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1. Introduction

The recent development of short and intense laser pulses has renewed the interest in coherent laser
excitation processes of atoms and molecules [1]. Typically, in such processes a laser pulse excites a
coherent superposition of atomic or molecular energy eigenstates, which represents a nonstationary
charge distribution and whose subsequent time evolution is observed, for example, via the fluorescence
signal or by probing the system with an external field after a variable time delay. Quantum beat
spectroscopy [2] is an early example where such excitation mechanisms are used. It is based on the fact
that the time dependence of the signal resulting from coherent excitation of only a few atomic or
molecular energy eigenstates exhibits periodic variations or beats, whose frequencies are proportional
to the corresponding energy separations. This method has been particularly successful in determining
small energy differences, for example between atomic fine- or hyperfine-structure components [2].

The availability of short laser pulses in the (sub)picosecond regime [3] has opened up the possibility
of exciting large numbers of atomic or molecular energy eigenstates coherently, thus preparing quantum
states whose probability distribution is localized in comparison with the corresponding classically
accessible region. Such wave packets are particularly interesting as they provide a bridge between
quantum mechanics and the classical concept of the trajectory of a particle. Therefore, studying the
evolution of these wave packets provides real-time observations of atomic or molecular dynamics.

Here, we review recent work on coherent laser excitation of Rydberg states, i.e. bound atomic or
molecular energy eigenstates close to a photoionization threshold (for a review on Rydberg states see
refs. [2, 4-6]). A typical property of these states is their large extension in comparison with the Bohr
radius, which is the characteristic length scale for atomic and molecular quantum phenomena. This
almost macroscopic size implies that, apart from a small region of a few Bohr radii around the nucleus,
the dynamics of a Rydberg electron is dominantly determined by the (1/r) Coulomb potential of the
positively charged ionic core and that these states exhibit universal features independent of the
particular atom or molecule under consideration. Effects of the ionic core can be described by a few
quantum defect parameters, which take into account the scattering of the Rydberg electron inside the
ionic core region [7-14].

If a superposition of many Rydberg states is excited, an electronic wave packet is generated whose
time evolution reflects the motion of the excited electron in the field of the positively charged ionic
core. Coherent laser excitation of Rydberg states from an energetically low lying bound state [15-37]
prepares a superposition of energy eigenstates with low values of the angular momentum and the
resulting electronic wave packet is only localized with respect to its radial coordinate. Because of the
infinitely high level density of Rydberg states at a photoionization threshold, such radial Rydberg wave
packets [15-27, 30-37] are always generated in laser excitation processes close to threshold and the
analysis of their dynamics is therefore important for an understanding of multiphoton processes 38, 39]
which involve highly excited Rydberg states as intermediate resonances. In order to localize also the
angular coordinates of an electronic wave packet a superposition of states with high values of the
angular momentum is needed. Starting from an energetically low lying bound state, laser excitation of
such angular wave packets [40-45] is only possible if states with high values of the angular momentum
are mixed in, for example by additional microwave [46, 47] or static fields [48]. Motivated by
Schrodinger’s discussion of the coherent states of the harmonic oscillator there have been various
theoretical approaches to construct localized electronic wave packets which evolve along Kepler ellipses
with minimum quantum fluctuations compatible with Heisenberg’s uncertainty relations, thus resem-
bling the classical motion of an electron in a Coulomb potential as closely as possible [44, 49-56].
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Recently, it has been shown how, in the presence of weak, crossed static electric and magnetic fields,
hydrogenic energy eigenstates which are localized along Kepler ellipses with minimum quantum
fluctuations can be excited by a laser pulse [45, 48, 57]. A coherent superposition of these minimum
uncertainty states with different energies would represent an ideal Kepler wave packet [45, 56].

Coherent laser excitation mechanisms have also been used to investigate chemical bond breaking and
bond formation in molecules {58-74]. However, a detailed discussion of this active field of research is
beyond the scope of this review. Typically, in these studies a short laser pulse with duration of a few
femtoseconds prepares a molecular wave packet which is localized with respect to the internuclear
separation. The internuclear distance immediately after the laser excitation process is determined by the
laser frequency and the difference potential between the excited and initial state according to the
Franck—Condon principle. The subsequent time evolution of this wave packet on the excited energy
surface is characterized by typical dissociation times of the order of a few hundred femtoseconds and
may be probed after a variable time delay with a second short laser pulse. Measuring, for example, the
laser induced fluorescence from the final state as a function of the time delay between both laser pulses
gives a time-resolved picture of the dynamics of the wave packet on the excited energy surface. This
so-called femtosecond transition state spectroscopy [67, 68] has been applied recently to a variety of
problems in connection with dissociation of molecules.

This article is organized as follows. In chapter 2 we discuss basic physical concepts which are
involved in the generation and detection of Rydberg wave packets by laser-induced one-photon
excitation and we review recent experimental and theoretical work. In chapter 3 we discuss in more
detail theoretical methods which have been developed recently in connection with the description of the
dynamics of these wave packets. In particular, we concentrate on classical path representations of
atomic transition amplitudes and the minimum uncertainty states which are localized on Kepler ellipses
with minimum quantum fluctuations. Finally, in chapter 4 we apply the classical path representations to
the many-channel Coulomb problem and the external-field case and discuss characteristic dynamical
aspects of Rydberg wave packets in these systems.

2. Rydberg wave packets: basic concepts

A typical property of an electron in a Rydberg state is its large mean distance from the nucleus in
comparison with the Bohr radius (2, 4]. Depending on the angular momentum / we may distinguish two
limiting cases: Rydberg states with low values of ! represent electronic states which are essentially
delocalized over the whole classically accessible region (corresponding to classical elliptic orbits of high
eccentricity), whereas Rydberg states with extremely large angular momenta are localized essentially
along a circle in a plane perpendicular to the direction of the angular momentum (corresponding to
circular orbits in classical' mechanics). Correspondingly, two kinds of Rydberg wave packets are
discussed in the literature.

— Coherent superpositions of Rydberg states with different principal quantum number n and low
values of the angular momentum [ represent radial electronic wave packets, which are only localized
with respect to the electron’s distance from the nucleus. The angular coordinates are still delocalized in
a quantum mechanical sense.

- In order to generate angular electronic wave packets, which are localized with respect to the
angular coordinates, a coherent superposition of Rydberg states with high values of the angular
momentum !/ is prepared (within one n-manifold).
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The ultimate goal is to prepare a Rydberg wave packet which is localized with respect to radial and
angular coordinates and moves along a Kepler ellipse with minimum quantum fluctuations compatible
with Heisenberg’s uncertainty relations.

Due to the infinite level density of bound states at a photoionization threshold, a radial Rydberg
wave packet is always generated if Rydberg states sufficiently close to threshold are excited by a laser
pulse from an energetically low lying bound state. An understanding of their dynamics is important for
the interpretation of multiphoton excitation processes which involve highly excited Rydberg states as
intermediate resonances. For the laser-induced excitation of angular wave packets an additional
external field is needed which mixes in also states with high values of the angular momentum.

In this section we discuss basic physical concepts which are involved in laser-induced excitation of
Rydberg wave packets. In section 2.1 we summarize basic properties of wave functions and dipole
matrix elements of Rydberg states and the energy dependence of the atomic Green function close to a
photoionization threshold. In section 2.2 we discuss generation and detection of radial Rydberg wave
packets by short and intense laser pulses. Experimental and theoretical work on angular wave packets is
discussed in section 2.3.

2.1. Basic properties of Rydberg states

Rydberg states are highly excited states in atomic systems with large principal quantum number n
and, possibly, large angular momentum quantum number / [4-6]. A characteristic feature of an atom or
molecule with a single excited Rydberg electron is that the electronic motion is dominated by a pure
Coulomb force at large distances from the positively charged ionic core. Mathematically this may be
described within the formalism of Quantum Defect Theory (QDT) [7-14], which assumes a finite-range
potential of the size of the ionic core and a pure Coulomb potential for larger distances. Using the
language of QDT, in this section 'we summarize basic properties of Rydberg states and their wave
functions and discuss dipole matrix elements which describe photoabsorption to and from Rydberg
states. For simplicity, we restrict our discussion to alkali atoms with one valence electron. The
extension of these ideas to atoms with more than one valence electron is treated in chapters 3 and 4.

Wave functions. The wave function of an alkali atom with a single valence electron outside a closed
core can be written as [9]

Y.(R,r)=@, (R)F(e,1)Ir. (1)

The wave function of the ion core, @, (R), includes the angular momentum quantum numbers / and m
of the valence electron. The radial wave function F,(¢, r) is a solution of the Schrédinger equation

e+ 5’1%— <Ed}25 - ’(’; D) -y |ren=0, | 2)

with E =1+ ¢, the ionization energy / and the electron mass M,. Outside the atomic core, i.e. for
r=r,, the local potential, V(r), is well approximated by a pure (1/r) Coulomb potential.

For a given energy &, eq. (2) has two linearly independent solutions, which for r=r, are linear-
combinations of the real-valued, energy-normalized regular and irregular Coulomb functions s,(z, r)
and c/(¢,r) [12, 14]. The corresponding outgoing and incoming Coulomb waves are ¢; (e,7) =
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c,(g, r) £ is,(¢, r). For large values of r and ¢ >0 the Coulomb functions s,(¢, r) and ¢,(¢, r) behave like
sine and cosine functions of the Coulomb argument. Outside the core region the real-valued,
energy-normalized regular solution, S,(¢, r), of eq. (2) is given by

S,(g, r) ~s,(&, r) cos(me,) + ¢,(&, r) sin(ma,) . (3)

The quantum defect, a,, describes the deviation of the potential V,(r) from a pure (1/r) Coulomb
potential inside the core region. The corresponding irregular solution of eq. (2), C/(¢, r), behaves
asymptotically like

C/(g, r)~ —s/(g, r)sin(ma;) + c,(&, r) cos(ma,) . (4)

Semiclassically, the regular radial wave function of eq. (3) is [75]

S,(s,r)~(g£yaow)'”z[p(r)ao/ﬁ]—llzsin(j dr’ p(r’)/ﬁ—(l+1/2)7r+1r/4) (r,<r<r), (5)

"

with the Rydberg energy Ry = M.,e"/(24’)~13.6eV and the Bohr radius a,=#"(M ")~
5.29 x 10""' m. The radial momentum of zero angular momentum, p(r), is given by

p(N=(2ME-V(}'", (6)

with p(r,) = p(r,) =0 at the classical turning points r, and r,.

The radial wave functions considered in the context of scattering theory and photoionization will be
denoted by #'*'(e,r) and % (e, r), respectively. They are defined as energy-normalized regular
solutions of eq. (2) with an incoming (outgoing) Coulomb wave and a phase-shifted outgoing
(incoming) Coulomb wave,

Fi* (e, 1) = (F0) ™S, (e, N ~ blo7 (e, 1) — e} (e, M) . M

Below threshold, i.e. for € <0, ¢; (&, r) can be decomposed into exponentially growing and decaying
functions J,(¢, r) and P,(e, r) [9, 12] according to

o (e, )= "I (e, r) Fi(de/dv) "' *P e, )] (£<0). (8)

Here, P(¢, r) is normalized to one. The conversion factor de/dv =2%Ry/»v’ is the energy density of the
Rydberg states as derived from the relation & = —Ry/»” with the effective quantum number ». The
requirement that the wave function of a bound state should be normalizable implies that the coefficient
of the exponentially growing part must be zero. This gives rise to the quantization condition

g, =—Rylv> 9)

nl 3

with v, =n—ao,andn=1+1,1+2,.... The corresponding bound state eigenfunctions are

P,(r)= (dsm/dn)llzsl(snts r). (10)
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Dipole matrix elements. We define dipole matrix elements for photoionization from an energetically
low lying atomic state |i) to a continuum state |elm) by

elm,i

9% = f dr r[F e, DT Bl ), (11)

with the dipole operator g and the light polarization vector € [9]. In a similar way transition matrix
elements to Rydberg states are defined by

nlmn (nlmlﬂ' 8'1) = l(dE /dn)I/Z ‘"'a[@il")” ' (12)
The dipole matrix elements of eq. (11) are smooth functions of energy across threshold. This is due to
the finite size of the energetically low lying state [i), which implies that the contributions to the dipole

matrix element come from distances much smaller than the typical extension of a Rydberg state. In a
similar way, matrix elements for free—free transitions are defined by

e'l'm’.elm

DG = | GrIFO e N (Bl £]9,,), 56, 1), (13)
0

and are related to Rydberg-free dipole matrix elements by

@ -)

e'l'm' ,nlm

=i(de,/dn)"? e @0 (14)
For a fixed value of the energy difference, ¢’ — £ = fiw, these free-free matrix elements are slole
varying functions of energy across threshold as long as energy variations are smaller than the transition
energy fiw. This property becomes apparent when the dipole matrix element of eq. (13) is converted

from length form to acceleration form. Then the corresponding radial integral becomes proportional to
[76, 77]

V(r)

lLtgfdr’ S (e, 1) —— S/(&, '), (15)
0

and the contribution is built up from an interaction volume which is much smaller than the size of
Rydberg states, as may be seen from fig. 1. Physically speaking, this is due to the fact that the electron
can only absorb the photon near the inner turning point of its orbit. Far away from the nucleus the
electron behaves like a free particle and does not absorb radiation. This property will become important
below in our study of absorption and emission of optical photons, because it means that a wave packet
can only absorb or emit radiation near the inner turning point of a Kepler orbit. A general discussion of
the finite range of the radiative interaction in optical transitions has been given in refs. [78, 79].

