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We present a revision of the theory of finite laser bandwidth effects on degenerate four-wave mix-

ing (DFWM) of Alber, Cooper, and Ewart (ACE) [Phys. Rev. A 31, 2344 (1985)]. The same model
is used for intense, broad-bandwidth pump lasers interacting with a weak monochromatic probe in a
medium composed of two-level atoms. The density-matrix equations describing the time evolution
of the atomic polarization coupled to fluctuating fields are solved using an appropriate decorrelation
approximation. A steady-state analytical solution is found for resonant and near-resonant DFWM,
for intensities that do not saturate the medium. For more intense fields it is found to be necessary to
form a more complicated set of differential equations for all products of the field and atomic
density-matrix elements. The results show that as in the ACE theory, increasing the bandwidth b
leads to an increased effective saturation intensity. However, we find the DFWM reflectivity scales
as 1/b when the probe is monochromatic and not 1/b as in the ACE theory. Furthermore, the sat-
uration behavior of nonresonant DFWM is found to differ from the predictions of ACE. Atomic
motion effects are shown to yield a Doppler-broadened line shape and also to affect the saturation
behavior of the signal.

I. INTRODUCTION

In a recent paper by Alber, Cooper, and Ewart' (re-
ferred to hereafter as ACE) a theory of resonant degen-
erate four-wave mixing with broad-bandwidth lasers was
presented. The procedure adopted there was to calculate
the density-matrix elements describing the nonlinear po-
larization generated by the interaction of broadband fluc-
tuating laser fields with a two-level atom. The set of cou-
pled differential equations describing the evolution of the
density matrix were solved by a Laplace transform
method where resonant terms to all orders in the intense
pump fields, but only first order in the weak probe field,
were included.

This method found the steady-state solution of the La-
place transformed equations and then formed the desired
product of the required density-matrix elements averaged
over the field fluctuations using a kind of decorrelation
approximation. The adopted solution, however, did not
properly deal with the fact that this product of density-
matrix elements is determined by a convolution of the
corresponding Laplace transformed quantities. In addi-
tion, the density-matrix equations of ACE [Eq. (2)] omit-
ted two seemingly lower-order terms involving popula-
tion differences, one of which cannot properly be neglect-
ed in the strong fields that produce saturation of the
medium. In this paper we present firstly a solution valid
for low-intensity pump fields, which is obtained by solv-
ing the density-matrix equations in the time domain. The

decorrelation approximation is applied to products of
fields and population terms in a way by which the essen-
tial physics of the procedure is also made more apparent
and consistent. Secondly, the more general case of arbi-
trary pump intensities is treated by solving product-
density matrix equations in the time domain with the
help of a procedure that can easily be applied to phase
diffusion or chaotic fields. For broadband radiation both
types of field fluctuation lead to the same result which is
equivalent to a deco rrelation approximation for the
product-density matrix equations.

The general area of optical phase conjugation by de-
generate four-wave mixing (DFWM) has been reviewed in
a book edited by Fisher. The effects of finite laser band-
width on nonlinear optical processes have been studied
theoretically and experimentally in only a few cases (see
ACE for references). Such effects on optical parametric
processes have been reviewed by Reintjes. More recent-
ly, the effects of field fluctuations, photon statistics, and
mode beating have received attention in the areas of
stimulated scattering processes such as coherent anti-
Stokes Raman scattering (CARS). A particular problem
of calculating the signal in DFWM with broad-
bandwidth lasers arises from the geometry of the three in-
put waves. The two strong pump waves are counterpro-
pagating and with their interaction with the probe beam
give a spatial modulation of the field amplitudes. Furth-
ermore, the stochastic fluctuations of the driving field
amplitudes lead to a similar kind of fluctuation in the
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atomic polarization. It is the simultaneous averaging of
both space and time variations of the atom-field products,
determining the size of the generated fourth wave, that
lies at the heart of the problem. The general case of arbi-
trary intensities and arbitrary bandwidths is, at present,
an almost computationally intractable problem. In this
paper we consider the same situation as that discussed by
ACE, viz. , intense broad-bandwidth pump waves in-
teracting with a weak probe wave, which may also exhib-
it fluctuations, in a nonlinear medium composed of two-
level atoms. In Sec. II we define the basic equations, ini-
tially for the coherent case (monochromatic pump waves)
and then consider how their solution is modified in the
incoherent case. The solution for very large bandwidths
in the steady state is presented in Sec. III where we out-
line our procedure for averaging over the laser fluctua-
tions with the help of a decorrelation approximation. In
Sec. IV we discuss the results of the present work for the
cases of exactly resonant DFWM and for situations
where the detuning 6 is either less than or greater than
the laser bandwidth b. The effect of atomic motion on
the line shape and the saturation behavior of the signal
are also discussed.

