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AbslracL We study lhe dynamics of a vibrational molecular wave packet in single- and 
double-minimum potentials. A semiclassical path representation for the relevant Green 
function is derived in a QaI'tiCdarly concise farm by using graph theoretical concepls. 
Approximate analytical eXpk5SiOnS are oblained for the two-pholan transition probability 
which is measured in typical pumpprobe experimenls using two shorl, weak laser pulses. 

1. Introduction 

Laser-induced excitation of molecular wave packets by short laser pulses has become 
a valuable tool for studying time-dependent aspects of molecular dynamics [l]. In 
a typical experiment a short laser pulse excites a coherent superposition of a large 
number of vibrational states of an excited electronic configuration of, for example, 
a diatomic molecule. Thus a vibrational wave packet is prepared which represents a 
molecular quantum state where at each time the spread of the internuclear separation 
is small with respect to the size of the corresponding classically accessible region. 
The time evolution of this vibrational wave packet may he probed by a second short 
iaser puke which induces a transition to some finai moiecuiar states. According to 
the Franck-Condon principle this second transition usually takes place at a certain 
internuclear separation determined by the laser frequency. Monitoring the final State 
probability as a function of the time delay between both laser pulses gives a direct 
picture of the time evolution of such a vibrational wave packet since the transition 
probability is large whenever the wave packet passes the  transition point. 

Usually such pump-probe experiments with weak laser pulses are described theor- 
etically by numerical solution of the Schrodingcr equation which describes the dynam- 
ics of the wave packet in the excited molecular state [2]. Alternatively, the dynamics 
of such a wave packet may also be analysed with the help of semiclassical methods [3]. 
This offers the possibility of expressing the relevant quantum mechanical transition 
amplitude as a sum of contributions of all classical trajectories which lead from the 
,cg,",, W,,G,C L I I G  W d Y G  pacr.c, ,,a0 " C C I ,  plCp1Cu .,.1LLLL"J L" L l l l  .,,,a, L . " I I I I L I Y . I  y"L"L. 

Such (semi-) classical path representations are particularly useful as they provide sim- 
ple analytical expressions for the relevant quantum mechanical transition amplitudes 
and clearly exhibit the influence of laser parameters on the initial preparation process 
as well as the connection between the quantum mechanical wave packet propagation 
and the corresponding classical dynamics in the excited electronic potential. 
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Motivated by recent pump-prohe experiments in Na, [4], in this paper we study 
the dynamics of a vibrational molecular wave packet in a single- and double-minimum 
potential with the help of semiclassical methods. In section 2 we derive a semiclassical 
path representation for the energy-dependent Green function of a double-minimum 
potential. Effects of tunnelling and reflection above the potential barrier are thereby 
fully taken into account by uniform semiclassical approximations. For energies well 
above the potential barrier this Green function reduces to the corresponding result 
for a single-minimum potential with two turning points only. It is shown that, with the 
help of a suitably chosen graph and its associated adjacency matrix, this semiclassical 
path representation may be written in a particularly concise form. Based on these 
results in section 3 we derive simple, approximate analytical expressions for the two- 
photon-transition probability which is measured in typical pumpprohe experiments. 

2. Basic equations 

In this section we discuss the basic equations which describe the dynamics of a 
laser-induced molecular wave packet in a single- and double-minimum potential. We 
derive a semiclassical path representation for the energy-dependent Green function 
of a double-minimum potential which, in the limit of high energies, reduces to the 
corresponding Green function of a single-minimum potential. 

R / A  

Figure 1. laser-induced excitation pracwsa of Na2 sludied in section 3. 

In order to put the problem into perspective we study laser-induced excitation 
processes as shown in figure 1. A first short laser pulse (slowly varying pulse envelope 
C , ( t )  centred around time t,, pulse duration r,, frequency wl, polarization e,) 
excites a coherent superposition of a large number of vibrational states In) of a 
diatomic molecule starting from an energetically low lying vibrational state li). Thus 
a vibrational wave packet is generated which represents a molecular quantum state 
where at each time the internuclear distance is well localized with respect to the size 
of the corresponding classically accessible region. The time evolution of this wave 
packet under the influence of the potential V, of the excited electronic state may 
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be probed with the help of a second short laser pulse (slowly varying pulse envelope 
E,(t) centred around time t,, pulse duration T ~ ,  frequenq U,, polarization e,)  which 
induces a transition to some final state I f )  after a time delay A t  = t2 - t l .  Monitoring 
the final state probability as a function of the time delay A t  yields information about 
the dynamics of the vibrational wave packet. If both laser pulses are so weak that 
this two-photon excitation process can be described by time-dependent perturbation 
theory, long after the interaction with both laser pulses the final-state probability is 
given by 

