to highly excited
modes of the cavity, we may perform the sum in Eq. (4)
with the help of the Poisson sum formula [13] thus obtain-

ing
f(A) =hwo—héw—A—ihT/2

€*(A)
1—e“»(A)
with the Lamb shift o and the spontaneous decay rate
I =2|a,|?R/(h%)|a,=a, of the first excited state of the
harmonic oscillator. These quantities characterize the
coupling of the harmonic oscillator to the electromagnetic
field in the absence of conducting walls, i.e., in the contin-
uum limit. The influence of the perfectly conducting walls
on the dressed energies of the oscillator-field system is de-
scribed by the terms which involve the classical action
Sph(A) =2AR/hc which a photon of energy A accumu-
lates on a purely radial path from the center of the cavity
to the wall and back again.

Equations (2), (3), and (5) give a practical description
of the dynamics of the coupled oscillator-field system as
long as only a few normal modes (dressed states) are ex-
cited. In the small-cavity limit, i.e., I < nc/R, the har-
monic oscillator couples to only one mode of the elec-
tromagnetic field (with frequency w;) significantly. From
Eq. (5) we find that in this case the (dressed) energies
which contribute significantly to U, » are approximately
given by A + =AA + + hw; with

AL

5 (5)
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and the “vacuum Rabi frequency” @ =(I'c/2R) "2 [9].

In the large-cavity limit, i.e., T> rnc/R, many dressed
states contribute to the sum of Eq. (2). In these cases a
simple description of the dynamics may be obtained by ex-
;()ressing Eq. (2) by a contour integral with the help of Eq.

5),ie.,
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with U, (Ap) =U,m given in Eq. (3). Inserting Eq. (5)
into Eq. (7) and expanding the denominator into a
geometric series we obtain a classical path representation.
Thereby the complex amplitudes of the coherent state,
i.e., Bn(t), are expressed as a sum of contributions of all
radial paths of a photon which originate at the position of
the harmonic oscillator in the center of the spherically
symmetric cavity.

For a physical discussion let us consider the spontane-
ous decay of an energy eigenstate of the (material)
harmonic oscillator with energy E; =hwo(k+ %) in
more detail. The probability of finding this harmonic
oscillator in an energy eigenstate |E;) at a later time is
given by the binomial distribution P;(¢) =(F)|fo()|?I1
= |fo()|1*7 1 (0=<1! < k) with

x 'S W (e SMmyM=1[A — (g — bw) +ihT/2] 72, ®)

The first term of Eq. (8) describes the spontaneous decay
of the harmonic oscillator due to spontaneous emission of
photons. This decay process is characterized by the decay
rate I' and the Lamb shift dw and is therefore not
influenced by the walls of the cavity. In the continuum
limit, i.e., t <2R/c¢,R— oo, this is the only contribution
to fo(¢) [10] [compare also with Eq. (10)]. At time
t = R/c the spontaneously emitted photons are reflected
at the wall of the spherical cavity and return to the har-
monic oscillator at multiples of the photon return time
T=2R/c. The Mth term in the sum of Eq. (8) may be
interpreted as the contribution which originates from the
Mth return of the spontaneously emitted photons to thcJ

I
center of the cavity where some of them are absorbed by
the harmonic oscillator. Due to the spherical symmetry of
the cavity all these emitted photons return at the same
time and in phase. During each of the (M — 1) intermedi-
ate returns to the harmonic oscillator photons may be ab-
sorbed and reemitted again in different directions. This
elastic scattering process is described by the scattering
matrix element
_ ihl
A—h(wo—8w)+ihI/2
Evaluating Eq. (8) with contour integration we finally find
the equivalent result

9

r=1

fo(t) =e _i(“’o—Sa)—ir/Z)l+ i ©(t —2RM/c)e —i(wg— 8w —ir/2)lt —2RM/c]
M=1

x —LU=2RM/c) 1 a) (r(;—2RM/c)),

M
with the Laguerre polynomial

M-l M (—x)"
(1) - X
L1 (x) ,2'0 M—l—r] o

(10)
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and the unit step function ©(x). The classical path repre-
sentations as given in Egs. (7) and (10) are the main re-
sults of this paper. According to Eq. (10) the topological-
ly different classes of photon paths in the cavity are
characterized by the total number of returns to the center
of the cavity M and the number of intermediate scatter-
ings r (0=<r=<M—1) in the time between the initial
emission and the final absorption by the harmonic oscilla-
tor.