II. BASIC EQUATIONS

We consider the same four-wave mixing situation as
that treated in the ACE theory, and so the assumptions
and definitions will be outlined only briefly here for con-
venience. A medium of two-level atoms is traversed by
two intense pump waves and a weak probe wave as
shown in Fig. 1. Initially we consider coherent fields de-
scribed by

3 —i (co. t —k .x)E(x, t)= g e (x, t)e ' ' +cc.
j= I

fields have a standing-wave spatial modulation, so

Il(x) =(2/A')(e ~p~g )2e,cos(k, .x) . (2)

The response of the atomic system is described by the
macroscopic density operator p(x, t). Within the
rotating-wave approximation the slowly varying density-
matrix elements

p,",' (x, t), i j =g, e

are given by

p(x, t) =
n, m = —oo

d + i~ (pcs
—p„)(x,t) =i~ —2 Im[A'(x)p, 'g (x, t)],

(4a)

d —6+1 p,' (x, t)=('/2)II(x)(p ' —p„' )(,r)

+(i /2) II3(pg
' —p',', ')(x, t),

(4b)

+is, +r p,',-'(x, r)
dt

= ( i /2)II3 (p——p„)(x,t)

The longitudinal and transverse relaxation rates are
given by ir and I, respectively, where I =(y+a/2) and y
is the collisional dephasing rate. The evolution of the
slowly varying density-matrix elements is described by
the following system of equations:

The frequencies and wave vectors are given by cu, cop 603

and —k, =k2, k3, respectively. e (x, t), j = I, 2, and 3, are
the slowly varying field amplitudes. The pump waves, of
equal amplitude, e, (x, t)=@2(x,t), are tuned close to the
frequency of the transition between the ground ~g ) and
excited state ~e ), which have energies E and Erespec-
tively. The detuning of the pump waves is

b, =(E +Aevi E, )/& . —

The detuning of the probe wave 62 and the generated
fourth wave 63 are given by

—(i/2)&*(x)(pgg ' —p,", ')(x, &),

—i 5+~ (pg
' —p,", ')(x, t)

dt

=i'*(x)p, '(x, t)

—iA(x)p, '(x, t)+i03p,' (x, t),
" —ia, +r p'„-'(x, r)
dt

=(i 2/)0( x)(p' ' —p,', ')(x, t) .

(4c)

(4d)

(4e)

h2 = —( E —A'cu +E3, ) /—A',

63=(Eg +2ficoi Aco3 E, )/—%' . —

The pump-probe detuning 5 is simply

5=(cubi —co3) .