Green function. In the following section we will need the retarded Green function of the atomic
Schrodinger equation,

S |nim) (nim|

+ ———_
CE)=r—pg+0-2) 0" (16)
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Fig. 1. Convergence of the radial dipole integral form for ({—/ + 1) transitions as a function of the upper integration limit, r, for e =0, ¢’ = 0.3Ry
and (/,1')=(0,1),(1,2), (2, 3). The finite range of the radiative interaction is illustrated by the convergence of the radial integral with . For higher
I-values the radial integrals are built at larger distances and decrease in magnitude due to the increasing centrifugal barrier [78].

with the atomic Hamiltonian H, and its energy eigenvalues E,, = I + ¢,,. Analogous to eq. (1), one can
factorize G *(E) into a core or angular part and a radial Green function. For energies £ >0, the radial
Green function is given by

g (esr, )= 7S, r )0, (6,72, (17)

with r_ and r_ the larger and smaller of r and r’. Below threshold, i.e. for ¢ <0, eq. (17) diverges for
r—>» and no longer represents the radial part of eq. (16). For these energies the physical Green
function can be constructed by adding to g;"(¢; r, r') a multiple of the regular solution of the radial
Schrodinger equation (2) in order to enforce the correct asymptotic behavior. Using well-known
properties of Coulomb functions [9] we obtain

i . g(*‘) , ‘ij(_) , AN T S
g (eir,r)=g;"(e5r, 1) +2mi = (8_2?,[, — 2,,(8.‘, r_)]

This radial Green function has poles at the bound-state energies ¢, = —Ry/(n — o)
Expanding the resonant denominator in eq. (18) into a geometric series we find

(e<0,Ime>0). (18)

giesr,r)=g"(e;r, r)+2miF (e, ) ™™ D (€™ e ™W[F (e, r]* (Ime>0).
M=0
(19)

Equation (19) is a classical path representation, which will be discussed in a more general context in
chapter 3. Briefly speaking, the contributions from M =0,1,2,... may be attributed to the first,
second, etc. revolution of the excited electron along its orbit.

2.2. Radial Rydberg wave packets

In this section we discuss basic physical concepts which are involved in the generation and detection
of Rydberg wave packets by short and intense laser pulses. In particular, we consider a laser-induced
one-photon excitation process as schematically shown in fig. 2. An atomic electron is excited from an
energetically low lying atomic state |i) with energy E, to Rydberg states by absorption of a single laser
photon. At the position of the atom, x =0, the laser pulse may be described by the classical electric
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Fig. 2. Schematic representation of excitation processes studied in chapter 2.
field
Ex=0,1)=%, (e, e +c.c., (20)

with the laser frequency w,, the polarization vector €, and the slowly varying complex amplitude &,(t).
For the wave function of the atom we make the ansatz

#0) = a0+ 5 [ aynlnim) = ) + F0) @

Here, |F(t)) characterizes the time evolution of the excited Rydberg electron and a,,,(t) are the
corresponding Rydberg amplitudes. From the time-dependent Schrédinger equation we find in the
rotating-wave approximation

., d . : .
i 5 a0= Ea)~ 3 [ (il etlnim) 0" €0, (),

) " | (22)

i B (1) = Epiyn(t) = (nlm| - £,[i) &,(1) ™0 (1) .

In subsections 2.2.1 and 2.2.3 we will solve this equation with the help of methods which are derived
from QDT [17, 18, 30, 32]. This approach has the advantage of providing a clear physical interpretation
of the formation of Rydberg wave packets and it is closely related to semiclassical methods of quantum
mechanics. This aspect will be discussed in more detail in connection with classical path representations
of atomic transition amplitudes in chapter 3. Numerical solutions of this equation have been obtained
by Stroud and coworkers in modeling their wave packet experiments [15, 40, 41]. Wave packet solutions
of eq. (22) were also discussed by Fedorov et al. [28, 31, 35] and Grochmalicki and Lewenstein [33].

2.2.1. Generation by a short laser pulse

In this subsection we solve eq. (22) for the case of a weak and short laser pulse which still contains
many optical oscillations. Thus, we assume that all laser-induced time scales, for example the depletion
time of the initial state, are much longer than the pulse duration. In this limit eq. (22) may be solved
perturbatively with respect to the laser field and we find

t
|F(£)) = % ; |nim) e~ Ent'? f dt' (nlm|p - €,)i) 8,(t') e En~ B R h (23)
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Long after the interaction with the laser pulse, the Rydberg amplitudes are given by
—iE_jt/h
Guim(t) = (I/R)(nim]| - £,[i) €,(53, ) exp(i8}, 1) e 5", (24)

with the detuning 8 =(E, — E,—fw,)/h. The laser pulse is centered around time ¢, with pulse
duration 7, and ¢ (A) f dt (¢t + t,) €'’ is its Fourier transform. Hence, laser excitation by a pulse
with pulse duration 7, leads to significant excitation of Rydberg states with energies E; + hw, — /7,
=E=<E, +hwa+ﬁ/'ra.

If the exciting laser pulse is short in the sense that its spectral width overlaps many Rydberg states,
ie.,

£_ 1 dE,

? 27 dn (25)

n

with the mean excited energy E; = E, + fw,, many terms contribute to the sum of eq. (23) and |F(¢))
describes an electronic wave packet. As the classical orbit time of an electron with mean excited energy
E; is given by

B h <_ E'7 >—3/2
T =27 2%y \” @y =27t ,

(26)
eq. (25) states that a wave packet is excited whenever the pulse duration is shorter than the classical
orbit time of the excited electron (f,, ~2.42% 107" s is the atomic time unit). Dipole selection rules
imply that only a few angular momentum eigenstates contribute to the sum in eq. (23). Therefore, only
the radial coordinate of this wave packet is localized. The angular coordinates are still delocalized in a
quantum mechanical sense. The essential element in eq. (23) responsible for the wave packet structure
is the coherence in the superposition of many Rydberg states.

For a discussion of the time evolution of this wave packet it is convenient to replace the sum over n
in eq. (23) by an integral. This can be achieved by rewriting eq. (23) with the help of the resolvent of

eq. (16),
|F(t)) = - f dE e "G (E)u - &,]i) &,(5%) exp(id2t,) . (27)
Inserting the classical path representation of eq. (19) we find for r > r,

RR,r,0==1 S0, (R) [ dE e E,(53) expio)

1 f oSt ! :
X<27Ti0 rrg; (8’ r?r)(¢ml|"’ sall)r’

M

+ e2mu 2miay 2111V)Mg(+)(8 r)@elm 1@( 5)) (E =]+ E) . (28)

=0
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An equivalent result can be obtained directly from eq. (23) with the help of the Poisson summation
formula. If many states contribute to eq. (23) the energy integrals of eq. (28) can be evaluated in a
stationary phase approximation. This leads to the following interpretation of the various terms.

(i) Wave packet in the continuum. If the laser pulse excites dominantly continuum states, only the
first term in eq. (28) contributes and the radial center of the wave packet, r(f), escapes to infinity.

(ii)) Bound wave packet. If the laser pulse excites a superposition of Rydberg states, for small times,
t—t,<Tg /2, only the first term of €q. (28) contributes significantly. We emphasme that — although we
have a bound particle — its motion is governed by the continuum propagator gi* (e; r, r'). This is not
surprising, because for these times the electron has not yet been reflected at the outer turning point of
its orbit. At time ¢—¢, = T, /2 the wave packet returns again to the ionic core region. The periodic
motion of the electron is descnbed by the infinite sum in eq. (28). From the stationary phase condition

r(6)

M=0,1,..), (29)

we realize that the Mth term in the sum is the contribution from the (M + 1)th return of the excited
electron, which moves along the bound Kepler orbit.

Figures 3a,b show the motion of a radial packet when a laser pulse with 7, = 8 ps excites hydrogenic
Rydberg states with /=1 around n = 85. This corresponds to a mean classical orbit time of 7= 94 ps.
The generated wave packet is plotted for times t—¢, = 3T 3T, 3T. Figure 3b compares the wave

1 (a)

A

0 4000 8000 12000 16000
r

11(b)

g

0 4000 8000 12000
r
Fig. 3. Radial Rydberg wave packet in hydrogen as a function of r (in units of the Bohr radius a,). A laser pulse of duration 8 ps induces an (s— p)

transition around # = 85 corresponding to T'=94 ps (from ref. [17]). (a) Probability |[r¥(r, 1)|* at ¢ — 1, = (1/9)T, (2/9)T, (3/9)T. (b) Probability
{r(r, ) at £ — ¢, = (2/9)T and (1+2/9)T.
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packet at times t — ¢, = 3T and t — t, = (1 + §)T. As is apparent from fig. 3b, the wave packet tends to
spread with time. Figure 4 is a three-dimensional plot of the probability density of the Rydberg wave
packet. The angular part is a p-wave.

The uncertainty product of the wave packet during its evolution has been studied in ref. [15]. Its
initial width is found to be close to the minimum uncertainty limit, but spreads rapidly as the wave
packet evolves.

Revivals. The anharmonicity of the level spacing leads to a destruction of the coherence of the wave
packet in the course of many classical orbiting periods T,. This restricts the duration of the “classical”
evolution where the wave packet is well defined. For long times the dephasing need not be completely
irreversible and there is the possibility for the wave packet to regain its initial shape (revival of the wave
packet). This aspect was studied numerically in ref. [15]. As an example, fig. 5 shows the emission
spectrum of an atom excited by a short laser pulse (10 ps) around n = 85 with T, = 94 ps as calculated
by Parker and Stroud [15]. A complete reconstruction of the wave packet is observed after approxi-
mately 35 periods of classical motion. There are also other (fractional) revivals, which are indicated by
arrows. An analytical discussion of these fractional revivals was given by Averbukh and Perelman [23].
Keeping only second-order terms in the anharmonicity of the atomic levels, the excited state is given by

|F(t)) = 2, a,(t)|n) exp[-2mi(An t/ T, + An* t/T...)], (30)

Fig. 4. Projection of the probability density |#¥(r, 1)}” of a radial Rydberg wave packet (! =1, m = 0) onto the y-z plane is shown at t=(1/2)T
(parameters as in fig. 3).

CTT T T iy
> 1€-93.4 psec 4/ 2
%

W
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{
i
]
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{
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|
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(arbitrary units)

I

1
0.0 1.0 2.0 30
Time after laser pulse (nsec)

[ntensity

Fig. 5. The emission of an atom excited by a short laser pulse to highly excited Rydberg states (according to ref. [15]). Fractional revivals are
indicated by arrows [23].
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with An=n—n and T, the revival time. One can define a “classical” wave packet evolving without
dispersion by

F@))a =2 a,(ln) exp(=2mi An tiT,), (31)
so that |F(t)) ~|F(t)),, for t< T,,. For t= T, the additional phase shift due to the anharmonicity
drops out and we have a revival, because |F(t)) ~ | F(t)} . In ref. [23] the scenario of fractional revivals

is discussed. The simplest occurs at t~ 3T, , where |F(t)) ~ |F(t+ $T,)),,. Another one takes place
at t~ 1T . where

rev?

|F(t)) ~ AV 2)[e ™4 F(t)) o + e Tt + 5 T)) ol - (32)

Equation (32) represents a nonclassical object formed by two correlated wave packets which are
spatially separated within the classical orbit. The arrows in fig. 5 indicate the times § T, ,, ¢ T,.,, 4T
and 4T, which correspond to these fractional revivals.

rev?

rev

Two-photon excitation and quadratic Stark shift. The experiments discussed in subsection 2.2.2 use
two-photon excitation schemes for creating Rydberg wave packets. It is straightforward to generalize
eq. (22) to two-photon absorption. If the intermediate states are nonresonant, they can be eliminated in
perturbation theory. This leads again to equations of the form (22) where the one-photon dipole matrix
element is replaced by an effective two-photon matrix element,

() - i) €(0)— 2 f <”l’"|g_ +£fl12 <_’|E‘"8“> (1) . (33)

In the same order of perturbation theory the initial state and the Rydberg states are Stark shifted by the
amount

SEk=Z ,<r|"'£|k>, + I<rlﬂ°£*lk>, )I%’(t)lz, (34)

k r E k- how - Er
with k=1 or k= (nlm). Close to threshold, i.e. for frequencies fiw > |¢ [, the Stark shift of the
Rydberg states is approximately given by

=~ 80 +0v;). (35)

e

3E

nlm

and is only weakly dependent on » [78]. The first term in this equation is just the shift of the ionization
threshold due to the wiggle energy of the electron in the laser field. This ponderomotive shift of the
Rydberg threshold has been discussed at length in recent literature on the electron spectrum in
above-threshold ionization (for references see refs. [80, 39]). In our context, the intensity dependence
of the Stark shift leads to a time-dependent phase in eq. (23), similar to a frequency chirp of the laser
pulse. A detailed numerical study of the effect of the Stark shift in potassium is given in refs. [24, 25].
In this case the shift of the ground state is the dominant factor. These authors come to the conclusion
that the Stark effect places an upper limit on the strength of the pulse that can be used to excite a
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“good” radial wave packet. Noordam et al. [26] considered a situation where the shift of the Rydberg
states dominates. In this case the Stark shift leads to a contraction of the wave packet with the first
return to the core. A similar effect has been found in ref. [17] in the case of a frequency chirp of the
laser pulse. Noordam et al. suggest to use excited Rydberg systems as an amplifying laser medium and
to exploit this effect to shorten laser pulses efficiently.