pi-, = 1(33",l~)*-.m12 
m 

= Id,,dl, d e  e - i f ( * x - t l )  (U, I[€ - H ,  + io]-' Iui) 
-m 

x i2(€ + w2 - rr)E1(ei + w ,  - €)I2 (1) 

in the dipole and rotating wave approximation. (We use Hartree atomic units.) The 
initial and final vibrational states with energies E ;  and E, are denoted 1 ~ ; )  and I",) 
and &(A) = (l/&) J:m d t  &i(t)e-iA(*-'-) are the Fourier transforms of (the 
l.l dnwlv ... , vxvino ,___ envelnnec ~ r-" nh -., nmm (;=I) ,. 2nd probe ( i = 2 )  pu!se. The e.!e.ctronic 
transitions 1 -+ 2 and 2 - 3 are described by the dipole matrix elements d,,, 
d,,, which also contain the contribution of the nuclear rotation and are assumed 
independent of R. The dynamics of the molecular vibrations in the excited electronic 
potential V, is described by the Hamiltonian H ,  = -( 1/2p)dZ/dR2 + V,( R). Since 
the reduced mass p is large, effecs of the nuclear rotation on H, may be neglected. 

The quantity of central interest in equation (1) is the resolvent [ E  - H z  + io]-' 
or equivalently the Green function 

G,(R,R') = (RI[E-H,+~O]-~IR')  

which characterizes the dynamics of the molecular vibrations in the excited electronic 
potential V,. In the simple one-dimensional case we are considering here, this Green 
function is given by I /  

with the Wronskian I W ( f , , g )  '= ( f d g / d R  - g d f / d R )  and R, = min{R,R'), 
- 
tl, = maxjR, E]. The two soiutions of the homogeneous Schrodinger equation 
f , (R)  and g , ( R )  fulfill the boundary conditions f , ( R  + 0)  = 0 and g,( R - 00) = 
0. The reduced mass of a molecule is much larger than the electron mass so that 
the relevant classical actions are expected to be large and to a good approximation 
the Green function may be evaluated semiclassically. With the help of semiclassical 
approximations for f , ( R )  and g,(R) [5,6] the semiclassical Green function of a 
doubie minimum poieniiai is given by 

G,( R,  R') = ( -2 i r ) fe  ( R<)g, ( R ,  ) ~ e ' ( S ' f S ' - " 1 2 )  [ I  - p e 2 i ( S ~ - = / ' 4  1- 1 
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barrier are described by the (real valued) reflection coefficient 
Q = a r g r ( ~ + i r / n ) - ( ~ / a ) l n i . r / = l + ~ / ~  

and the tunnelling integral 

with the local momentum k( R) = &p[c  - V,(R)]  and the turning points R:, R.$ 
(real) and R,, R- (complex). Well below the potential harrier we typically have 
T + -CO and therefore p - 1, -+ 0 whereas well above the barrier both the 
reflection coefficient and the phase shift tend to zero so that equation (3) reduces 
formally to  the semiclassical Green function of a single-minimum potential with two 
turning points only. The (modified) classical actions Si = s"' d R  k( R)  - @ / Z  ( i  = 
1,Z) characterize the dynamics inside the corresponding potential wells and take 
account of barrier effects via the phase shift Q (see figure 2(a)). 

R;' 

Figure 2. Double-minimum polential (a) and associated weighted graph G (b) .  The 
probabilily amplitudes which appear as matrix elements of the adjacency matrix are 
indicaled an top of lhe corresponding edges of the graph. 

For the solutions of the Schr6dinger equation f , ( R )  and g , (R)  simple uniform 
semiclassical approximations which are valid for all values of the internuclear distance 
R are not available. However, in the following we are mainly interested in cases 
where R << R: and R: R'. For these values of the internuclear distances 
uniform approximations are given by [5,6] 
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with the classical actions S(R$Y), R) = J:<(,l dR' k(R') and the (regular) Airy- 
function Ai( I) [7]. 