The interaction of the field with the atom is character-
ized by the Rabi frequency Q(x), determined by the
atomic dipole moment (e~p~g ) =—p, . Taking the field
amplitudes e to be time and space independent, the
probe field gives 03=(2/A')(e~p~g )e3, which is indepen-
dent of position. However, the counterpropagating pump

In these equations we have ignored all loss mechanisms
from the two-level system. The second term on the
right-hand side of Eq. (4b) involving 03 leads to a term in
the final solution, which is small compared to the other
terms that involve Q(x) and so may be neglected. How-
ever, the second term on the right-hand side of Eq. (4c) is
coupled to the strong-field term II'(x) and is retained
here since it becomes important when the medium is sa-
turated at high intensities. Solving these equations with
the condition that all atoms are initially in the ground
state enables the product

p, '(x, t)[p, '(x', t)]*,
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which determines the size of the generated signal intensi-
ty to be found. The intensity of the generated signal I4 is
then given by

use for describing the laser fluctuations [e.g., phase-
diffusion model (PDM) or chaotic field (CF)] as long as
their spectra are identical (see Appendix B).

I = (Ik&lcN) Ip,s I

2Epc

X(p,g
'(x, t~)[p, ' '(x', taboo)]*), .

( ), indicates a spatial average over x and x'. N is the
number of atoms in the interaction region divided by the
cross section of the weak probe beam. Within the ap-
proximation that we ignore all propagation effects such
as absorption of pump, probe, and generated waves, we
obtain for the monochromatic case a DFWM reflectivity
R, equivalent to the usual results given by

1/2

where

, —a, P, +0
~c

a, +0,

1/2 2

and

B,= ( —i /4)( I +i 6)(2I i 5 )~—

(I —i5)1
[I +i (5—5)][I i(b, +5)][a—i5]—

I —i6

(b, +I )~
r

& =(2/&)(e Iplg ~2&

For the incoherent case the generated signal is again
found from the product

where ( )f denotes, in addition, the average over the field
fluctuations. In the incoherent case the amplitudes of the
exciting laser fields e (t), j =1,2, 3 [see Eq. (1)] are sub-
ject to stochastic phase and/or amplitude fluctuations.
The mean generated intensity (I4 ) is then obtained from
Eq. (5) by averaging over these laser fluctuations. It is
the simultaneous averaging over space and the laser fluc-
tuations that complicates this problem.

In general, it is difficult to calculate (I4). However,
under certain conditions it is possible to obtain analytical
solutions. As in the study by ACE, in the following, we
particularly concentrate on situations where the band-
widths of the exciting laser fields are much larger than all
other rates determining the time evolution of the non-
linear medium. Furthermore, we assume that the right
and left propagating fields are statistically independent,
have the same mean intensity, and are characterized by
Lorentzian spectra of bandwidth b. We also restrict our-
selves to situations where the characteristic interaction
lengths are small in the sense L & (c/nb) (n is the index
of refraction) so that the retardation effects may be
neglected. Due to the fact that we are interested in the
large-bandwidth case, it does not matter which model we

III. LARGE-BANDWIDTH SOLUTION

For the incoherent case the simultaneous averaging
over the temporal fluctuations of the field and the spatial
variation of the polarization must be carried out with due
regard to the correlations of atom-field variables inherent
in the required product of density-matrix elements. In
this section we present first a solution for the case of
low-intensity broadband pumps characterized by a chaot-
ic or phase-diffusing field and a monochromatic probe
field. This example illustrates the procedure of making a
decorrelation approximation simultaneously for all the
coupled density-matrix elements. In this case it is possi-
ble to reach an analytical solution. For arbitrarily in-
tense pump fields this procedure is more complicated. In
this second case we present also a more generally valid
solution using the Fokker-Planck operator which, for the
broadband cases discussed here, is applicable to both
chaotic and phase-diffusing fields.

We begin by replacing the field description of Eq. (1)
by that of a fluctuating field, characteristic of broad-
bandwidth pulsed lasers. The Rabi frequency of Eq. (2) is
also changed, since, for the counterpropagating uncorre-
lated fields to be considered here, there will be no steady-
state standing-wave pattern established by the pump
beams. With these changes, Eqs. (4) may be solved in the
time domain, and the averaged product,

(p,~ '(x, t)[p, ' '(x, t) ]*)f,
expressed in terms of products of atomic parameters
which have been appropriately decorrelated from the
field variables.