2.2.2. Detection of a Rydberg wave packet

According to Parker and Stroud [15] the motion of an electronic wave packet can be observed by
monitoring the time dependence of the light emitted by the orbiting atomic electron. The returns of the
electron to the ion core manifest themselves as spikes of the intensity, which repeat themselves with the
classical orbit time until the wave packet decays.

Here, we discuss in some detail the concept of observing the wave packet dynamics in two-photon
processes with time delayed pump and probe pulses as suggested by Alber et al. and Henle et al. {17,
18]. Similar configurations have been studied by Fedorov and coworkers [31, 35]. Two recent
experiments have employed this technique [21, 25].

We assume a first pump pulse &,(¢) to excite a wave packet at time ¢,, which is probed at a later time
t,>t + 7, by a second short pulse &,(t) of duration 7, and mean frequency w,. The conceptually
simplest version of such a two-photon detection scheme is a two-color Raman-type process where the
second pulse de-excites the electron by stimulated emission to a (low lying) bound state |f) with energy
E,. Using perturbation theory, the probability of finding the electron in state |f) is given by

2

- f de' e TR gl - gX|F(E)) €1 e (36)

Pfi:lﬁ

As is apparent from eq. (36), the wave packet |F(t)) can only be de-excited when there is significant
overlap with the (localized) final state |f). Hence, we expect P, to show maxima when #, coincides with
the return of the wave packet to the inner turning point of its orbit. According to eq. (27), long after
the interaction with the second laser pulse the transition probability is given by

A 2
P, = |2 1ﬁ2 J dE %’*(85)%’ (8%)T4(E) exp(—idpt, +i83t,) 37
with the two-photon transition matrix element

TA(E)=(flu-e1G*(E+i0)p- i)

=3 [lue g gl e, (38)

and the detunings 6% = (E — o, — E,)/4, 8 = (E - hw, ~ E;)/h. Equation (18) implies a two-photon
matrix element of the form

T4(E) (>0),
TH(E)+2miZ,, 2 (72— )7'90) . (¢<0,Ime>0),

f, elm elm,i

Ty(E)= l (39)
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with E = I + &. Thus, for £ <0 the two-photon matrix element consists of two parts: The first part is the
two-photon matrix element, T;(E), which is smoothly extrapolated from the energy region above
threshold. The second term has singularities whenever E coincides with one of the Rydberg energies.
@(f;}m and @f_,,',,),_i are dipole matrix elements which are smoothly extrapolated to below threshold.
Figure 6 illustrates the energy dependence of the two-photon transition amplitude of eq. (39) for
hydrogen [79]. In eq. (39) the rapid energy dependence associated with Rydberg resonances has been
separated from the quantities T5(E), @(ff;?,,,, 9!} and @,, which are slowly varying functions of energy
across the Rydberg threshold and can be taken as constants for our purposes. This separation is vital for
evaluating the energy integrals of eq. (37). From a physical point of view, the existence of these slowly
varying functions of energy reflects the fact that, apart from the pure Coulomb force, the interaction of
the Rydberg electron with the radiation field and the ion core is confined to a finite interaction volume
which is much smaller than the size of the Rydberg states.

From eq. (19) we obtain the classical path representation of the two-photon transition probability,

1 1 1 7 P (aa s cqa .
Po= |32 (50 [ 4E E1@DEGDTHE) explions, ~id3,)
I o 2
+3 [ B9 B 3 @ me ) el o) exlisy, —isky)| . (40

]

Following the discussion of the previous section, the various terms in eq. (40) can be interpreted as

follows.

(i) If the pump laser is tuned to the continuum, there is only a contribution from the first term of eq.
(40), which involves the continuum propagator g;* (; r, r'). Therefore, P, will be essentially nonzero
only for overlapping laser pulses with #, =~ ¢,. The physical picture behind this is that the pump pulse

0.3
0.2
0.1 _—
8]
b 0.0 \mﬂ

2 (1 -socm4s)

€ (107 a.u.)

Fig. 6. Perturbative two-photon transition amplitude T;(E) for ionization of the hydrogen 1s state with circularly polarized light according to the
quantum defect formula (39). The energy of the intermediate state is denoted ¢. Top: Total generalized cross section o>, Center: Real (solid line)
and imaginary (dashed line) part of T,,(E). Bottom: Smooth quantum defect parameters [real and imaginary part of T(E)]. (From ref. [79])
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generates a wave packet which escapes to infinity. The atom can only absorb a second photon from the
probe laser, if the electron is still close to the ion core.

(ii) If the pump laser excites Rydberg states, in general there will be contributions from the first
term and from the infinite sum, which stems from the resonant part of the two-photon amplitude. The
first term contributes only for overlapping laser pulses. In this case the two-photon matrix element
looks like in an above-threshold process when only continuum states are excited. This is related to the
absence of intermediate Rydberg resonances in a two-photon process with spectrally broad pulses # /7,
ilt,>#h/T; and t,~1t, The terms in the infinite sum give contributions for time delays #, — 1, ~
(M+1)T, (M=0,1, 2 ..). This reflects the repeated returns of the wave packet to the ionic core,
where the electron can make a transition to the final state |f) by emitting a photon from the laser field.
Evaluating the integrals appearing in eq. (40) in a stationary phase approximation we obtain for time
delays with 1, —t,>7,, 7,

1 z 2@?’;l)mgb(aE)gzelmliga(sE)

M=0im
X [3(M +1)(—E/Ry)*(2%Ry) *] '™ goe)| pop) (41)
with
O(E) =083t — &ot, +2mMa, + 2m(M + 1)(—E/Ry) ™.
The points of stationary phase, E™, are determined by
dé
fi 3E | pepon = —(t,—t,)+(M+ 1)TE§M’ =0 (M=0,1,2,...). (42)

This stationary phase evaluation is valid as long as 3 (d°®/dE*)(#/r,)* > 1. The dominant contribution
to the sum of eq. (41) comes from stationary energies with EX*’ ~ E. + Aw, ~ E, + %, so that the time
delay between both pulses is a multiple of the mean classical orbit time. Figure 7 shows the two-photon

1 ]
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Fig. 7. Two-photon Raman transition probability versus time delay between both laser pulses t, — ¢, (in units of the classical orbit time T),
according to ref. [18]. The parameters are 7, = 7, = 12 ps, 71 =85 (T =94 ps). Solid line: a single Rydberg series is excited. Dashed line: the wave
packet is a superposition of autoionizing Rydberg states (7 = 0.075, see section 4.1).
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transition probability of hydrogen as a function of the time delay in units of the classical orbit time for
T,=7,=12ps, n=85 (T=94ps), =1 [18].

As mentioned above in section 2.1, not only energy-normalized dipole matrix elements from low
lying bound states to Rydberg states are slowly varying functions of energy but also those describing
ionization from the Rydberg states. Thus, the ionization probability in a two-photon experiment with
time-delayed pulses will show a structure similar to the Raman process discussed above [17]. The
advantage of observing radial Rydberg wave packets in ionization is that only a single laser is needed,
which generates a pump and a probe pulse. The disadvantage of a single-laser setup is that the ionized
electrons created by both pulses have the same energy. Therefore the total ionization signal will not
only consist of the contribution of the generated wave packet but also of the direct multiphoton
ionization by the individual pulses.

Two experiments have reported observation of a radial Rydberg wave packet using pump-probe
schemes with two-photon excitation of the wave packet and subsequent ionization in a single-laser
setup. In the experiment of ref. [21] Rydberg states of Rb around 42d were excited with a 6 ps pulse
and a central wavelength of 594.8 nm. The classical orbit time was 10.2 ps. The result for the ionization
signal as a function of the time delay is given in fig. 8. The ionization signal due to the separate pulses is
subtracted from the total signal. Around zero time delay the wave packet has not yet left the core and
multiphoton ionization takes place by absorption of photons from both pulses. The coherent spike in
the light intensity due to temporal and spatial overlap of the two pulses gives rise to the extra large peak
in the ionization yield. With increasing time delay two peaks at approximately 9.4 ps and 18 ps are seen.
They correspond to successive returns of the radial wave packet to the core region. Yeazell et al. [24,
25] used a 20 ps pulse to excite a coherent superposition of states around n = 85 in potassium. Results of
the experiment and their comparison with theory are shown in fig. 9. The ion signal shows peaks at
multiples of the classical orbit time of 107 ps. The decreasing height of the succeeding peaks is primarily
due to pulse-to-pulse frequency fluctuations and partly also due to dephasing of the coherent
superposition of states.

photoionization signal (arb. units)

[

— T I

20 30
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Fig. 8. Photoionization signal of the wave packet as a function of the time delay between pump and probe pulse (derived from a single laser)
according to the experiment of ten Wolde et al. [21]. Rydberg states of rubidium were excited around the 42d state (T = 10.2 ps) with a 6 ps pulse.
At 9ps and 18 ps, the return of the wave packet to the core leads to an enhancement of the ion signal.
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Fig. 9. Experimental and theoretical results for a photoionization signal in a pump-probe experiment (squares and solid curves, respectively)
according to Yeazell et al. [25]. A single-laser setup was used; approximately five Rydberg states of potassium around A =89 (T = 107 ps) were
excited by a 25 ps pulse.

We conclude by pointing out that according to ref. [27] even incoherent pump and probe puises will
lead to modulation patterns in the ionization probability as a function of time delay. The necessary
conditions are that the coherence time of the incoherent light pulse has to be shorter than the classical
orbit time and that pump and probe pulse are derived from the same light source. However, the pulse
duration does not have to be shorter than the classical orbit time.

2.2.3. Generation by an intense laser field

In this section we study the excitation of a Rydberg series by an intense, not necessarily short laser
pulse close to threshold (see fig. 2). By intense pulse we mean that the time scale of the atomic
evolution, as induced by the laser light, can be shorter than the duration of the light pulse. This requires
a nonperturbative solution of equations of the type of eq. (22) [28-37, 81-85]. Two cases will be
discussed below: (i) the depletion time of the ground state is much shorter than the classical orbit time;
(i1) the Stark shift of the Rydberg states is larger than the spectral width of the pulse and the energy
spacing of the Rydberg levels. In the first case a radial wave packet is generated due to the rapid
depletion of the ground state population. These depletion wave packets have been discussed in refs. [30,
32]. The second case is realized when a high-order multiphoton process excites electrons close to
threshold [20, 37, 38]. Our derivations will again be based on quantum defect methods. This implies
that the interaction with the Rydberg series is treated as a whole including the infinite number of
Rydberg states and the adjoining continuum from the outset.

In a series of papers Fedorov and coworkers have studied strong field effects in coherent processes
involving Rydberg states [28, 31, 35], predicting, for example, stabilization of Rydberg states in strong
fields due to interference effects caused by Raman-type transitions via the continuum. The dynamics
and quasi-energies of a system consisting of a ground state and a quasicontinuum of levels in a resonant
external field has also been analyzed for the entire range of intensities and various rise times of the field
by various authors [81-83] and has been extended recently to include laser band width effects [84].
Grochmalicki and Lewenstein [33] have discussed excitation of Rydberg wave packets by short laser
pulses including saturation effects for a class of pulse shapes and have emphasized the importance of
smoothness of the puise.

To describe the formation of depletion wave packets we start from egs. (21) and (22). Although for
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strong fields one expects in general also other excitation channels to contribute, the problem studied
below is the basic building block of more realistic models. We assume that the electric field of the laser
is turned on instantaneously at ¢ =0 and that the envelope has the form of a square pulse with constant
amplitude %(t) = €. However, the essential difference to subsection 2.2.1 is that a perturbative solution
of the Schrodinger equation is no longer sufficient. To simplify notation, we consider only coupling to a
single Rydberg series, i.e., we suppress the angular momentum quantum numbers /m, and use Hartree
atomic units (e =4 =M, =1).
The Laplace transform of the initial-state amplitude a,(z) is defined by

x+i0

a(t)= %r f dze a(2), (43)

~x+i0

and is explicitly given by
a(2) =iz - E;— 3(z+ “’)]_1 ) (44)

with the self-energy of the initial state 3(z)= T,(z)|€)". Before proceeding to a discussion of
near-threshold phenomena, we find it worthwhile to review the solution of eq. (22) in the energy region
far below and far above threshold.