Inserting the Green function of (3) into (1) and performing the energy integration 
"ll.. L..C .'.AY "l L.lL. .U.,L"U".LI ,,.C",C,,, w r  W"",U "",I.", L L L C  ,w"-p""L"'L LL-,IYIL.".. 

probability as a sum of contributions of all excited quantum states (spectral or energy- 
eigenstate representation) [3,8]. However, in describing the dynamics of a vibrational 
wave packet it is much more convenient to derive a semiclassical path representation 
for this observable. For this purpose we expand the denominators of equation (3) 
into geometric series thus obtaining 

...:th +hn knln nf thn .- r:rl.....r tknn-- ...a ...-... lrl -htn:- +ha ~ . , n  -h-+n- rmn&t:nn  

G , ( R , R ' )  = ( - 2 i r ) f , ( R , ) g , ( R > )  

with the probability amplitudes a1 = pe2i(s1-"12) , a2 = m e i z , i ( S , t S ~ - r / 2 )  

a3 = pe2i(sx-*/2). Now the semiclassical Green function is expressed as a sum 
of contributions of all classical and non-classical (tunnelling) paths which lead from 
point R to point R'. Thereby effects due to tunnelling and above-barrier reflection 
are fully taken into accodnt. 

With the help of the graph-theoretical concept of a weighted graph and its asso- 
ciated adjacenq matrix this Green function may be written in a particularly concise 

vertices represent the four (real or complex valued) turning points of the double- 
minimum potential. The (directed) edges of the graph represent simple paths which 
connect these turning points. A general path of this graph is defined as an arbitraly 
sequence of directed edges. This way each summand of the semiclassical path repre- 
sentation of equation (5) corresponds in a unique way to the contribution of a path 

!" 
our case this is a 4 x 4 matrix whose matrix elements are zero if the corresponding 
vertices of the graph G are not connected and whose non-zero matrix elements are 
given by the probability amplitude associated with the simple path connecting the cor- 
responding vertices. Thus, for example, the matrix element d,, equals the probability 
amplitude of the path which connects turning points 1 and 2 of the double-minimum 
potential (see figure 2). Furthermore, the matrix element 

Fe-... c-- .I.:̂  ^^ ... ̂ :-I-- A ..^^ .L̂  ,.-..-t. ,-. ... &:̂ I. :- ..I. ^...I :.. f -.._ ~ -/I.\ T." 
IU1111. llJ T", L l l O  yu,yv.X WG lllll"""cc LllG g1ayrr v w*111c11 0 J 1 I U W l l  111 ,rgur= L ( U >  

of the gap!: G. With thli graph we 2ssccia:e B $veighted) KI;ccef?q ,Wn!.iL A. 

(A"')ij = f: Ain,Anln2 . . . A n _ _ , j  
nl . . . . .n , - l=l  

is the sum of the probability amplitudes of all paths of 'length m' which consist of m 
directed edges and connect points i and j. If we choose the adiacency matrix in the 
form 

0 m e i s ,  pe- i r12eiS~ 

0 
0 

0 0 
0 0 

pe-in/2eisz m e i S z  
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the semiclassical path representation of equation (5) may be written in the more 
concise form 
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G,(R,  R') = ( -2 i r ) f , (R, )~ , ( IL , ) t [ l  
m 

= ( - z i r ) f c ( R < ) g c ( R > )  ~ I d " ' 1 1 4  (6) 
m=0 

with being the probability amplitude associated with all classical and non- 
classical paths of 'length' m which connect turning points 1 and 4. Equations (5) 
and (6) are the main results of this paper. Using the same type of approach, recently 
a semiclassical path representation for the energy-dependent Green function of a 
general multiple-well potential has been derived also [9]. 

derive semiclassical approximations for the two-photon transition amplitude which de- 
scribe a laser-induced pump-probe process with two time-delayed short laser pulses. 
According to equation (1)  for this pur ose we have to evaluate the matrix elements 
( v , I [ e -  H,+iO]-'lvi) = JFdRJo  dR' w;(R)G,(R,R')vi(R') of the Green 
function. In the following we are mainly interested in cases where the initial vibra- 
tional state Iui) is an energetically low-lying (well localized) vibrational state whereas 
the final vibrational state Iv,) is highly excited and delocalized. This implies that 
the absorption of the first laser photon is essentially localized around the leftmost 
turning point of the excited vibrational states of potential V, and that according to 
the Franck-Condon principle the absorption of the second laser photon takes place 
around the internuclear distance R, at which V,( 4) - V,( 4) = U,. If the transi- 
tion point R.1. is located on the right hand side of the potential barrier, i.e. 4 > R:, 
the I'ntegratibn over R' may be achieved with the help of uniform approximations. 
Using (4) and (6) we find in the case of AS;, < 0 