We consider the incoherent laser fields to be described,
in the same manner as ACE, by

eE(x, t) = g ( e„"e ' + e„'e ' )ee
P

1 cc)l f
Xe ' +c.c.

The expression represents right (r) and left (I) propaga-
ting fields, polarized along e, each consisting of an infinite
number of modes p, with amplitudes e„"', and frequency
co„. As in ACE we take the fields to be uncorrelated:

( '( e)*e) =0 if i', pWv, i,j =r, l .

The time-independent field amplitude of Eq. (7) defines
the new Rabi frequency I1(x, t ) given by

Il(x, t)=(2/fi)(e ~@ e~g ) g (e„"e ' +e„'e '
)

l (67 CO jf
Xe

We treat the case where right and left propagating
modes of the pump waves have the same mean frequency
co, and the same mean intensity
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and

1, —1(t)—(
1, —1 1, —1)(x t)

We further consider the pump fields to have a Lorentzian
spectrum of width b [half-width at half maximum
(HWHM)] and the probe field to be weak and mono-
chromatic. Most importantly, we consider the band-
width b to exceed all other relaxation rates of the system:

b»[& ln(x, t)l'&]'",~, y .

We simplify the notation by writing

p ' (t)=(pgg p,,' )(—x, t)

also

P= I —ib. ,

P =I ib,—

p3=1 —ib, 3,
a=~ —i5 .

Now formally integrating Eqs. (4), neglecting the term in

03 in (4b), gives

OO
p 0(t)=1 — Re f dt, f dt2e

p' '(t)+ —f dt, f dt, e
QQ oo

I [ 3 2 2 ~v(t )fl(t )+ 2 2 1 ~(t )f1+(t )] 1, —1(t

(9)

and

=( —i/2) f dt, f dt2e

—P3t t P3t Ip2 '(t)=(i/2)e ' dt, e ' 'fl(t, )p' '(t, ) .

' [e ' ' A*f1(t )+ ' ' ' O'O(t )] ''(t ) (10)

From these equations we see that the desired product

(p,g
'(x, t)[p, ' '(x, t)]*)/

will involve time-averaged products of population terms and field terms which are, in general, correlated. However, we
note that the average population terms p ' and p' ' will vary on a time scale of I/~ whereas the correlation time of
the fields is 1/b which is much shorter. Under these conditions, we may decorrelate all products of field and population
terms.

We consider first the special case of low-intensity pump beams i fl i
&(~ for which we can simplify Eqs. (9)—(11) as

p ' (x, t4)=1, (12)

p' '(x, t1)= ——Q3 f dt3 f dt4[A(x, t3)e ' ' ' +Q(x, t4)e ' ' ]e ' '
p ' (x, t4),

oo Qo

(13)

p,g
'(x, t)= —e ' f dt, A(x, t, )p' '(x, t, )e ' ' (14)

Remembering that right and left propagating modes are
uncorrelated, we find in the limit that b &&A, hz, 6, the
solution for the desired product is [see Eq. (A4), Appen-
dix A],

(p',g
'(x, t)[p,'g '(x', t)]*)f

in, i'n'
8I ~b

1 1 (I +tc)
I 2++2 I (I +~)2++2

Equations (12)—(14) can be readily incorporated into a
single expression for p ' '(x, t) and the desired product
formed. This product is simply a six-dimensional time in-
tegral which can be decorrelated and averaged by writing
the field terms as

Q(x, t) = fl "(t)e'" "+SI'(t)e'

The generated signal I4, and hence the DFWM
reflectivity R, is found by integrating Eq. (15) over the in-
teraction volume.