Far below threshold (the two-level approximation). Whenever the laser pulse is tuned to near
resonance with one of the bound states |n), i.e., |E,+ @ — E |<|E,— E,.,|, and the intensity is
sufficiently low, i.e., |2 |=2|(n|pn-¢€|i)&|<|E, - E,.,|, only state |n) is excited significantly.
Therefore, the self-energy 3(z) may be approximated by keeping only the single state |n) in the
spectral decomposition,

S(E)~ 40, I(E-E,), (45)

with the Rabi frequency (2. Inserting eq. (45) into eq. (44) we find the poles, z, ,, of 4,(z) and the
corresponding quasi-energies, E, , = z, , + w, from the quadratic equation

(E-EXE-E,)- o, =0, (46)
with the mean excited energy E = E, + . These quasi-energies describe the positions of the Stark-split

energy levels.
Inverting the Laplace transform of eq. (43) we obtain for the initial-state amplitude

- : _i(El.-w), (%I-in)z
0= e Al )

The initial-state probability therefore exhibits the well- known Rabi oscillations with frequency [(E, -
EY + (2,717

Far above threshold (exponential decay). If the laser field is tuned well above the ionization
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threshold, the dominant contribution to 2(z) comes from the excited continuum states near the energy
conserving value z + w = E~ E. As the bound-free dipole matrix elements are smooth functions of
energy, we may approximate 3(z + w) by its values near z = E, (pole approximation),

3(z+ w)~dE, —iy/2. (48)

8F, is an approximately energy independent quadratic Stark shift (which we assume to be absorbed in
the initial-state energy E.) and

y=2n|(E|lp- & &li)|’ (49)

is the ionization rate in agreement with Fermi’s golden rule. Thus the self-energy of eq. (48) gives rise
to a complex quasienergy E =z + w = E —iy/2. Inverting the Laplace transform we find

ai(t)=e—i(E-'—w)le—yl/2 , (50)

and the initial-state probability is exponentially decaying as a function of time.

Near threshold. If the laser is tuned close to the photoionization threshold, many bound and
continuum states contribute to the self-energy 3(z). Taking the Laplace transform of the wave function
of eq. (21), we find the following system of close-coupling equations:

(z - E)a2) + (il - £**|Fz + 0)) =1,

(51)
(z+w—H)|Fz+ o))+ p-eéli)a(z)=0.

Solutions of similar equations, which describe the coupling between a bound channel |i) and a free

channel |F(z + »)), have been studied in QDT [9]. Eliminating |F(z + ®)) in eq. (51) we find for the

self-energy (E =1+ ¢)

dw —iy/2 (e>0),

3(E) = {aw + (YD) cotlm(v + a)] (e=-1/(20%)<0). (52)

Here, 8w and vy are a quadratic Stark shift contribution and the ionization rate. The shift dw is assumed
to be absorbed in the initial state energy E,; together with the ponderomotive shift of the Rydberg
threshold. As a consequence of the finite-range character of the radiative coupling (see sections 2.1 and
2.2.2), 3w and vy are approximately energy independent across threshold. The rapid energy dependence
below threshold is contained in the cot term. 3(E) has poles at the Rydberg energies e, = —4(n — a) >

It is not difficult to see that eq. (52) reduces to the result of the two-level approximation when only a
single state |n) is significantly excited. Near a resonance energy, E ~ E,, we obtain eq. (45) provided
we make the identification

Ho P =(vi2m)(n—a)>. (53)

Note that eq. (53) implies the familiar (n — a) > scaling of the bound—-Rydberg dipole matrix elements.
Above threshold eq. (52) is identical with eq. (48).
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Dressed energies, En =z, + o, are determined by the poles of a,(z). According to eqs. (44) and
(52), they are solutions of the transcendental equation

~ 1

=1- ——— 54
" )T Y
with the intensity dependent quantum defect
w(E) = (—1/7) arctan[(y/2)(E -~ E)”"]. (55)

The appearance of a Rydberg formula with a laser-induced quantum defect is not surprising: it is well
known that the mixing of a bound state into the continuum leads to a resonant phase shift wu(E); in
the excitation from a low lying atomic state such a continuum phase shift manifests itself in the
appearance of a laser-induced autoionizing-like resonance, whereas in the process of laser-assisted
electron—ion scattering, which is described by the scattering matrix

i(E) = eZ'n'i[a +u(E)] , (56)

it gives rise to “capture—escape” resonances. On the other hand, in the bound state region scattering
phase shifts correspond to quantum defects, in agreement with eq. (54).

We now return to study the time evolution of the initial-state amplitude. Using eq. (52) and inverting
the Laplace transform by contour integration, we find the initial-state amplitude in the dressed state
representation,

iBmoy 1 me /2

_ i(E,—w)t 3

(1) =D, e \En s

ai(t) n z (E,— EY' + (y/2)’[1 + 2(ym32)]

+ 2‘—7 e\ Em (e 2 E (—iEt — y1/2) — 2mO(E)] — e"2E (=iEt + yt/2)} . (57)

O(x) is the unit step function, which vanishes for x <0. E, (x) is the exponential integral [86]. Equation
(57) shows that all quasi-energies in an energy interval of width y[1+2/(yn5°)]"’? around the mean
excited energy E contribute significantly to the excitation process. We can, therefore, distinguish
between two different dynamical regimes, namely the two-level (or weak-field) limit characterized by
y <7, and the threshold (or intense-field) limit y > 7>, The last case implies that for E < [

T:=2w[2(I- E)]?>27ly, | (58)

with the classical orbit time of an electron in a Coulomb potential Tz. In the time domain the inequality
(58) expresses the fact that the laser-induced depletion time of the initial state, 1/, is shorter than the
classical orbit time of the excited electron.

Under condition (58) a direct evaluation of the sum of eq. (57) is inconvenient, because many
dressed states contribute. Instead, we prefer to represent the initial-state amplitude in the form of a
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classical path representation,

1
a(t)y=e ETre L Y f dE e 'EM[(E - E +iy/2)'2{ ) €%’
M=0
X [ME) ™ "D} €(E - E +iy/2)"'], (59)
with the photoionization and recombination dipole matrix elements

9C) = —ie™ (Elu-eli), 9% =-ic™ (i|n-e*|E)
Compare with egs. (11) and (12)] and the electron—ion scattering matrix g(E). Since y > 7 >, ¢*"" is a
rapidly oscillating function of energy. Therefore, the dominant contribution to the energy integrals
comes from points of stationary phase, EX, which fulfill the relation t=(M + DT o, M=
0,1,2,.... Performing the energy integration in eq. (59) with the stationary phase’ method
we find

ai(t) - e—i(E—w)t e—yl/Z

x 1/2
+ 3 ( __27I__> et e EMI(y12m)(E~ E) + (v12)7] 7|

60
M=1 |82¢’/6E2|(M,,) (60)

E=E™) >

with the phase ®(E, M, t)= —(E — o)t +27M[v + a + u(E)].

For a given time ¢ the only contributing terms in eq. (60) are those for which |[E¥) — E|<1+.
Therefore, for times much shorter than the classical orbit time there are no stationary phase
contributions and the initial-state amplitude decays exponentially with rate y. The depletion of the
initial state (i) on a time scale of the order of 1/y < T; implies the generation of a radial electronic
wave packet. The exponential decay law for the initial state for times ¢ < T reflects the fact that the
electronic motion is not affected by the outer turning point of the Coulomb potential and behaves like
in a true ionization process above threshold. For times ¢ ~ T, the dominant contribution of eq. (60)
stems from the term with M =1, which describes the first return of the electronic wave packet to the
inner turning point of its orbit. Inside the core region, the electron is scattered in the presence of the
laser field and can be de-excited back to the initial state |i). Similar arguments can be presented for
times t~MT; (M=2,3,...), so that the population of the ground state will show population
pulsations with the period of the classical orbit time.

Figures 10 show the initial-state probability as a function of time for different mean excited energies
¢ and a fixed value of y and a =0. Figure 10a represents a case where only a few quasi-energies
contribute in eq. (57), giving rise to slightly modified Rabi oscillations. As soon as the mean ionization
time, 1/, becomes comparable to or smaller than the classical orbit time, Tz, the time dependence of
the initial-state probability changes drastically (figs. 10b—d). In fig. 10c many Rydberg states are excited
and a radial Rydberg wave packet is generated. Thus the ground state population shows population
pulsations with the classical orbit time. The broadening of the recombination peaks reflects the
spreading of the wave packet. For long times, when the wave packet is no longer well defined, the
ground state population shows rapid oscillations. An extreme case is shown in fig. 10d, where Rydberg
and continuum states are significantly excited. The excited energies correspond to orbit times from
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Fig. 10. Initial state probability, P, as a function of time (in units of the mean orbit time T;) for excitation of a Rydberg series with
y=4.13x10"s7", (a) £=-2%10""au, (b) £=-5x10""au, (c) £=-1.25x 107 au, (d) £=~4 x 10”° au. The dashed curve in (d) shows the
mean (time-averaged) initial-state probability.

some T, up to infinity, so that the radial wave packet is not well defined. This leads to rapid
oscillations, which correspond to the interference between contributions associated with different
returns of the electron to the core region. Averaging over these oscillations one can show that in the
present model the ground state population approaches a nonzero population in the long time limit. This

value is approached asymptotically according to a power law involving ¢t ~>'* [29, 30].

Effects of the Stark shift. We have already discussed aspects regarding the Stark shift of atomic levels
in subsection 2.2.1. We conclude this section with remarks on the threshold behavior of N-photon
resonant (N + 1)-photon ionization processes (typically N =3,4,...) in cases where the Stark shift is
much larger than the Fourier width of the pulse, so that it is the dominant broadening mechanism.
Examples are multiphoton ionization experiments in rare gases [20]. Typically, in this case the shift of
the ground state is small while the photoionization threshold is shifted upwards according to eq. (35).
For an explanation of the experimentally observed threshold structure of ref. [20], inclusion of the time
and space dependence of the ionizing laser pulse is of central importance. If the laser is tuned
sufficiently far below threshold, the spectral width of the laser pulse is smaller than the Rydberg level
spacing and the Rydberg states appear as isolated intermediate resonances. Close to threshold the
energy level separation becomes smaller than the spectral width of the laser pulse and the resonance.
structure disappears. There are three time scales in the problem, the time scale associated with the
Stark shift 3E, the laser pulse duration 7, and the classical orbit time T. (Note, however, that for a fixed
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excitation energy there is an ambiguity in defining a Rydberg energy spacing, because the effective
ionization threshold varies according to the space and time dependence of the laser field.) In figs. 11 the
experimental and theoretical ionization probability of (2 + 1)-photon ionization of rubidium is shown as
a function of laser frequency [87]. According to these figures, a region where individual Rydberg
resonances are well resolved, is followed by a smoothly decreasing ionization probability in the
bound-state region and an almost energy independent above-threshold ionization signal.
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Fig. 11. Ionization probability of rubidium as a function of the laser frequency across threshold according to ref. [87]. The duration of the laser
pulse is 7, = 3.54 ps, the maximum light intensity is / = 6.9 X 10'° W/cm”. The two subplots are (a) experiment and (b) theory (for a Gaussian laser
pulse). The left arrow on (b) (between the 20d and 21d states) indicates the position where the Stark shift equals the energy separation between the
Rydberg levels. The right arrow corresponds to the position where the laser pulse duration is equal to the classical orbit time.
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2.3. Angular Rydberg wave packets

An angular wave packet is a coherent superposition of energy eigenstates with high values of the
angular momentum quantum numbers /m so that the polar and azimuthal angles of the excited electron
are localized. Due to angular momentum selection rules, formation of such a superposition cannot be
achieved by one- or two-photon absorption from an atomic ground state with a short laser pulse alone.
Additional external fields or a special preparation of the atom is required for the excitation of high
angular momentum states [46-48]. Although such an excitation is difficult to achieve experimentally,
special properties of these high angular momentum states, for example their long radiative life times,
their large electric and magnetic dipole moments and their anisotropic behavior in collisions, have
motivated experimental efforts. Examples are the Stark excitation schemes of Hulet and Kleppner [46],
the method of crossed electric and magnetic fields proposed by Delande and Gay [57] and the
suggestion by Molander et al. [40] to employ dressing by a radio frequency field.

In a series of papers, Stroud and coworkers [24, 40-42] investigated the excitation of an angular
wave packet consisting of a superposition of a large number of aligned Rydberg states with m =[/>1
and the same value of the principal quantum number, n, theoretically and experimentally. The
wave function of such a state is given by ¥(r,0,®,6)=1 A,Y(O, ®)e """ Because
Y}(0, @) x(sin @Y, the probability distribution of each of these aligned states is essentially confined to
a plane perpendicular to the axis of quantization. A linear superposition of different /-values produces a
localization with respect to the angle ®. The time evolution of such an angular wave packet is
determined by the interference between states with different angular momenta but a fixed value of n.
For a nonrelativistic hydrogen atom these eigenstates are degenerate and the corresponding wave
packet is stationary. In the case of alkali atoms, corrections to the 1/7 Coulomb potential include a 1/r*
contribution from core polarization and relativistic effects. As a consequence, the wave packet will
precess. This is in complete analogy to the precession of Mercury due to relativistic effects. As an
example, fig. 12 shows the evolution of an angular wave packet according to Yeazell [24].