( ~ , I [ E -  H,+iO]-'lvi) = (-2i7r)[l -d ] ;~ ( fc [v i ) ( - l ) ' ' -  

With the he!p of the. semic!assi..! Gee!! flllnction of (3) end (6) 'UP mn easi!y 

kl 

with the classical vibration time in the final electronic potential T, and the difference 
between the classical actions in potentials V, and V, denoted AS,, = S,( R, R;) - 
S,(R,  RZ), Inserting this expression into equation (1) we obtain the semiclassical 
path representation of the two-photon transition amplitude for cases where the second 
laser photon is absorbed in the second potential well. Considered as a function of 
the time delay At  between both laser pulses this transition probability will be large 
whenever At equals the time the vibrational wave packet takes to evolve from the 
initial excitation point at R % R: to the final transition point R, along any of the 
paths of the graph G. 

3. Applications 

In this section we discuss the dynamics of vibrational wave packets in single-minimum 
and double-minimum electronic potentials of Na,. Based on the semiclassical path 
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representation of the Green function as given in (6) we derive simple analytical 
expressions for the two-photon excitation probability which is measured in typical 
pumpprobe experiments with weak laser pulses. 

In general, no simple analytical expressions are available for the two-photon tran- 
sition probability and the integration over energy in (1) has to be performed numer- 
ically. However, depending on the position of the transition point with respect to 
the turning points of the potential, for laser pulses with Gaussian pulse shapes, i.e. 
& , ( t )  = Cie-(*-1*)'/(4r:) ( i  = l,?), simple analytical expressions may be derived. In 
the following we discuss two such cases in more detail, namely the cases where the 
transition point is in the classically allowed region or at the turning point. Thereby we 
assume for simplicity that the first short laser pulse generates a vibrational wave packet 
close to the leftmost turning point of the excited electronic potential V, (see figure 1) 
where the potential is assumed to be so steep that )U Vi( R:)l> Ac = [ T ~ + T ; ] - " ~ ,  

where U indicates the extension of the initial state )v i )  . Then the Franck-Condon 
factor (f, lui) is approximately energy independent over the significantly excited en- 
ergy range A e  of excited energies. This range is determined by the pulse durations 
rl and T,. 

2 I T--.."xn" "..:-. ;.. tl." -,""";"",I.. ",I,..,. "> 
2.1. l,U,U'll",' Y"L,'L I,' l l l C  L L U J m A "  """WCU reg'",' 

The simplest situation arises if the transition point & is located in the classically al- 
lowed regions of potentials V, and V,. In this case the corresponding Franck-Condon 
factor may he evaluated with the help of primitive semiclassical approximations. In 
particular, in cases where this transition point is located in the second potential well, 
the primitive semiclassical approximation for the relevant matrix elements of the 
Green function may he  obtained from the uniform expression as given in (7). This is 
done by taking into account the fact that AS,, >> 1 and replacing the Airy function 
by its asymptotic expression. With the additional assumptions that 

(i) the retlection coefficient p is approximately energy independent over the ex- 
cited energy range Ar and that 

(i) the anharmonicity of the electronic potential V, is sufficiently small so that all 
classical actions appearing in (1) may he expanded up to second order with respect 
to energy, 
equation (1) reduces to an energy integral over Gaussian functions. Thus we find 
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with Po = ~2n(d,,C,r,)(d,,E,~~)~~ and the mean excited energy 7 = ei + w1 = 
e ,  - w2. The index y(1 + 4)  indicates all possible paths of the graph G which 
connect turning points 1 and 4. The integers t,, r7, TI!$), nv)  and m, are equal 
to the number of transmissions ( t )  and reflections ( r )  at the barrier, to the number 
of vibrations in the first (n(')) and second (n")) potential well and to the number 
of reflections at turning points 1 and 4 (m) along path y. The time for propagation 
from turning point 1 to 4 along path y is given by T7 = d(n$)S, + nv)S,) /dt  
and T4-RT is the time for propagation from turning point 4 to  the transition point 
q. We should point out that, because of the energy dependence of the phase shift 
@ which originates from the potential barrier, the quantity T, reduces to its classical 
value only well above the barrier. Close to the barrier its value remains finite, contrary 
to the corresponding classical value which tends to infinity at the barrier. 