This method can not be used to treat the case of arbi-
trary field strengths since a sequential solution of Eqs.
(9)—(11) requires sequential decorrelations to be made. In
particular, it is not possible to decorrelate products like
(p ' (x, t)Q(x', t3 )Q*(x', t4) ) when t ) t3 and t4 [since
quantities depending on 0 (x, t3)A(x, t&) are included in
the expression for p ' (x, t)]. This essentially neglects im-
portant correlated terms inherent in the averaged prod-
uct

(p, ' '(x, t)[p, ' '(x', t)]*)I,
which cannot be ignored at high intensities. Instead, we
adopt a different procedure that also allows us to treat a
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probe beam which has a finite bandwidth p. The
mathematical manipulations are described more fully in
Appendix 8 and the method is outlined as follows.

To simplify the notation even further we first reduce
the notation for the density-matrix elements as follows:

p (x, t)~po(x, t),
p,' (x, t)~p, (x, t),
[p,'s (x, t)]'~pz(x, t),
P,s '(x, t)~P3(x, t),
p' '(x, t)~p4(x, t),
p, ' '(x, t)~p5(x, t) .

Representing the products of these density-matrix ele-
ments by

A k =p (x, t)[pk(x', t)]', j,k =1,2, . . . , 5

we see the desired product will be denoted by
A~3(x, x', t). These products are stochastic processes due
to the fluctuating laser fields and a coInplete set of
differential equations for them may be derived. The first
few, which illustrate their structure, are

+2I A»(x, x', t)
d
dt

=(i/2)[Q(x', t) A45(x, x', t) —Q*(x', t) A, 4(x, x', t)],

cally. The key point to note here is that the decorrelatior.
is carried out simultaneously for all the coupled atom-
field variables. In contrast with the (p (t)Q(t3)Q'(t4))
case discussed previously, we now have, e.g. , A44(x, x', t)
at time t', which does not depend on the interval t'~t
and thus 0"(x', t)Q(x, t') may be averaged separately for
short correlation times (i.e., broadband radiation). This
procedure for evaluating the product density-matrix ele-
ments is similar to the averaging methods outlined by
Georges and in the limit of large bandwidth is equivalent
to his decorrelation approximation (which is valid for
both phase diffusion and chaotic fields).

Alternatively, ( A»(x, x', t) ) may be calculated with
the help of an eigenfunction expansion in terms of the
eigenfunctions of the Fokker-Planck operator, which de-
scribes the fluctuations of the pump (and probe) waves. If
the fluctuation of the pump waves can be described, for
example, by the phase-difFusion model, the Fokker-
Planck operator is given by

with

i g. (t)
ej(t)=eoe ' j =1,2 .

Its eigenvalues and eigenfunctions are determined by

L (ri„ri2)II„„(71„il2)=A„„11„„(il„ri~), (17a)

+(d*+a) A~4(x, x', t)
d
dt

from which we find
2

n17I1 in2g2 (17b)
= i[A*(x', t) A ~3(x, x', t)+ Q*(x ', t) A ~3(x, x', t)

—0 A, (x, x', t)+ —,'Q(x, t)A (x,x', t)], and

A„„=b(nf+nz), ni, n2=0, +1,. . . (17c)

+(d +a*) A4~(x, x', t)
dt

=i[A*(x,t) A»(x, x', t) —A(x, t) A»(x, x', t)

+03 A i'(x, x', t) —
—,'Q(x', t)A44(x, x', t)]

and so on, where a = I —i63 and d =~—i 6.
The equations for A ~4 and 3 45 may be formally

integrated and substituted into the equation for
A»(x, x', t). The average over the field fluctuations is ob-
tained with the aid of a decorrelation approximation,
where, for example,

(Q*(x', t)Q(x, t') A44(x, x', t) )

= (Q*(x', t)n(x, t') ) ( A„(x,x', t) &

=2cos[k(x —x')]~0,
~

e " ' '( A44(x, x', t)), (16)

and

(O(x, t)A, ~( , xt'x) ) =e " ' '($1(x, t')A, 5(x, x', t')) .