Following the suggestion of Molander et al. [40], in a recent experiment Yeazell and Stroud [42]
prepared an angular wave packet by optical excitation of Rydberg states which are strongly dressed by a
radio frequency (rf) field. Thereby a circularly polarized laser field excites electrons from the sodium
ground state via two-photon absorption to the n =50d-state. The n =50 manifold is dressed by a
circularly polarized rf field (frequency 65 MHz, field strength 0.3 V/cm), which is tuned near the
thirty-photon resonance between the states (n, /) = (50, 2) and (n, I) = (50, 32). As a consequence this
high angular momentum state and several of its neighbors are strongly mixed with the 50d state. All of
these rf-dressed levels lie within the coherent band width of the short optical pulse (pulse duration
7, = 500 ps). Turning off the rf field adiabatically, the population in the dressed states goes directly into
the angular momentum eigenstates with which they are connected, leaving a coherent superposition of
[-states. After the rf field is turned off, the motion of the (free) wave packet is due to core polarization
and relativistic effects. Detection of this angular wave packet is achieved by ionization with a pulsed
electric field. The ionization signal depends on time and the angular localization of the wave packet. A
wave packet aligned in the direction of the ionizing field has a larger ionization rate than one aligned in
another direction. Therefore, the time dependence of the ionization signal provides a signature of the
orientation of the wave packet. Yeazell and Stroud [42] performed a classical Monte Carlo calculation
to model this ionization process. Very good agreement is achieved with their experimental resuits,
demonstrating the experimental realization of an angular wave packet. Precession of the wave packet
has so far not been observed experimentally because of the long precession times, which are typically of
the order of milliseconds.
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Fig. 12. Evolution of an angular wave packet according to Yeazell [24]. After the dressing radio frequency field has been turned off, the probability
density of the wave packet is shown at intervals of 56 ps. The wave packet is described by a three-dimensional plot of the probability density in the
plane perpendicular to the axis of quantization. The wave packet precesses due to perturbations of the Coulomb potential with period T = 340 ps.

Coherent excitation of a superposition of DC-Stark-split atomic states has been reported recently in
ref. [43]. For small static electric field strengths F, the Stark shift of an alkali Rydberg state scales
linearly with F. For hydrogen the energies of the Stark-split states are given by E, , = —-Ryln®
+3Ry(F/F,)n(n, — n,) with the principal quantum number n = n, + n, + m + 1, the parabolic quan-
tum numbers 7,, n, and the atomic unit of electric field strength F,=5.14 x 10" Vm ™", Therefore,
coherent laser excitation of these energy levels leads to a beating period T = (£ /2Ry)(2m)/[3 (F/Fy)n],
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which is the same for all neighboring components. These Stark states are superpositions of angular
momentum eigenstates. According to calculations in ref. [43], a wave packet consisting of a superposi-
tion of such Stark states is oscillating between a more or less spherical distribution of low-/ states and a
distribution which is strongly oriented along the electric-field axis. In ref. [43], the periodic motion of
such a wave packet was observed in Rb for excitation of Rydberg states with n =23 in a single-laser
setup with pulse duration 7, = 5 ps. The- Stark period was T = 45.8 ps. The observed modulations of the
ionization signal reflect the oscillations of the electronic charge distribution.

Recently, it has been shown by Delande and Gay [57] how in the presence of weak, static electric
and magnetic fields a stationary hydrogenic energy eigenstate can be excited which is localized on a
Kepler ellipse with minimum quantum fluctuations. This excitation scheme certainly constitutes a
promising step towards the final goal of preparing a localized electronic wave packet which moves along
a Kepler orbit. Experimentally, excitation of such a minimum uncertainty energy eigenstate has been
demonstrated recently by Hare et al. [48]. For the preparation of an ideal Kepler wave packet a
superposition of many of these energy eigenstates is needed. These minimum uncertainty energy
eigenstates might have interesting spectroscopic applications in the future. They are discussed in more
detail in section 3.2.

3. Theoretical methods and aspects

The purpose of this and the following chapter is (i) to generalize the treatment of the single-channel
Coulomb case of chapter 2 to the many-electron (many-channel) problem and (ii) to discuss wave
packet dynamics in the presence of external static fields. Theoretical methods based on Multichannel
Quantum Defect Theory (MQDT) and semiclassical techniques are developed in this chapter, whereas
physical applications are postponed to chapter 4. We conclude this chapter with a brief discussion of the
minimum-uncertainty states of the Kepler problem.

In this and in the following chapter we shall use Hartree atomic units with e= M, =A=1.

3.1. Classical path representation of atomic transition amplitudes

Recently, there has been renewed interest in the description of atomic and molecular laser excitation
processes with semiclassical techniques [88-98] in which quantum mechanical wave functions and
observables are constructed directly from properties of the trajectories of the corresponding classical
problems [88, 92, 95-98]. These methods clearly exhibit the connections between classical dynamics and
quantum mechanics and their application is particularly interesting in cases where the classical dynamics
is not integrable and exhibits complicated phase space structure. Recently, these methods have also
been applied to the description of laser excitation processes of atomic Rydberg states close to a
photoionization threshold [17, 18, 30, 32, 34, 36, 99, 100].

For highly excited Rydberg states with small values of the angular momentum the classically
accessible region of configuration space is large in comparison with the Bohr radius. This implies large
classical actions. Therefore, semiclassical methods are applicable for the description of these states and
classical path representations may be derived in which the atomic transition amplitudes of interest are
expressed as a sum of contributions of all closed orbits of the excited Rydberg electron, which start
from the nucleus. In the context of laser excitation of Rydberg states close to a photoionization
threshold such representations have been derived recently for an unperturbed atom in refs. [17, 18, 30,
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32] and for an atom in a static external field in refs. [34, 36, 99, 100]. These classical path
representations are particularly useful for the description of the dynamics of radial Rydberg wave
packets and are derived in the following. In the special case of a one-channel Coulomb problem, such
classical path representations have already been encountered in chapter 2.

As has been shown in section 2.2, the quantity of central importance in atomic processes which
involve resonant absorption and stimulated emission of laser radiation (within perturbation theory), is
the resonant part of the two-photon transition amplitude as given in eq. (38),

To(e) = (flm-ef(e — Hy+i0) 'p-gli) (e~e+w,), (61)

between an initial state |i) with energy ¢, and a final state |f). H, is the atomic Hamiltonian, w is the
atomic dipole operator and ¢,, €, and w,, w, are the polarizations and frequencies of the absorbed and
emitted laser photons. With the replacement £;— ¢,, eq. (61) also describes one-photon resonant
two-photon absorption. The main problem in the description of such laser excitation processes is the
determination of the energy dependence of T,(¢). This problem has been discussed for the single-
channel case in subsection 2.2.2.

In terms of this two-photon transition amplitude the final-state probability of the two-photon Raman
excitation process of subsection 2.2.2 is given in eq. (37). In the special case of one-photon excitation
from an energetically low lying bound state |g), the resonant part of the self-energy is related to this
two-photon transition amplitude by

3(e) =T, (e)| €|", (62)
with €, = g,. Its imaginary part gives the one-photon excitation rate,

I'=-2Im[3(e)] (63)

e=eg+w 4
which describes the laser-induced depletion of state |g) in the limit where the depletion time 1/I" is
much larger than the pulse duration 7, [compare with eq. (52)].

The generalization of eq. (39) to the many-channel case is conveniently done using the Dalgarno-
Lewis method [101]. The two-photon transition amplitude is related to the solution |F,) of the
inhomogeneous Schrodinger equation

(e —H, +10)|F,) = p - €,]i) (64)
by
T(e)=(flpu-&3|F,) . (65)

It can therefore be evaluated in two steps: In a first step we solve the inhomogeneous Schrodinger
equation (64) and in a second step we determine the dipole matrix element between the final state |f)
and the excited atomic state |F,) as given by eq. (65).

The main purpose of this section is the derivation of classical path representations for the two-photon
transition amplitude with the help of this method. In subsection 3.1.1 we concentrate on an un-
perturbed atom, where at large distances from the nucleus the dynamics of the excited electron is
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Fig. 13. Schematic representation of laser excitation of autoionizing Rydberg states.

determined by the (1/r) Coulomb potential of the ionic core and we generalize the results of eq. (39) to
the case of many fragmentation channels as schematically indicated in fig. 13. In this case, a classical
path representation may be derived from standard results of QDT [18, 30, 32]. In subsection 3.1.2 we
generalize these results to cases where at large distances from the nucleus the dynamics of the excited
electron is modified, for example, by a static external field. Under these conditions a classical path
representation may be derived with the help of multidimensional semiclassical methods [36, 99, 100).

3.1.1. The multichannel Coulomb problem

If one of the outer electrons of an atom with several valence electrons (an alkaline earth atom, for
example [11]) is excited by a laser pulse, it may exchange energy with the ionic core. In the framework
of an independent particle model the energy spectrum of the neutral atom consists of Rydberg series
converging to various fragmentation thresholds with energies I,. Due to electron correlation effects
these Rydberg series and continua are coupled, and energy is exchanged between them [9, 14].

In an N-channel approximation, a solution of the homogeneous part of eq. (64) is given by

bR, =2 B(R) T Fe,r). (66)

The channel functions, (Dj(R), characterize the state of the ionic core with R indicating its coordinates
and the angular momentum and spin of the excited electron. In the nonrelativistic approximation the
radial wave function of the excited electron is determined by [9, 18, 30, 79]

2 (5= M3~V MIF(e, N =) (j=1,....N). (67)

The energy of the excited electron in fragmentation channel j is ¢, = ¢ — I.. If ¢, <0, fragmentation
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channel j is closed, otherwise it is open. The radial Hamiltonian of the excited electron, A(r), includes
the long-range (1/r) Coulomb potential of the ionic core and is given by

(& _LGEDy
wo=-3 (3= )+

r

The residual potential, V,,(r), describes the electron-correlation-induced coupling between the fragmen-
tation channels and q](r) =r(@|p-£,i), describes laser-induced excitation from the initial state |i).

As far as the dynamics of the excited electron is concerned, we may distinguish two characteristic
physical regions:

1. For nonhydrogenic ionic cores the potential V,,(r) tends to zero at least as 1/ r’ at large distances
from the core. It may therefore be treated approximately as a finite-range coupling, which is restricted
to a reaction zone of a few Bohr radii around the atomic nucleus, i.e., V, (r)=0for r>r ~1[9, 14].
The energetically low lying bound state |i) is also localized in a reglon of this size around the atomic
nucleus so that we have g,(r) =0 for r > r, approximately.

2. Therefore, outside the reaction zone the dynamics of the excited electron is determined by the
(1/r) Coulomb potential of the ionic core and eq. (67) may be solved analytically.

For energies above all thresholds, i.e., & >0 (j=1,...,N), and large values of r the physical
solution of eq. (67), which is regular for r— 0 and remains finite for r—, is given by [18, 30]

FP (e, )~ =1 (g, Nin@]” (1<r). (68)

The photoionization dipole matrix element

=3 | arlF e e (®9)

k=1
0

describes laser-induced excitation of channel j. The solution &\ )(s r) of the homogeneous part of eq.
(67) describes an electron leaving the ionic core in channel j and behaves asymptotically as

Fo )(3 r-~ 2[‘Pl+)(3k’r)6k1 ‘Pl )(Ekvr)Xk,] (1<n), (70)

with the energy-normalized outgoing and incoming Coulomb functions (pzt)(sf, r) [9], respectively.
Semiclassically, they are given by

qoff)(ej, r)~V2/[wp(r)] exp{ti[we]_(rl, nN-+1U2)m+aldl} (r,<r<r,), (71)

with the classical action w (rl, r), the turning point r, and the radial momentum p(r)=[2(s,

+1/r)]""%. The scattering matrix elements X;; describe electron scattering between channels k and j,
which takes place inside the reaction zone due to the presence of the residual electrons. These matrix
elements are smooth functions of energy across any threshold [9, 14].

For some channels closed, i.e., & <0 (j=1,..., N, <N), Fﬁ.")(s, r) as given in eq. (68) diverges
for r— . However, in this case the physical solution of eq. (67) is given by a linear combination of the
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particular solution F f.")(s, r) and a solution of the homogeneous part of eq. (67), i.e.,
N
Fe, )= FP(e.n+ 2 [F))(e NI (). (72)

The amplitudes 4, (¢) are determined by the requirement that F (&, r) has to remain finite for r— c.
Using well-known properties of the Coulomb functions ¢! ) ( ,7) [9] or of their semiclassical
approximations, we find

[y

EN 2imy, 1- CZi""c -1 ‘2i7;-@(._) k= 1,...,N),
d(s){ [ X €7) 727D EkchH’_.?’N). (73)

2imy,

The matrix x, is the scattering matrix in the closed-channel subspace and e™™* is the diagonal matrix
with elements e*™ and v, =(—2¢) """ Inserting egs. (72) and (73) into eq. (65) we obtain the
two-photon transition amphtude

N,

Ti(e)=TY +2im X B[ (1~ x,.e"™) '], 2., (74)

j.k=1

with the recombination dipole matrix element
N o
9= 3 [ ar (il €10 A e 1 75
o

The first term of eq. (74) describes the “direct” two-photon transition, which takes place inside the
reaction zone. Above all thresholds this is the only contribution to T,(¢). The residual terms of eq. (74)
describe the resonant contributions from the Rydberg states. If |f) is an energetically low lying bound
state, the reaction zone extends only a few Bohr radii around the atomic nucleus and T and the
photoionization and recombination dipole matrix elements @( ) and @5” are slowly varying functions
of energy across any threshold [9, 14]. If the second laser pulse induces a transition from highly excited
Rydberg states to continuum states well above threshold, the effective range of the radiative coupling 7,
may be estimated by the distance the Rydberg electron can move away from the nucleus during the
absorptlon of the laser photon. This characteristic absorption time is of order 7~ ", which implies

r.~w 2" [78]. Therefore, in the opt1cal frequency regime photoabsorption from highly excited

Rydberg states is also localized in space in a finite reaction zone around the atomic nucleus so that even
in this case T}, 27 and 3" are slowly varying functions of energy across threshold (compare also
fig. 1 and the corresponding discussion in section 2.1).

