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LETTER TO THE EDITOR 

Semiclassical treatment of time-dependent molecular dynamics 
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Freiburg, Federal Republic of Germany 

Received 3 September 1990 

Abstract. A semiclassical expression for the total final-state probability of one-photon- 
resonant two-photon excitation of a diatomic molecule by two time-delayed short laser 
pulses is derived. It is in good agreement with numerical results and clearly exhibits the 
dependence of this quantum mechanical observable on the lineshapes of both laser pulses 
and on the classical quantities which characterize the motion of the vibrational wavepacket 
generated. 

Motivated by recent time-resolved studies of vibrational molecular dynamics (Gruebele 
and Zewail 1990, Engel et a1 1988, Marcus 1988) we report in this letter a theoretical 
study of one-photon-resonant two-photon excitation of a diatomic molecule by two 
time-delayed short laser pulses. Such pump-probe-type experiments have recently been 
performed in various groups (Bowman et a1 1989, Baumert et al 1990) and allow the 
study of the time evolution of the molecule in the excited electronic potential curve 
after its preparation by the first short laser pulse. With the help of semiclassical methods 
we consider the question of how the characteristic properties of the molecular vibrations 
of the excited molecule on the one hand and the lineshapes of the laser pulses on the 
other hand manifest themselves in the total final-state probability. In recent experiments 
this probability has been monitored via fluorescence or by measuring the ion yield 
induced by the second laser pulse. We derive a simple semiclassical expression for 
this physical observable which is valid for arbitrary pulse shapes and is in good 
agreement with numerical results. 

We consider a typical pump-probe excitation scheme as shown in figure 1. A first 
laser pulse with electric field strength E,( t )  = e l  8,( t )  e-"+'+ cc which is centred around 
time 

and whose pulse duration, T~ is determined by 

excites a diatomic molecule from some energetically low-lying bound state 18) with 
energy sg. If the pulse duration is so short that many vibrational states with energies 
E,  are excited coherently, a vibrational wavepacket is generated. The time evolution 
of the localized molecular vibration may be probed by a second short laser pulse 
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Figure 1. Molecular potential curves of the iodine molecule as a function of internuclear 
distance (from Engel 1990). The local momenta of intermediate and final states, k(E,,  R )  
and k(  E,, R ) ,  determine the transition point, R,.  The energies of the indicated vibrational 
states and of the transition point, R , ,  correspond to the excitation process studied in figures 
2 and 3. 

(centred around time f2 with pulse duration 72 and field strength E2( t )  = e2g2(  t )  e-'">'+ 
cc) which induces transitions to final states I f )  with energies Ef after a time delay 
t2 - t l  . In lowest order perturbation theory in the laser fields the probability of finding 
the molecule in a particular final state I f )  after the excitation process ( t  > f2  + 72) is 
given by (Alber et al 1986) 

Pg-f = l ( f I 4 ) l L  

n 

( 1 )  
l2 = / Z ( f / p .  E 2 1 n ) g 2 ( E n + u 2 - E f )  e+ll('2-'1) * ElIg)@l(Eg + ~ 1 -  E n )  

where g i ( A )  =j:m dt  e-iA(t-'~)$i(t) ( i  = 1,2) are the Fourier transforms of the laser 
pulses and p is the molecular dipole operator. We use Hartree atomic units. The total 
fluorescence from the excited final states, for example, which has been measured in 
recent experiments (Bowman et a1 1889) is proportional to the total excitation probabil- 
ity, P = Zf Pg+p 
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In the Born-Oppenheimer approximation the molecular states may be described 
as products of an electronic state (which is a function of all electronic coordinates 
and the angular coordinates of the nuclei) and a vibrational state which characterizes 
the internuclear vibration within the corresponding electronic potential curve. Assum- 
ing that the electronic parts of the molecular dipole matrix elements of equation (1) 
are independent of the internuclear distance we find (flp e21n) = C(vflv,)  and 
(nip - ellg) = D(v,,lv,). Here(vfJv,)and (u,Iv,)are the Franck-Condonoverlapintegrals 
between the vibrational states lof),  Iv,) and lug) (with quantum numbers nf, n and n,) 
and the constants C and D characterize the electronic contribution to the corresponding 
molecular transitions. If the classical actions associated with two vibrational states, 
for example 1 vf ) and I U,,), are large, the corresponding Franck-Condon overlap integral 
may be evaluated semiclassically. In the primitive semiclassical approximation it is 
given by (Child 1980) 

(2) 