In this manner a set of equations for the product density
matrices is obtained. Obtaining the solution for
( A~~(x, x', t)) is tedious, but may also be done numeri-

Projecting the equations for A; (x,x', t) onto the eigen-
functions of the Fokker-Planck operator, we obtain an
infinite system of equations for atom-field averages,
which in the case of the PDM are defined by

2' 2,7T

d71211„*, „,(rii, imp) A,, (x,x't) . (17d)

The mean generated intensity can then be obtained from
the relation

( A» ( x, x', t ) ) = A ~~~'
'
( x, x', t ~ oo ) /2' .

In the large-bandwidth approximation (which is valid
for b 2 fl, I ) we keep only the couplings of A &~' '(x, x', t)
to atom-field averages with

~ n, ~, ~
n 2 ~

~ 1, which allows us
to obtain analytical expressions for A 5050'(x, x', t~ oo ).
These equations are identical to those obtained from the
decorrelation procedure of Eq. (16) discussed above
(which, as mentioned, are equally valid for either phase
diffusion or chaotic fields). Approximate expressions are
given in Sec. IV, but it was also simple to numerically
evaluate the 56 coupled equations for A', 5 '(x, x', t) In.
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Appendix B we demonstrate this procedure in detail.
However, due to the complexity of the complete set of
equations we restrict ourselves there to the evaluation of

1 1

+I + +p 2

([ps' (x, t) —p„(x,t)][pcs (x', t) —p„' (x', t)]) .

The evaluation of ( A5~(x, x', t) ) proceeds along the same
lines and is straightforward, but tedious, as mentioned
above.

This solution agrees exactly with the analytic solution
for low-intensity pump beams and can be applied to arbi-
trarily large intensities and detunings. The key to its suc-
cess is the simultaneous decorrelation of all field terms
from the density-matrix elements.

1C2=
iA +I + +p

K 1+ 2.
iA +I +p+ in['

—i 6+b +p

1

1+28

K6
2I . ( Moo(x, x', t~ oo )),

IV. RESULTS AND DISCUSSION

We now present our revised results on the generated
four-wave mixing signal with broadband lasers and com-
pare them with the result for the coherent case where the
reflectivity R is given by Eq. (6). The generated signal in
the case where both pump and probe fields are coherent
is then

1I =
4

2EOC
( lk4lc&)'I p„ I'I &31'R . (19)

lQ3l cos [k,(x —x')]

2 Re( T, + Tz)

(1+28) 1+
I

—2 cos [k, (x—x')]

(20)

In the degenerate case (5=0) this reduces to the result of
Ref. 4 and differs from the one in ACE due to the pres-
ence of the second term on the right-hand side of Eq. (4c),
which actually cannot be neglected when the atomic tran-
sition lg )~ le ) starts to saturate.

In the more general case of broadband pump waves
and a weak probe beam of bandwidth p we obtain with
the help of the procedure outlined above:

(p,g
'(x, t~ oo )[p, '(x', t ~ oo )]*)

I
o I'=

(
—p„e,
2

and ( A oo(x, x', t ~ oo ) ) defined in Appendix B [Eq.
(B3)]. This result is valid for arbitrary bandwidths p of
the weak probe beam, but only for large bandwidths b of
the intense pump waves so that b & lb l, lbl. For lb l and
l5l greater than b, the equations for A ~,

' '(x, x', t), dis-
cussed in Sec. II, have to be evaluated numerically.

These results are shown in Fig. 1 which shows the reso-
nant (b =0) DFWM reflectivity R for monochromatic
waves, calculated using Eq. (6) plotted logarithmically as
a function of the parameter l

0
l /~, which is proportion-

al to the pump intensity I, . This result is identical to
that of Ref. 5 and shows that for intensities in excess of
the saturation value I„„R~ I