Expanding eq. (74) in a geometric series we finally obtain the classical path representation 17, 18, 30]
N, o
Tﬁ(g) _ TS) + Qi 2 954’) 2 [GZi‘lrvc(ch eZi'rrvc)M]jk@i—) . (76)
j.k=1 M=0

The Mth term in the infinite sum of eq. (76) represents the contributions of the (M + 1)th return of the
excited electron back to the reaction zone. The quantity S; =27y, is just the classical action accumu-
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lated during one revolution along a Kepler ellipse of maximal eccentricity (/ = 0). With each return to
the reaction zone the excited electron may be scattered into a different channel due to the presence of
the residual core electrons. This scattering process is described by the scattering matrix ...

3.1.2. Atom in an external static field

If an atom is placed in a weak, static external field, a highly excited Rydberg electron may be
strongly influenced at large distances from the ionic core. In this case Rydberg states of different
n-manifolds are strongly mixed and the influence of the external field on the atom cannot be treated
perturbatively [4].

Physically, we can distinguish three characteristic spatial regions as far as the dynamics of the excited
Rydberg electron is concerned [102, 103]:

1. The atom-laser interaction [78] and electron correlation effects [9, 14] are concentrated in a
reaction zone, which typically extends only a few Bohr radii around the atomic nucleus, i.e., r <r_~1.

2. In the surrounding Coulomb zone, i.e. for r, <r < a, the electron is dominantly influenced by the
(1/r) Coulomb potential of the ionic core.

3. At sufficiently large distances from the ionic core, i.e. for r = a, the external potential V__(x)

becomes at least as important as the (1/r) Coulomb potential. In general, the Hamiltonian which
describes the dynamics of the excited electron in this asymptotic zone is not separable and the
corresponding classical problem might even be nonintegrable.
This allows one to solve the Schrodinger equation (64) in two steps: In a first step we solve eq. (64) in
the reaction and Coulomb zone with the methods of section 3.1.1. In a second step we solve eq. (64) in
the Coulomb and asymptotic zone with the help of semiclassical methods and match both solutions
inside the Coulomb zone.

For simplicity, we shall restrict the following discussion to the case of a single excitation channel.
Thus, in the asymptotic part of the Coulomb zone the general solution of eq. (64) which is regular for
r—0 is given by

n 1 + : - - *
Fle,x)~ 2 Y(6.0), [0 (e, Nindl,) + F(e. 0" b, ()] (1<r<a), @

in the notation of section 3.1.1 [compare with eq. (72)]. The radial solutions of the homogeneous part
of eq. (64), (e, r), involve scattering matrix elements y, which describe elastic scattering of the
valence electron inside the core region due to the presence of the residual electrons. For simplicity we
assume this scattering to be spherically symmetric so that y, is independent of the magnetic quantum
numbers m,. Typically, this scattering process affects only low angular momentum states with [ </,
which have a sufficiently large overlap with the ionic core. Thus we may write x, =1+ f, with the
scattering amplitudes f, being zero for /> [, approximately.

For the evaluation of &, (&) we have to solve eq. (64) in the region |x| = r, with the boundary
condition

l//E(x)||x|=,0=F(£,Jc)|xl=,0 (I<ry<a). (78)

The large extension of the classically accessible region implies large classical actions. Therefore this
boundary value problem may be solved with the help of semiclassical methods. For this purpose we
start from the part of F(e, x) which is proportional to ¢ (e, r), i.e. ¥, (x). For small angular
momenta, [, m ~ 1, §_, (x) involves a rapidly oscillating radial function and a slowly varying function of
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6 and ¢. For fixed value of the energy the rapidly oscillating radial part defines the two dimensional
Lagrangian manifold [95, 96]

Ly={(ro: b, €0 Prp» Pay P%)|0<00<7T’0<¢’0<2'”’ p,,=V2et1/ry), P90=P¢0=0} .

Propagatmg L, through phase space along the Hamiltonian flow generated by the classical Hamiltonian
H=i{p’- 1/r +V,..(x) we obtain the three-dimensional Lagrangian manifold

L={(r,6, ¢, p., P> P¢)(7v 6> #0) |[0< 6, <m,0< @ <2m,7=0}.
In the limit of large classical actions the solution of the boundary value problem is given by [95, 96]

‘I’E(x) = 2 \/J(O, 00,-, (pOj)/IJ(Tj’ 00j’ ‘Poj)'

X exp{i[Se(Tj’ By » ‘POj) - l‘,’> 7121} You(Tos 6> ‘Poj) (x[=7,), (79)

asymptotically. The summation index j represents a sum over all projections of L onto the three-
dimensional configuration space at point x and S,(;, 6, <p0,) is the classical action along trajectory j
which starts at point (ry, 6, ¢,;) with 7=0 and reaches point x with 7 =17, The amplitudes of this
asymptotic wave function are determined by the determinant of the local prOJectlon of the Lagrangian
manifold L onto configuration space at point x, i.e.,

dxadyadz
75 8 @) = 4 a6, A ey

(80)

(7 6 “’0/

Its initial value, i.e. J(0, 6, @), is determined by L,. p,; is the Maslov index [95, 96] of trajectory j
outside the Coulomb zone. The unknown amplitudes &, (¢) of eq. (77) are determined by the
boundary condition (78), which implies

2 T
()= | do [ dsin0 Y70, £'(-1)' S VIO, Gy ) T7Cr, By )
0 0 !

X exp{i[zwe(rh ro) + Ss(Tjs 00,', (00]-) - (/.L]> + 3)71‘/2]}
X 2 YT (6, o)1) [27B150 + (14 £ )by (E)] (81)

with r(7;, 8, ¢,;) =r,, 7,>0 and p,(7;, 8, @) <0.

In general eq. (81) can only be solved approximately. A special case arises in the absence of an
external field, where #,,(¢) may be evaluated exactly. The rotational symmetry of the Coulomb
problem implies that the action S (7;, 6, ¢,) is independent of the final angles 6 and ¢. Below
threshold therefore the contributions of all bound trajectories, which start from the nucleus with a pure
radial momentum and return again to |x|=r,, interfere constructively. Taking into account that
S, (75, 8> @g;) + 2w (ry, rp) =27 with &= -1/(2v%) <0, we obtain

() =TT 21D L) + x o, ()] (£<0). (82)
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Inserting eq. (82) into egs. (77) and (65) gives the one-channel approximation of the classical path
representation as given in eq. (76).

In a static external field the rotational symmetry of the Coulomb problem is broken. In general, this
implies that expliS, (7;, &, @,)] is a rapidly oscillating function of the final angles 8 and ¢. In this case,
the dominant contributions to s, (¢) come from points of stationary phase, where p, = p, =0 and the
trajectories return to the Coulomb zone with a pure radial momentum. Solving eq. (81) iteratively in
the stationary phase approximation yields &,,(¢) as a sum of contributions of repeated returns of all
isolated, closed trajectories, which start from the nucleus. The first iteration of eq. (81) gives for small
angular momenta [/, m ~1,

m dp, A dp,
= 0
o, (€) Ej:Y,( , 9)* sin 6 sin 6, 480/\ a6, lv.en)
(P> p¢)> ]}
X exp{ [S (e)- [.LI’IT/Z + sgn(w w/4
X 2 Y1 (8, 90)(~1) 2%im@) + O(1 7). (83)
I'm’

The leading contribution of a closed orbit to &, (¢) is therefore of order A~ with A denoting the order
of magnitude of the classical actions, S;(¢), along the closed orbits. This reflects the fact that only
classical trajectories, which return to the Coulomb zone in a small neighborhood of a closed orbit within
a solid angle of order (A~""%)’, significantly contribute to &, (). The sum over j includes all closed
orbits which start from the Coulomb zone with a pure radlal momentum. The Maslov indices of the
closed orbits are denoted ;. The Jacobian matrix d(p,, p,)/d(6, ¢) is evaluated at r =r, when the
closed orbit leaves the Coulomb zone again. This stationary phase evaluation is valid as long as all
closed orbits are isolated and stationary phase contributions are well separated. The second iteration of
eq. (81) gives the contributions of the second return of the classical trajectories to the Coulomb zone.
Contributions from closed orbits which have not been scattered during their first return to the reaction
zone are of order A", In the approximation that only a few of the scattermg amphtudes f; are not equal
to zero, contrlbutlons from scattered orbits are of order O(A~?). Therefore, in the limit of large
classical actions they may be neglected. With this approximation we finally find for the two-photon
transition amplitude

(M;)

dp, A dp¢
d0 A d(po (7,8 90;)

X exp{ [M [S,(e) — wm/2] + sgn(Lp———:o:f {P) | /4 l } dfn_)(ﬂoj, @) - (84)

The M;th term in this classical path representation represents the contribution of the M;th return of the
isolated, closed orbit j to the Coulomb zone. The amplitude of this contribution is determined by the
corresponding cross section

Ti(e) =T +2im 2 2. dS8,
m }'Ml.

sin , sin 6,

(M)

0,

(M)

dp, Adp

= (sin 6, sin §,,) "'

(7,80,%0;) '

In the approximation of eq. (84) effects of a nonhydrogenic core manifest themselves only in the initial
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excitation and final recombination processes, which are described by the photoionization and recombi-
nation dipole matrix elements

dfr:)(ojm ‘P]O) = ; @I(;z)Y;n(OJOa ‘Pjo)(_l)l H dr(n+)(0j’ ‘P]) = ; @I(r:)Y;”(gp (Pj)*(—l)l ‘

We conclude by pointing out that there exists already an extensive literature on the theoretical
description of wave packet propagation, both in molecular and nuclear physics [104]. An early
systematic approach to the time evolution of wave packets has been developed by Heller and coworkers
[105-117]. It is essentially numerically oriented and is based on representing an approximate solution of
the time dependent Schrodinger equation as a sum of Gaussian wave packets which are propagated
along the classical trajectories of the system. The parameters of these Gaussians are determined by
expanding the potential up to quadratic terms about the instantaneous centers of the wave packets. This
method has been applied to investigate a variety of problems in molecular physics, for example
photodissociation [118, 119], photofragmentation [120, 121], vibrational Raman scattering [122-125]
and gas—surface scattering [126—128]. However, so far applications of this method to the description of
molecular laser excitation processes have focused mainly on excitation processes which involve long
laser pulses and may therefore be characterized by a time independent photoabsorption cross section.
In this context the time dependent Gaussian wave packets have been used as a calculational tool to
evaluate the molecular dipole autocorrelation function, whose Fourier transform determines the laser
excitation rate [129].

3.2. Minimum-uncertainty energy eigenstates

Since Schrddinger’s discussion of the coherent states of the harmonic oscillator there have been
various attempts to construct electronic wave packets which are localized on Kepler ellipses with
minimum quantum fluctuations [49-56]. Such ideal Kepler wave packets are of particular interest,
because they provide a natural bridge between quantum mechanics and the classical concept of the
trajectory of an electron which moves in a Coulomb potential. Recently, it has been shown how
hydrogenic energy eigenstates which are localized along Kepler ellipses with minimum quantum
fluctuations, can be excited by a laser pulse [45, 56, 57]. A coherent superposition of a large number of
such minimum uncertainty energy eigenstates with different energies would represent an ideal Kepler
wave packet [45, 56]. These states and wave packets constructed with these states might have
interesting applications.

Minimum-uncertainty energy eigenstates have been introduced recently by Delande and Gay [57]
and Nauenberg [56]. These states are coherent superpositions of hydrogenic energy eigenstates with
different values of the angular momentum. Their probability distributions are stationary and are
localized along Kepler ellipses. The quantum fluctuations of these states are as small as possible
compatible with Heisenberg’s uncertainty relations. Coherent laser excitation of these states would
generate an ideal Kepler wave packet which moves along a Kepler orbit for all times [45, 56].
Experimentally, such minimum-uncertainty states have been prepared with the help of microwave fields
[46, 47] and recently also with the help of crossed electric and magnetic fields [48].