According to (8)  a peak appears in the two-photon transition probability whenever 
the time delay between pump and probe pulse A t  equals the time it takes for a 
transmitted fraction of the wave packet to move from the initial excitation point 
(turning point 1) to the transition point q. The quantities 

W T Strum et a1 

determine the widths of the corresponding contributions with the + and - signs 
distinguishing contributions where the transition point is reached with positive or 
negative momentum. The primes indicate derivatives with respect to energy. For 
mean excited energies well above the potential barrier we have @ , p  i 0 and formally 
(8)  reduces to the result we would obtain for motion in a single-minimum potential 
with two turning points only. 

h 

F@m 3. Time evolution of a vibrational wave packel in the A 'E? potential of Naz 
(see figure l(o)): TI = 10 fs (T = 310 fs is the mean classical vibration time). 

Figure 3 shows the time evolution of a vibrational wave packet which is generated 
in the A ' X t  electronic potential of Na, by a short laser pulse near the left turning 
point (see figure l ( a ) ) .  The time evolution of the wave packet has been calculated 
numerically. Figure 4 shows the corresponding time dependence of the two-photon 
transition probability. The full curve shows the result of a numerical computation of 
the two-photon transition probability based on a summation over all excited energy 
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eigenstates and the dashed curve shows the corresponding result obtained from equa- 
tion (8) in the limit of a single-minimum potential. With the help of equation (8) 
the various peaks of figure 4 may be interpreted in terms of probability amplitudes 
of paths leading from the initial excitation point (turning point 1) to the transition 
point &. With each retum of the vibrational wave packet to the transition point the 
second laser pulse may induce a transition to the final state. 5pically, contributions 
associated with successive returns to the transition point show a doublet structure 
because the transition point may be reached with positive or negative momentum. 
According to figure 4, with increasing time delay At contributions originating from 
paths which reach the transition point with positive momenta are broadened much 
faster than the corresponding contributions from negative momenta. This is due to 
the negative sign of the quantity which describes a narrowing of the wave 
packet on its way from turning point 4 to the transition point q, According to (8) 
and (9) this narrowing of the wave packet leads to a narrowing of the corresponding 
peaks of the two-photon transition probability until a minimum width is reached when 
the contributing path becomes so long that T; 2 IT4/-RTI. 

h 
.U 

v - Q 

I a 
9 
0 

0 2 4 6 0 t o  
A t  / T 

Plgure 4. Xvo-photon transition probability a l  the wave packet of figure 3 as a function 
of the lime delay A t  between pump and probe pulse (&I = &2, rI = r2 = 10 Is); 
numerical evaluation (full C U N ~ ) ,  equation (8) (dashed CUNC). The transition point RT 
is located in the classically allowed region (see figure 1 (n) ) .  

We remark that, even in cases where the Fourier transform of the energy- 
dependent Green function of equation (1) has to be determined numerically, the 
semiclassical path representation of the Green function as given in equation (6) of- 
fers a valuable tool for interpreting pump-probe experiments. As an example let us 
consider the generation of a vibrational wave packet in a double-minimum potential 
in the energy range around the potential barrier. Figure 5 shows the  two-photon 
transition probability of a vibrational wave packet which has been generated by a 
short laser pulse at the leftmost turning point of the (2)'Et potential of Na, (figure 
l(b)). In this example the pulse durations of pump and probe pulse are so short 
that the reflection coefficient of the potential barrier p cannot be considered con- 
stant over the excited energy range and the Fourier transform of equation (1) has 
to be evaluated numerically. In particular, in figure 5 ( c )  the numerical evaluation of 
the two-photon transition probability based on a summation over all excited energy 
eigenstates (full curve) is compared with an evaluation based on the semiclassical path 
representation of equation (6) (& in the classically accessible region, dashed curve). 
As a large number of energy eigenstates are excited coherently by the first short laser 
pulse a direct interpretation of figure 5(c) based on a summation over excited energy 
eigenstates is difficult. With the help of the semiclassical path representation each 
peak of figure S(c) may be associated with a coherent sum of probability amplitudes 
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10 N 

(12+) (124-) (1243124-) ((1243)"124-) 

3 

\ '  