The effects of broad pump laser bandwidth
( bll=r1 0, 10') are shown by two additional curves in
Fig. 1. In these curves also 6=0 and the probe is mono-
chromatic. The general features of the response with
broad-bandwidth pump fields are similar to those predict-
ed in ACE, notably that increased bandwidth leads to a
reduced efficiency for I, &I„, and I„, increases in pro-
portion to the pump bandwidth for b »b, . Qualitatively,
the predictions of present work differ from those of ACE
in that the refiectivity R scales as b for I, &&I„, and
also R ~I rather than I for I& )&I„,. These pre-

with

b

b, +b
(1+T3+ T~)c2+ T3c,

(1+T3+T4) —T3cos [k, (x —x')]

(1+T, + T4 )c, + T3c2cos [k, .(x—x')]

1+ &t1 (1+T3+T4) —T3cos [k, (x —x')]1+

-2

-8-

-10-

lnl'
ib2+I +~+p —i5+b i(62+A, )+b 2 3

log (Qi~/~'
4 5

lnl'
T4

FIG. 1. Logarithmic plot of R against lQ l/a for b, =O and
probe bandwidth p =0. Pump bandwidths b/~=0 (solid line),
b /K = 10 (dashed line), and b /K = 10 (dot ted line).
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dictions are modified in the case where atomic motion
effects are important and lead, as we shall show later, to a
reAectivity decreasing with I for I, ))I„,.

We consider now the "ase when the pump laser may be
detuned from the atomic resonance, b.AO. Two situa-
tions may be encountered where either the bandwidth
exceeds the detuning, 6 & b, when the approximate
analytical solution is valid or the converse, 5)6, when
the fu11 numerical solution of the coupled equations must
be used. In Fig. 2(a) we show the results for the former
case for three values of b )A. We observe the trend for
the saturation intensity to increase with increasing band-
width b In .Fig. 2(b) we show the predicted saturation
behavior when b is increased from a value initially less
than the detuning to a value greater than the detuning.
We note that the saturation intensity is at first reduced
for increasing bandwidth. This may be explained by a
more effective overlap of the laser spectrum with the
atomic resonance. As the bandwidth is increased further
the improved overlap is less effective and the saturation
intensity increases as before.

The discussion so far has considered the case of a
coherent probe field p=0. However, the theory may
easily be generalized to include the case of the finite
probe bandwidth.

If p is large in the sense that
~
Q

~
/pb && 1 and

p ))I,~, then T3, T4 && 1 and we obtain a relatively sim-
ple expression for the reAectivity (after integrating over

x x)
I +x+p

4r' a,'+(r+~+p)'

X

(1+28) 1+ r
1/2

X

( 1+28) 1+
I

—2—8K

r
3/2 (21)

These approximations, Eqs. (20) and (21), have been
checked numerically against the full solution of the cou-
pled equations and have been shown to be in excellent
agreement within their range of validity (i.e., b )

~
b, ~, ~

5 ~).

The approximate R, obtained after numerically integrat-
ing Eq. (20) over (x, x'), drops precipitously to zero out-
side of its range of validity, whereas the full numerical
solution for R is well behaved for 0 ~ b irrespective of 5
and A.

In most experimental situations p =b and so we show
in Figs. 3(a) and 3(b) the effects of detuning for this case.
For clarity in these figures we calculate curves for values
of b /a=2. 5X I 0, 10, and 10. Figure 3(a) shows the
case where b ) b, (specifically 5/a. =10 ). In Fig. 3(b)
b, /~=10 and here we see the effect of b increasing from

-6'

o -6
-8.

CC

O
-'tQ-

-12 ~

3 4

I og I Q I'/~'
3 4

log I a. l
zQ~t

-4-
-8

'
~

~
~

~

O
-10-

—1Q-
-12

3
iog iQi~/x'

FICx. 2. Logarithmic plot of R against ~Q ~/~' for probe
bandwidth p =0 and pump bandwidth b/~=10 (solid line),
b/x=10 (dashed line), and b/~=10 (dotted line). (a) 6/~=0
and (b) 6/~=10 .