In the construction of these states the SO(4) symmetry of the Coulomb problem is of central
importance [45, 56, 57]. From the angular momentum /= x X p and the Runge-Lenz—Pauli vector

a=(-2e)""[Hpx1-Ixp)—x/r] (£<0), (85)
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which both commute with the nonrelativistic hydrogenic Hamiltonian, we may construct two indepen-
dent angular momentum operators

=1(l¥a). (86)

From egs. (85) and (86) we find I-a=a-1=0 and jo=j2=1(I’+a*)=1(n"-1). All hydrogemc
energy elgenstates with energy & = —1/(2n°) <0 may therefore be chosen as eigenstates of j> and j
with j, =j, =(n—1)/2. An angular momentum elgenstate | ju) with maximum (minimum) eigenvalue

m;=j (m —j) along the quantization axis u (&° = 1) implies minimum quantum fluctuations of the
angular momentum around its mean value (j) = um,, i.e., Aj = ( 7Y = {(jY)"* =V/j. The hydrogenic
energy eigenstate [45]

|na>=|j1u1>®lj2u2> (87)

with m;, =m; = (n —1)/2, for example, therefore implies minimum fluctuations of the angular momen-
tum and the Runge—Lenz—Pauh vector around their mean values. The quantity (Al)’ + (Aag)’ =
2(A7,) +2(Af,)* =2(n — 1) is therefore as small as possible compatible with Heisenberg’s uncertainty
relations. Choosing the z-axis as the first and the x-axis as the second bisector of (#,, u,) and denoting
2a = /(u,, u,), the mean values of the angular momentum and the Runge-Lenz-Pauli vector in the
state of eq. (87) are given by

(Iy=()=(a,)=(a,)=0, (a,)=(m-1sina, (l)=(m-1)cosa. (88)

Classically these mean values define a Kepler ellipse located in the x—y-plane with major axis along the
x-axis and eccentricity e =sin a. A special case of these elliptic states are the circular states with a =0
(!=m=n—1), which are localized ona circle in the x—y-plane. Linear superpositions of hydrogenic
eigenstates |na) with different energies would represent an ideal Kepler wave packet [56].

A method for preparing these elliptic states, |na ), by laser excitation in weak crossed electric and
magnetic fields has been proposed recently by Delande and Gay [57]. Neglecting diamagnetism, the
nonrelativistic hydrogenic Hamiltonian in weak crossed electric and magnetic fields is given by

H=p2-1/r+iBI, + Fx, (89)

with the magnetic and electric field strengths B and F in atomic units. (The atomic units of the magnetic
and electric field strength are B, =2.35x 10° T and F,=5.14 X 10" Vm 1) If the external fields are so
weak that n-mixing is negligible, we may perform the Pauli replacement x = —3na_ within a particular
n-shell and the interaction Hamiltonian reduces to

W, =3Bl - 3nFa =\(B/2) + 0} A-u,, (90)

with u, = (sin @, 0, cos @), tan @ =2w¢/B and the Stark frequency wg=— inF. From the quantum
mechanical commutation relations between the components of / and a we find that A=(a,, a,, 1) is an
angular momentum operator. The eigenstates of the Hamiltonian H can therefore be chosen as
eigenstates of A* and A- u, with eigenvalues A(A+1) and k ([k|=A=<n-1, —-(n—-1)sk=n-1),
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respectively [130, 131]. The corresponding energy eigenvalues are

E, =-1/2n*) + k\V(B/2 + o’ . (91)
From eq. (87) we find

Allna) = AA+D|na), (92)

Aowlna) =(n—1)|na), (93)

with A =n — 1 so that the highest energy eigenstate of the Hamiltonian of eq. (89) is the minimum-
uncertainty state |[na ). (A similar argument applies for the lowest energy eigenstate.)

Thus, a minimum-uncertainty energy eigenstate may be excited in the following way: In a first step a
laser pulse excites the uppermost energy eigenstate of a particular hydrogenic n-manifold in the Stark
limit, w,> B/2, so that the elliptic state |na = mw/2) is prepared. This elliptic state of maximal
eccentricity has a large overlap with any energetically low lying bound state and its laser-induced
excitation is therefore very effective. In a second step the electric field is turned off and a weak
magnetic field is turned on until a definite value q, is reached. If both fields are changed adiabatically,
i.e. slowly in comparison with [(B/2)* + w3]™""% this procedure prepares the minimum-uncertainty
state |na,). With this method Hare et al. [48] have recently excited circular Rydberg states.

4. Dynamics of radial Rydberg wave packets

In this chapter we apply the methods developed in chapter 3 to discuss three problems of wave
packet dynamics. As a first example we consider wave packets in many-electron atoms. The second
example deals with one-photon resonant two-photon excitation close to threshold by a long and intense
laser pulse. Finally, results are presented for wave packets in the presence of a static electric and
magnetic field.

4.1. Electron correlation effects

In order to study the influence of electron correlation effects on the dynamics of a radial electronic
wave packet we consider the simple case of laser excitation of an atom whose Rydberg and continuum
states close to the photoionization threshold can be described approximately in a two-channel
approximation as schematically shown in fig. 13. Both ionization thresholds correspond to excited states
of the positively charged ionic core. Due to electron correlations both excited channels are coupled.
This coupling is localized inside a reaction zone, which typically extends only a few Bohr radii around
the atomic nucleus, and may be characterized by the 2 X 2 scattering matrix [9]

=+

(1-7)e™ 2ivF ei"'(‘”‘”) %)

21\/? eiﬂ(a+6) (1 _ T) e2i‘rr6

Above both thresholds y describes the inelastic electron—ion scattering due to the residual core
electrons inside the finite reaction zone. It is a smooth function of energy across both thresholds. The
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configuration interaction between both channels is characterized by the channel mixing parameter 7
(0< 1<), 7ra and 76 are continuum phase shifts.

If many Rydberg states close to one of the photoionization thresholds are excited coherently, for
example by a short laser pulse, a radial Rydberg wave packet is generated, part of which returns again
to the reaction zone, where it may exchange energy with the ionic core [18]. Therefore, probing this
wave packet with a second short laser pulse, which induces, for example, a transition to an energetically
low lying bound state |f), yields information about the electron correlation induced coupling between
both fragmentation channels.

(i) Autoionizing region. For energies I, > ¢ = I, = 0 only channel 1 is closed and the classical path
representation of the two-photon transition amplitude as given in eq. (76) reduces to

T(e)=TO + 2w 2, 9D e™™(y,, e?™ )M (95)
M=0

The infinite sum describes the contributions from repeated returns of the excited electron back to the
reaction zone. The scattering matrix element y,; describes scattering of the excited electron within the
closed-channel subspace.

The dashed curve of fig. 7 shows the two-photon Raman transition probability as evaluated from eqs.
(95) and (37). Autoionizing Rydberg states around », =85 are coherently excited in channel 1 by a
short laser pulse at time ¢, and are probed with a second pulse after a time delay At = ¢, — ¢,. Both laser
pulses are assumed to have Gaussian pulse envelopes with the same pulse duration. The recombination
peaks correspond to repeated returns of the excited electron to the reaction zone. Because of inelastic
electron scattering inside the reaction zone we have |y,,|<1. This leads to a decrease of the
recombination peaks in comparison with the corresponding results in the absence of autoionization,
which are shown by the solid curve of fig. 7 [18].

(if) Bound state region. For energies € <0 both excited channels are closed and the first few terms
of the classical path representation of the two-photon transition amplitude reduce to

Ti(e)=TS +2in[2'V ™9V + 9{P ¥ ™g )
+ @(1+) e2i‘rrulA/11 e2i7TV1@ (1—) + @(24-) CZi‘”VZXZZ e2i1'rv2@ (2—)

+ 9(1+) eZi‘rrVIXlz eZi‘rruzg (2—) + @;+) e2i7rv2X21 eZi‘n'Vl@(l—) +.- _] (8 <0) ) (96)

The classical action §; =277y, corresponds to one revolution of the excited electron in channel j along a
Kepler ellipse of maximal eccentricity. The 2 X 2 scattering matrix x describes the electron scattering
between both excited channels, which takes place inside the reaction zone.

Figure 14 shows the two-photon Raman transition probability as evaluated from egs. (96) and (37).
A first, short laser pulse excites Rydberg states around », = 89. Because of the configuration-interaction-
induced coupling between both excited channels, two Rydberg wave packets with different mean
classical orbit times are generated. Their time evolution is probed with a second short laser pulse after a
time delay At. Each recombination peak of fig. 14 corresponds to the return of one of the wave packets
to the reaction zone. The recombination peak at time At= T, + T, is due to inelastic scattering of one
of the wave packets during the first return to the reaction zone and vanishes in the absence of channel
coupling. It is described by the 6th and 7th terms on the r.h.s. of eq. (96). If both wave packets return
to the reaction zone simultaneously, they interfere. In fig. 14 complete destructive interference between
both wave packets occurs at time At=3T, =2T, and the corresponding recombination peak vanishes.



G. Alber and P. Zoller, Laser excitation of electronic wave packets in Rydberg atoms 269

energy
t
| e>
0
23— |n>
05
pi-)
€ 1 —_—t—  |e>
P 0
Q,,
4]
05 N 20 g 4 —L—  |g>
Fig. 14. Two-photon Raman transition probability R (in arbitrary Fig. 15. Schematic representation of the laser excitation process.

units) versus time delay between both laser pulses in units of the mean
classical orbit time T, = 107 ps, with £ = ¢, + w, = ¢ + w,, pulse dura-
tion 7, =14 ps, mixing parameter r=10.02, Fano parameter g = ~7
and 1, =0.63 meV (corresponding to #, =76, T, = T,/1.6).

4.2. Resonant two-photon excitation

Here we generalize the discussion of depletion wave packets (subsection 2.2.3) to two bound states
which are resonantly coupled (fig. 15 [32]). A first long and intense laser pulse induces a resonant
transition from an initial state |g) to an excited state [e). A second laser pulse, which overlaps with the
first one, subsequently excites the atom to Rydberg and continuum states close to the photoionization
threshold. Both laser pulses are assumed to have rectangular pulse shapes and are turned on
instantaneously at ¢ =0.

The dynamics of this excitation process is determined by four main parameters: the Rabi frequency
of the transition |g) — |e), 2., =2(e|u - £g) &,; the detuning from resonance, 4= ¢, + w, — &,; the
ionization rate from the excited state |e), I'; and the level spacing between adjacent Rydberg states,
Ae,=(n—a)”>. :

In the rotating wave approximation the initial-state probability amplitude of the atom at time ¢ is
given by [32]

x+10

1 ~i(e~wy— : -
a,(t)=5- f dee 7 (il — Hy, — 3, (e)] '}, - (97)
—o+i0
The Hamiltonian matrix
etow tow i0
- g 1 2 29 %g
be ( %neg Ee + wz) (98)
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describes the field-induced coupling between both bound states. The self-energy matrix of the bound
states is given by

0 0\_[sw—il2=3% _ (=0),
2uo(e) = ( )X{Sw—lr/2+2'n‘1@(+) ™1~ x ™)' PONE (e=—-dr2<0), P

and describes effects of the laser-induced coupling between the excited state |e) and the Rydberg and
continuum states close to threshold. The quadratic Stark shift between the excited state |e) and the
Rydberg and continuum states is denoted 8w and includes the ponderomotive shift of the ionization
threshold. Both the quadratic Stark shift and the ionization rate I' are slowly varying functions of
energy across threshold. The scattering matrix element y = e”™ describes elastic electron—ion scatter-
ing inside the reaction zone. The photoionization and recombination dipole matrix elements 9 and
@) characterize the laser-induced coupling between state |e) and the Rydberg and continuum states.

With the methods of subsection 2.2.3 we may derive a classical path representation for the
initial-state probability amplitude [32]

*+i0

00=2% | dec e Hy, - 30,

—%+i0
0
+MEO dee D i(e - H,, — 31) 112"

2””’()(( )e*™) D V(e - Hy, = Z13) 1l &I (100)

with the infinite sum on the r.h.s. representing contributions from repeated returns of the excited
Rydberg electron back to the reaction zone. The scattering matrix element

x(e)=x+279i(e - Hy, — 350) 1. 2&,)° (101)

describes electron—ion scattering between the excited Rydberg electron and the ionic core inside the
reaction zone in the presence of the laser field.

If the initial state |g) is depleted on a time scale short in comparison with the mean classical orbit
time of the excited Rydberg states, a radial electronic wave packet is generated [30, 32]. In the case of
long laser pulses such a short depletion time is achieved by using sufficiently high laser intensities. If the
first laser pulse is tuned on resonance, i.e. A=0, and is so intense that 1/ |.() |<1/r
< T, =2m(-2£&)""" with £ = ¢, + w,, the energies of the strongly coupled bound states are spht due to
the AC Stark effect and two radial Rydberg wave packets are generated with mean energies
&=¢—30 and & =¢+ 10,

Figure 16 shows the initial-state probability as a function of the interaction time as evaluated from
eq. (100). Rydberg and continuum states around v =250 are excited by an intense laser pulse. For
times short in comparison with both classical orbit times, the generated radial wave packets have not
been reflected at the outer turning points of their orbits and behave like in a typical one-photon
resonant two-photon ionization process. Therefore, the initial-state probability shows Rabi oscillations
originating from the strong coupling between |e) and |g) which decay exponentially on a time scale of
the order of 1/I" because of ionization. This short-time behavior is described by the first term of the
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Fig. 16. Initial-state probability P, as a function of interaction time in units of the mean classical orbit time T, =2.37ns for 1/ I.(),!| =6.0ps,
1Ir=35ps, A=0 and a =0.

classical path representation of eq. (100). Eventually, the wave packets are reflected at the outer
turning points of their orbits and return again to the reaction zone, where the laser field may induce
transitions to one of the dressed states of the strongly coupled states |e) and |g). This recombination
process leads to an increase of the initial-state probability. The first recombination peak in fig. 16
corresponds to the first return of the faster wave packet to the reaction zone. For the parameters shown
in fig. 16 we have 3T,_, 120, = 2T, 120, SO that the faster wave packet overlaps with the slower

one inside the reaction zone at time ¢ ~ 3T, wa, . The interference between both wave packets leads
to rapid oscillations of the initial-state probablllty *with frequency .(2

4.3. External static fields

In this section we study the influence of an external static electric or magnetic field on the dynamics
of an initially prepared radial Rydberg wave packet [34, 36].