In this equation AS(R) is the difference between the classical actions, 
R R 

AS(R) = il,: MEf, r )  d r -  k2(E,, r )  drl  i,, 
where the local momenta are given by ki (e ,  R )  = [ 2 m l ~  - v(R)l]1'2 ( i  = 2 ,3 )  and m is 
the reduced mass. The left turning points of the potentials V2( R )  and V3( R )  are denoted 
R: and Rf, .  The quantity Rs is the internuclear distance at which the molecular 
transition takes place according to the Franck-Condon principle and is determined 
by the condition k3(ef, R,)  = k2(&,, R,)  = k(R, ) .  Equation (2) gives an adequate 
description of the Franck-Condon overlap integrals as long as the transition point, 
Rs , is well separated from the classical turning points of the corresponding electronic 
potentials. With the help of uniform approximations equation (2) can be generalized 
to cases where the transition point is located close to a turning point (Bieniek 1977, 
Child 1980). However, for simplicity we restrict ourselves here to cases where equation 
(2) is valid. Furthermore, in the following we assume that the transition from the initial 
state, Ig), to the intermediate states, In), is localized close to the left turning point of 
the electronic potential V2( R )  so that the corresponding Franck-Condon overlap 
integral is given by 

(UnIvg) = (EnIvg>(dEn/dn)'/2 (3)  
with (E, I vg)  being approximately energy-independent. 

If the pulse durations are so short that many vibrational states are excited coherently, 
it is more convenient to transform equation (1) with the help of the Poisson summation 
formula into (Alber et a1 1986) 
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with denoting the dissociation energy of potential V2( R ) .  In this case the integrands 
of equation (4) are rapidly oscillating functions of energy and approximations may 
be found easily. For example, in the limiting case of negligible dispersion of the 
vibrational molecular wavepacket generated we may linearize the exponents of the 
integrand or in the opposite limit of strong dispersion we may apply the stationary 
phase approximation. In both cases the contributions to equation (4) are large whenever 
the time delay between both laser pulses, f2  - f l  , corresponds to a time where the 
generated vibrational wavepacket is close to the transition point, R s .  The integer M 
in equation (4) counts the number of vibrations of the excited molecule in the potential 
curve V 2 ( R ) .  As long as the vibrational wavepacket has not spread out over the whole 
classically accessible range, contributions to Pg+f which correspond to different num- 
bers of vibrations M are separated in time, so that only one term of the sum of equation 
(4) contributes significantly for a given time delay, t2 - t l ,  between pump and probe 
pulse. 

For the evaluation of the total transition probability, P =I;, Pg+,, equation (4) has 
to be summed over all final states. With the help of equations (2) and (3) this summation 
can be simplified considerably in cases where dispersion of the wavepacket is sufficiently 
weak that the exponents in equation (4) may be expanded up to second order with 
respect to energy. Approximating the sum over all final states by an integral we find, 
for cases where the transition point Rs lies well within the classically allowed region, 

with the 'effective' laser pulses 
f m  

and 
cc 

g2(t) = ( 1 / 2 ~ )  dA eiA('-'2)g2(A) exp [ si  (k'([);AS") "1' 
In the derivation of equation (5) we have assumed that the intermediate excited states 
are well below the dissociation threshold, E ~ ,  and have neglected all quantum 
mechanical interferences between contributions associated with different returns of 
the wavepacket to the transition point R s .  All quantities in equation (5) have to be 
evaluated at energies .sf = Ef = E,, + w 2  and E, = E, = + w l .  The mean classical orbit 
time is given by T , = ~ T  dnlds ,  and (the modulus of) T2=dAS(RS) /d& is the time 
the classical vibrating molecule takes to evolve from the initial excitation point (here 
the left turning point of potential V 2 ( R ) )  to the transition point R s .  The quantities 
T'= dT/dE and Ti = 8T2/ds/  Rs=const .  characterize the dispersion of the excited vibra- 
tional wavepacket. In particular, T' also determines the revival time, TReY= 
T5/(27rTt) >> T E ,  which sets the timescale for the scenario of fractional revivals 
(Averbukh and Perelman 1989). According to the Franck-Condon principle 
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[ r m 2 / (  k21AS”1)]1’2 may be interpreted as the transition time for a transition from the 
intermediate to the final states. 