1 2 

10 N 

7 

Figure 5. Worphoton lransilion probability For a vibrational wave packet which is 
generated in lhe (2)1C?-double-minimum potential of Naz (see figure l(b)) in the 
energy region around the potential barrier (4 = E,. TI = r z  = 10 fs). (a) 'Itansition 
probabilities of single paths with quanlum mechanical interferences neglected. The paths 
are indicated on top of the corresponding peaks (see figure 2(b). The + and - signs 
indicate whether the transition p i n t  is reached with positive or negative momentum. 
(b)  As (a) but with quantum mechanical interferences raken into account. ( c )  Numerical 
(full curve) and semiclassical path result (dashed cuwe). In the semiclassical result lhe 
60 shortest semiclassical paths have been taken into account. 

associated with only a few paths of the graph G which start from the excitation point 
of the wave packet, i.e. turning point 1, and reach the transition point R, after time 
Al.  In this example the transition point is located in the classically accessible region 
of the second potential well. Therefore any path reaching the transition point has 
been transmitted by the potential barrier. Figure 5(a) shows the probabilities of a few 
short paths which have not been reflected by the potential barrier on their way to the 
transition point. Figure 5(b) shows the corresponding coherent sum of their probabil- 
ity amplitudes. Comparison with the numerical result of figure S(c) shows that these 
purely transmitted paths yield the dominant contributions to the two-photon transi- 
tion probability. The dashed curve in figure 5(c) shows a semiclassical path evaluation 
,,,L,uuulg L U G  w 3 1 1 V 1 L W L  parr,> (Lah,,,& U l L U  accu",,, awu p I L ' L "  "L,,Q.l ..PIU "I._ "II.. 

reflected at the potential barrier). Now even the fine details of the interferences 
which appear in the numerical result are reproduced. Besides the good quantitative 
agreement the semiclassical path representation also offers the advantage of a clear 
physical interpretation of the time dependence of pump-probe experiments in terms 
of probability amplitudes associated with classical and non-classical tunnelling paths 

:-A..A:-- AL.. Ln "%--&..". I I ~ L : . . ~  2 - t -  """_.." + olrr. .mthr ..Airh ho.rp nnra hppn 
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leading from the initial excitation point to the final transition point. 

3.2. Pansition point at turning point 

With the help of uniform approximations for the relevant matrix elements of the 
Green function we may easily derive simple analytical expressions for the two-photon 
transition probability which are also valid if the transition point & is close to the 
turning points of the electronic potentials V, and V,. In the case, for example, where 
this transition point is located close to the rightmost turning points of both excited 
electronic potentials we may use the uniform approximation given in equation (7). 
Linearizing the potentials around turning point R j  and assuming 

(i) Gaussian laser pulses, 
(ii) an approximately energy independent reflection coefficient p and 
(iii) weak anharmonicity of the excited electronic potential V, 

we find 

2 

x w p ) l  e = <  -. (10) 

In (10) the difference potential is given by A V  = V. - V, and all potentials and 
their derivatives have to be evaluated at the right turning point of potential V,, i.e. 
at R:. Furthermore we have defined 

2 

P=t,,[Z-V,]- [%] -it,[At-T,]/[Zr,”] 
4 77 

r,” = r: + r,’- ?jiT!,. 

Figure 6 shows the two-photon transition probability for the vibrational wave 
packet of figure 3 in the single-minimum potential. The transition point is close to 
the right turning point of potentials V. and V,. The full curve in figure 6 shows the 
result of a numerical calculation which is based on an energyeigenstate representation 
of the two-photon transition probability. The almost indistinguishable dashed curve 
shows the corresponding result using equation (10) (with p 0). 
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h 4 
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ti 
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Figure 6. As Bgure 4 but with lransilion p i n t  at the right turning point of potential V, 
(7= V?(R,>)); numerical evaluation (full curve), equation (10) (dashed cuwe). 

4. Summary 

With the help of graph-theoretical concepts we have presented a semiclassical path 
representation of the energy-dependent Green function which describes the quantum 
dynamics of a particle in a double-minimum potential. Using uniform semiclassical 
methods, effects of tunnelling and above-barrier reflection have been taken into ac- 
count. By focusing on two-photon transition probabilities, which are of interest for 
time-resolved studies of the dynamics of vibrational molecular wave packets in Na,, 
we have shown that these semiclassical path representations yield good quantitative 
results and clearly exhibit the connection between the quantum dynamics of a wave 
packet and the corresponding classical dynamics of a particle. 
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