4.3.1. Static electric field

If an atom is placed in a weak, static electric field, F = Fe,, the dynamics of a highly excited Rydberg
electron is significantly modified at large distances from the pos1t1vely charged ionic core [4, 102, 103,
132-145]. The characteristic distance, a = F~'’>, at which the external potential V, (x)=—-pu e F
becomes equal to the (1/r) Coulomb potential of the ionic core, measures the extension of the
Coulomb zone. (The atomic unit of electric field strength is given by F,=5.14 X 10"’ Vm™") There-
fore, in the case of weak electric fields with typical field strengths of the order of a few kV/cm the
classically assessible region of configuration space is large. This implies large classical actions and
atomic transition amplitudes may be evaluated with the semiclassical methods described in subsection
3.1.2. In particular, we may derive classical path representations in which the transition amplitudes are
expressed as a sum of contributions of all isolated, closed orbits of the excited electron which start from
the nucleus.

A characteristic feature of the classical dynamics of a highly excited Rydberg electron under the.
influence of a Coulomb field and an external static electric field is the appearance of one isolated,
periodic orbit for energies above the zero-field photoionization threshold [132-145]. The Hamiltonian,
which describes the motion of the excited electron in the Coulomb and asymptotic zone, is axially
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symmetric around the electric field axis. The periodic orbit starts from the nucleus and extends along
this symmetry axis in the direction of the applied field. Because of the separability of the classical
Hamiltonian in parabolic coordinates, the classical properties of this orbit can easily be determined
analytically [34, 100]. Its action is given by

S(e)=F "1+ )7 81+ (1 + 817 - E]K(k) +26(1 + £1)*E (k) , (102)
with k=4[ + (1 + £%)'"?)(1+ £%)7"% the scaled energy £=¢/(2VF) and the complete elliptic

integrals of the first and second kind K(x) and E(k) as defined in ref. [86]. The Maslov index of this
periodic orbit is given by p =2 and its instability properties are characterized by the cross section

dp,\ ™ p, |
(ﬁ) = (sin 6, sin 6) ‘W = [sinh(Mu) /V 2¢]* . (103)
0
The energy dependence of the stability exponent
u=2VE(1+ &) "*K(x) (£=0) (104)

is shown in fig. 17. Inserting eqs. (102)-(104) into eq. (84) we obtain the classical path representation
for the two-photon transition amplitude [34, 100]

V2

2
(s) (+)
Tf|(£) Tfl + amod (0 0) 2 Z h(Mu)

¢ MISO=2m121-2m18) 45 ) (5 =() (105)

The contributions of the repeated returns of the isolated, closed orbit to the reaction zone are of order
(A7""?)* with A =va denoting the order of magnitude of the classical action. It has been shown in
subsection 3.1.2 that in the limit of large classical actions effects of a nonhydrogenic core are only
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Fig. 17. Stability exponent u of isolated, closed orbit as a function of scaled energy .
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important for the initial excitation and final recombination process of the closed orbit, which are
described by the dipole matrix elements d';)(0,0) and d{"2,(0, 0).

Atomic laser excitation from an initial state |i) by a long and weak laser pulse of constant amplitude
& may be characterized by the time-independent excitation rate

r'=-2Im(T,(#)]| €[

V2e

=T, - @nye,, 2 | Sinh(Mz)

+2Im{d}(0,0) €™ 7"a(0(0,0)[ €[}, - , (106)

with the mean excited energy ¢ = ¢, + w =0 and I denoting the excitation rate in the absence of the
static electric field. The energy dependence of this excitation rate reflects the interference between
contributions of repeated returns of the excited electron to the Coulomb zone along the closed orbit.

The solid curve in fig. 18 shows the dependence of I'/I;, on the mean excited energy . A sodium
atom is excited from an energetically low lying s-state by a long and weak laser pulse, which is polanzed
parallel to the static electric field. The quantum defect of the excited sodium p-states is given by
a =0.854. The corresponding hydrogenic result is shown by the dashed curve in fig. 18. Close to
threshold, i.e. for £ ~0, the isolated periodic orbit is almost stable (see fig. 17) and the contributions of
many repeated returns significantly contribute to the classical path representation of eq. (106). This
gives rise to a characteristic asymmetric lmeshape With increasing energy the isolated orbit becomes
more and more unstable. For these energies, the dominant contribution to the excitation rate comes
from the term with M = 1 of eq. (106), which describes the contribution of the first return of the excxted
electron to the reaction zone, and the lineshape becomes approximately sinusoidal.

The time dependence of the electronic dynamics may be studied with a radial electronic wave packet
which is generated by a short laser pulse. The repeated returns of this wave packet to the reaction zone
may be probed, for example, by a second short laser pulse, which induces a transition to some low lying
bound state after a time delay At. Figure 19 shows the corresponding Raman transition probability as
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Fig. 18. One-photon excitation rate of sodium (solid curve) and Fig. 19. Two-photon Raman transition probability R as a function of
hydrogen (dashed curve) as a function of the mean scaled energy &, the time delay between both laser pulses, in units of the mean classical

for F=514x10°Vm™", orbit time T, =1.7ps, for i= ¢+ w, = &+ @, =5x 107 au.
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obtained from eqgs. (105) and (37) for an electric field strength of F=5.14x 10° Vm " Both laser
pulses are assumed to have Gaussian pulse profiles with pulse duration 7, =0.17 ps. The form of the
recombination peaks, which appear at multiples of the classical orbit time, are determined by the pulse
profile of the laser pulses, whereas the positions of the maxima and their amplitudes reflect the classical
properties of the isolated periodic orbit.

4.3.2. Static magnetic field

In a static magnetic field, B = Be,, the dynamics of a highly excited Rydberg electron is strongly
modified at distances r=a =(B/2)"*", at which the dlamagnetlc interaction potential V_ (x)=
1B*(x* + y*) becomes comparable to the Coulomb potential of the ionic core [4, 103, 146-152]. (The
atomic unit of magnetic field strength is given by B, =2.35 x 10° T.) For magnetic fields of the order of
a few Tesla or less the classically accessible region of configuration space is therefore large. This implies
large classical actions and laser excitation of Rydberg states in the presence of a weak static, magnetic
field may be described with the semiclassical methods of subsection 3.1.2. In particular, atomic
transition amplitudes may be expressed as a sum of contributions of all closed orbits of the excited
electron which start from the nucleus [36, 99, 100].

The dynamics of a highly excited Rydberg electron in the presence of a Coulomb field and a static
magnetic field is particularly interesting, because the corresponding classical Hamiltonian is not
integrable and the classical motion exhibits chaos [152]. The axial symmetry of this Hamiltonian around
the magnetic field axis implies that closed orbits, which start from the nucleus, are not isolated but form
one-parameter families of trajectories. One of these families is shown in fig. 20. Taking into account
that contributions from closed orbits within one of these families add constructively, we obtain from
egs. (81), (77) and (65) the classical path representation of the two-photon transition amplitude [36,
100]

Ti(e) =T + 2w 2 2 d$(9, 0)Vsin 6 sin Sin G | >

3Po sinh(Mu;) | =172

m M sinh u;
i
i{M,[S;(e,) — f—pmi2)—mwid} 4(-)
><el i IE m‘rr#, }L]ﬂ [ dm (00]»,0). (107)
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Fig. 20. Schematic representation of the one-parameter family of closed orbits which is denoted by I, in table 1.
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The energy ¢, = ¢ + mB/2 takes into account the threshold shifts due to the paramagnetic interaction
term. The index j indicates the different isolated one-parameter families of closed trajectories, which
are assumed to be unstable. The quantity uj denotes their number of crossings of the z-axis. The
stability exponents of these orbits are denoted u;. Table 1 summarizes the classical properties of 14
families of closed orbits for ¢, =0. In the Coulomb and asymptotic zone, the dynamics of the excited
Rydberg electron is invariant with respect to reflection at a plane which goes through the nucleus and is
perpendicular to the direction of the magnetic field. Therefore, for each family of orbits of table 1
(except for I,) there exists also a corresponding family with emission angle 180°—6,. As the
contributions of all closed orbits within one family interfere constructively, their contribution to the
two-photon transition amplitude is of order A" instead of (A™''?)" with A =+a indicating the
magnitude of the corresponding classical action.

With the help of a radial electronic wave packet, which is generated by a short laser pulse, we may
study the time evolution of an excited electron. As the wave packet leaves the Coulomb zone it is
broken up under the influence of the static magnetic field and different parts of it return again to the
reaction zone at different times by propagating along one of the isolated families of closed orbits. This
wave packet may be probed inside the reaction zone, for example with a second short laser pulse, which
induces a transition to some energetically low lying bound state. The corresponding two-photon Raman
transition probability is determined by the classical properties of the electronic motion in the
neighborhood of these closed orbits.

Figure 21 shows the two-photon Raman transition probability in units of (I’O'rp)2 as obtained from
eqs. (107) and (37) [36] (I is the zero-field excitation rate). A sodium atom is excited by a short laser
pulse from an initial s-state to Rydberg and continuum states close to the zero-field photoionization
threshold and is probed with a second short laser pulse after a time delay Ar. Both laser pulses have
identical Gaussian pulse forms with pulse durations 7, =7.6 ps and are linearly polarized in the same
direction. Figures 21a—c correspond to different angles €,,, between the static magnetic field and the
laser polarization. The magnetic field strength is B = 0.47 T. The pulse durations are less than the orbit
time of the fastest closed orbits which belong to family I,. The recombination peaks in figs. 21a—c
correspond to repeated returns of various fractions of the generated wave packet to the reaction zone,
where they are probed by the second short laser pulse by inducing a transition of the initially prepared

Table 1
Emission and return angles 8, and 6, classical action S, orbit time T, dp,/a6,, stability exponent #, Maslov index x and
number of crossings of symmetry axis u* of 14 families of closed orbits, which start at the nucleus

orbit 8, ] Sx(B/2)" T x (B/2) ‘;—’;: x(B/2)"? u © o
I, 90.0 90.0 5.782 2.094 2.816 1317 3 0
I, 53.832 53.832 8.580 4.935 10.969 2.892 5 1
I, 42.810 42.810 10.213 8.111 24.360 3743 7 2
I 37.311 37.311 11.428 11.288 39.272 4.239 9 3
1Ib, 63.649 116.351 12.537 6.739 31.637 3.897 7 2
Ila, 81.677 128.246 14.233 7.427 56.826 4.291 8 1
Ila, 51.754 98.323 14.233 7.427 56.826 4.291 8 1
Ilb, 46.679 112.505 14.513 9.568 67.944 4756 9 3
Ib, 67.495 133.321 14.513 9.568 67.944 4.756 9 3
Ila, 79.114 138.459 15.777 10.878 107.925 4.937 10 2
Ila, 41.541 100.886 15.777 10.878 107.925 4.93 10 2
IIb, 39.602 110.506 15.884 12.521 97.671 5.144 11 4
Ib, 69.494 140.398 15.884 12.521 97.671 5.144 11 4
11, 60.270 60.270 16.158 9.066 108.283 5.144 9 3
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Fig. 21. Raman transition probability R as a function of the time delay between both laser pulses in units of T'=27/B =76 ps (B = 0.47T) with (a)
6Ii'ol = %0‘ (b) Opol = 4507 (c) Opol =0°.

s-state. On top of each recombination peak the form of one of the closed orbits of the corresponding
family is indicated. The vertical straight line indicates the direction of the magnetic field. In fig. 21c the
laser polarization is parallel to the magnetic field direction and the angular distribution of the generated
wave packet is concentrated around the magnetic field direction. As there is no electron emission
perpendicular to the magnetic field, the contribution of orbits I, is missing.*’

*) The Raman transition probabilities of figs. 21a,b differ slightly from the corresponding figures of ref. [36]. This difference originates from the
dependence of the classical actions §;(¢,,) of eq. (107) on the magnetic quantum numbers m, which is due to the paramagnetic interaction term. This
m dependence has been neglected in the figures of ref. [36] but is taken into account in figs. 21.



G. Alber and P. Zoller, Laser excitation of electronic wave packets in Rydberg atoms 277
5. Conclusions and outlook

In this review we have summarized work on laser excitation of electronic Rydberg wave packets.
These wave packets represent nonstationary, localized electronic states of an atom or molecule which
evolve in the Coulomb field of the positively charged ionic core and, possibly, in external fields.
Recently, basic features of radial and angular wave packet dynamics have been observed in first
experiments, in agreement with theoretical predictions. What remains to be done, and what seems to be
the ultimate goal of wave packet generation in Coulomb systems, is the generation of a minimum-
uncertainty wave packet moving on a Kepler ellipse which comes closest to a “classical atom”. Another
interesting perspective is the destruction of coherence of wave packets (for example, their ability to
interfere) due to the coupling to (external) fluctuations [153-155]. Finally, we believe that experiments
on wave packet dynamics in external fields should be performed, in particular in systems which are not
integrable on the classical level. This is a possibility to investigate quantum manifestations of classical
chaos.
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