In the limit of negligible dispersion (which corresponds to a linearization approxi- 
mation of the exponents of the integrand in equation (4)) the time dependence of the 
total final-state probability, P, reduces to the convolution of the laser intensities I $,( ? ) I 2  
and I$,(t)12 at time differences M T z i  T2 ( M = 0 ,  1,. . . ). According to equation ( 5 ) ,  
effects of weak dispersion of the wavepacket are characterized by the ‘effective’ laser 
pulses $i”*’( t )  and g 2 ( t ) .  They are centred around times 

00 

t i M * ) =  t l  - (MT’+ T:) dtl$l(t)12pl(t)’/Z1 

and 

and their effective pulse durations, dM*)  and 7, are determined by 

( T ( “ * ) ) ~  = [ j-m dt18,(t)12[ t -  t l  - p , ( t ) ’ ( M T ’ i  T;)]’+ (MT’* 
W 

and 

( 6 )  
The quantities 11,2 are defined by t)12 and the phases, (P,,~( t ) ,  are given 
by & ( t )  = I&(t)l  eivI(’) ( i  = 1,2) with p i ( t ) ’ =  [ (dldt)  p i ] ( t ) .  Considered as functions 
of the time delay between both laser pulses, t2 - t l  , the convolutions of equation ( 5 )  
are large whenever the relation f 2 -  t iM*)  = MT,* T2 is fulfilled. The widths of these 
peaks, are determined by 

=I?, dtl 

( p 4 * ) ) 2 =  [ p 4 * ) ] 2 f ? 2 .  

In figures 2 and 3 we compare the total excitation probability calculated from 
equation ( 5 )  (broken curves) with numerical calculations based on the exact expression 
of equation (1) (full curves). Figure 2 shows the total excitation probability P for an 
iodine molecule (Bowman et al 1989, Metiu and Engel 1990) as a function of the time 
delay between both laser pulses, t 2 -  t l .  As initial state we have chosen the third 
vibrational state of the ground-state electronic potential. In the case of a thermal 
distribution of initial states at room temperature this state gives the dominant contribu- 
tion to transitions between potentials V l ( R )  and V 2 ( R )  for the laser frequency con- 
sidered in figure 2. In the evaluation of the broken curve the Franck-Condon factor 
of the first transition, I up) + Iun),  which is localized close to the left turning point of 
the potential V 2 ( R ) ,  has been calculated with the help of a uniform semiclassical 
approximation (Bieniek 1977, Child 1980). The peaks in figure 2 correspond to those 
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Figure 2. Total final-state probability, = P/12?rCD~,~,$,(t,)8~(t~)/~, as a function of the 
time delay, t ,  - t ,  , between pump and probe pulse with T ,  = 296.33 fs and T, = 92.84 fs; 
numerical calculation based on equation (1) (full curve), semiclassical approximation of 
equation (5) (broken curve). Both laser pulses have identical Gaussian pulse shapes with 
r1 = T~ = 15 fs (which corresponds to a FWHM of the intensity correlation function of 50 fs), 
c p , ( t ) = O  ( i = l , 2 )  and wavelengths h1=620nm, A2=3l0nm.  

6.07 

Figure 3. Same as figure 2 but with c p l ( t ) = & ( t - t , ) / T , ] 2  and cp2(t)=0. 

times at which the vibrational wavepacket, which has been generated close to the left 
turning point of potential V2(1) ,  is close to the transition point R s .  The variation of 
their widths from peak to peak may be understood from equations (5) and (6) by 
noting that for the parameters chosen we have T2 > 0, T; < 0 and tiM*’ = t ,  , t2 = t 2 .  In 
this case equations (5) and (6) imply that the first absorption peak, which corresponds 
to the absorption of the second laser photon before the vibrational wavepacket has 
reached the outer turning point of its orbit, is narrower than the second absorption 
peak, which corresponds to the absorption process after reflection at the outer turning 
point. This is a result of changes in the width of the wavepacket as it evolves under 
the influence of the potential V 2 ( R ) .  With increasing number of revolutions M, the 
wavepacket spreads out and the absorption peaks are broadened. However, in agree- 
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ment with equations ( 6 ) ,  the peaks associated with photon absorption before and after 
the outer turning point of the potential, V,(R), are broadened in different ways. With 
increasing time delay, t2 - t ,  , quantum mechanical interferences between contributions 
associated with different absorption peaks become important. These effects have been 
neglected in equation (5). 

Figure 3 shows the total excitation probability in a case where the phase of the 
first laser pulse, cp , ( t ) ,  is slowly varying. According to equations (6) such a chirping 
of the laser pulse leads to additional modulations of the widths of the absorption 
peaks. Physically speaking, this reflects the fact that a phase modulation of the first 
laser pulse influences the preparation of a vibrational wavepacket, thus affecting the 
changes of its width as it evolves in the potential V 2 ( R ) .  From figure 3 we notice that 
the absorption peaks associated with photon absorption before and after the outer 
turning point are affected in different ways. Whereas we observe a narrowing of the 
first, third and fifth peak, which correspond to absorption before the outer turning 
point, the peaks associated with absorption after the turning point are all broadened. 
Similar effects caused by chirped laser pulses have also been found in connection with 
the generation of Rydberg wavepackets by short laser pulses (Alber et a1 1986, Noordam 
et a1 1990). 

Stimulating discussions with V Engel and G Gerber are gratefully acknowledged. 
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