In Fig. 1 the time evolution of P,(z) =|fo(#)|? (k =1/
=1) is shown. In this special case the results of the spon-
taneously decaying harmonic oscillator reduce to the cor-
responding results of a two-level system. In Fig. 1(a) the
spontaneous decay time 1/T is comparable to the photon
return time 7 =2R/c. This implies that only a few modes
of the radiation field are exited significantly which causes
an approximately periodic exchange of energy between
the oscillator and the few resonantly coupled cavity
modes. The time scale of this energy exchange is deter-
mined by the *“vacuum Rabi frequency” @ =(I'c/2R) 12,
This case can be described conveniently by the dressed-
state representation of Eq. (2). Such Rabi-type oscilla-
tions are a typical quantum phenomenon [5] and appear
similarly in the Jaynes-Cummings model [4].

Increasing the photon return time 7 by increasing the
radius of the spherical cavity the spontaneous emission
process eventually becomes localized in time in the sense
that 1/T< T [Fig. 1(b)]. Thereby a photon wave packet
is generated. This photon wave packet represents a state
of the electromagnetic field which is localized with respect
to the radial coordinate in comparison with the extension
of the cavity. Its angular coordinates are delocalized and
in the dipole approximation their probability distribution
is determined by the vector spherical harmonic with an-
gular momentum quantum numbers /=1, m=0 [14].
Whenever this wave packet returns to the harmonic oscil-
lator some of the photons may be absorbed. Alternatively
these photons may also be scattered into different direc-
tions and finally be absorbed again at one of the wave
packets subsequent returns to the oscillator. Thus observ-
ing transition probabilities of the harmonic oscillator as a
function of time we obtain a picture of the time evolution
of this photon wave packet in the cavity. In particular,
from Eq. (10) and Fig. 1(b) we notice that the contribu-
tion which is due to the Mth return of the photon wave
packet consists of M maxima. They arise from the r
=(0,...,(M—1) possible numbers of intermediate
scatterings of the photon wave packet during the time of
its initial preparation at =0 and its final absorption at ¢.
According to Eq. (10) the contribution to fo(z) which is
due to the Mth return with r intermediate scatterings is
maximal at time t =2MR/c+ (r+1)/(I'/2). This indi-
cates that each scattering process is associated with a time
delay t =2/T'. Furthermore, according to Eq. (10) the
factor (—1)"*! indicates that each scattering process
leads to a resonant phase shift of magnitude #. Thus after
r scatterings the original photon wave packet has
developed r maxima.

To observe the kind of effects discussed, for example, in
Fig. 1(b) with a spontaneous decay rate of the order of
I'=10° s ~! would require typical cavity sizes of the order
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FIG. 1. |fo(¢)|? as a function of time (in units of T=2R/c)

for resonant coupling to the cavity modes (wo— 8w =nnc/R,
n>1) and different sizes of the cavity: (a) TR/c=1.0; (b)
I'R/c=20.0.

of R=1 m which is rather large in comparison with typi-
cal cavities used in present experiments. However, any
collective spontaneous emission process which involves
many atoms increases the relevant spontaneous decay rate
significantly thus decreasing the required cavity size. In
the future classical path representations like the one
presented here might become a valuable tool for studying
the time evolution of coherent matter-photon excitations
in cavity-quantum-optical problems in particular in cases
where the mode structure of the cavity is complicated.
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