3
iog i& I

~Pic'

FIG. 3. Logarithmic plot of R against ~02~/v~ for equal
probe and pump bandwidths b /~= 2.5 X 10 (solid line),
b /sc = 10 (dashed line), and b /~ = 10 (dotted line). (a)
5/~=10 and (b) 5/x=10.
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b &6 tob &A.
In Fig. 4 we show the effect of a nonmonochromatic

probe on the resonant (b, =0) reflectivity. By comparison
with Fig. 2(a) where p =0, we see the result for a broad
probe bandwidth p =b for three values of b. In general,
the response is modified in that the peak reflectivity now
scales as p

' and the reflectivity for I, « I„,now varies
asb 'p

It is a complex problem to include effects of atomic
motion in the case of intense pump waves. In the case of
broad-bandwidth laser fields its effects are most
significant if the weak probe beam has a small bandwidth

p or is coherent. The effect of the motion is to replace x
by x+ vt, so that in the observable [Eq. (5)]
p, ' '(x, t ~ ~ ) has to be replaced by

2, —1
i k4.(x+vt)

p, ' (x, t~oc )e

(with k&= —k3), and similarly for the complex-conjugate
term x'. An integration with respect to v and v' (or alter-
natively v and b,v=v —v') then has to be performed. In
principle, the analysis, although very tedious, could be
carried through in detail, however, qualitative results
may easily be obtained. We assume that the Doppler
width b, cuD ——k.v, „(where v„ is the mean thermal veloci-
ty) is large compared to I~ but small compared to b.

Firstly, in order to ascertain the effect of the motion of
the atoms we examine the denominators that occur in the
low-field problem. Specifically, we find terms like
2I +ik .bv, 2a'+ik bv+eik, .A. v, 2'I +iek, .Av (with
@=+1),and so on. By examining the poles in the com-
plex plane estimates of the various terms may be made.
For the integration over Av, the solution is dominated by
a pole corresponding to 2I"+ik3 Av. This indicates that
only small k3.Av are important. In addition, since
k, —k3-—0, the e=+l term is a factor of ~/AcoD smaller
than the e= —1 term (and hence for low fields can be ig-
nored).

The effect of saturation, due to ~6%0, leads to both a
contribution from the e = + 1 term and a power broaden-
ing effect. The most important pole, obtained from the

denominator of Boo [see Eq. (B3)] corresponds to

ik, .v=y=(I +a8)[1—1~8 /(I +a8)(1+2tl)]'

Thus the power broadening is comparable to ~6 and for
this pole to be dominant we, of course, require that
]c6 & Ae)D.

Secondly, the motion washes out the spatial modula-
tion, which corresponds to replacing cos [k (x —x') ] by
—,'. This occurs since terms like

+2ik .bvt
e 1

average to zero for times long compared to I /a.
Thirdly, although we have approximately evaluated

the b, v integral for large b,coD (compared to a and I ) we
still have to perform the v integral. This leads to the re-
placement of b, z by (hz —k3.v) and consequently, the
reflectivity as a function of probe frequency is Doppler
broadened. If the total width of order yo=2I +~+KB
+p is small compared to the Doppler width, near to line
center the resulting Voigt profile is closely Gaussian and
not strongly dependent on yo. The Lorentzian wings are
only important where the profile has fallen to less than
—

Ilier(yolb,

coD) of its line center values and beyond
about two Doppler widths. In this central region the
terms associated with the products c, T3 and T3c2 as
well as the ~/2 part of c, , are sma11er than c, or c2 by the
order of (I +natl)/b, coD. In addition, the terms corre-
sponding to T3 and T4 are the order of ~6/AcoD and
again small compared with unity.

The net result to lowest order in (I +a6)/AcoD for the
region close to line center (i.e. , down to less than about
y o/nb, coD) gives the reflectivity proportional to S(b,~)

where

2

S(b,~) =
166.coD(1+ 2t) )

8 (v)yo
X dv

(b2 —k3 v) +go

1 a —da+
d (a +d) I+2a /a(1+2ti)

-6 (22)

-8

O

with yo=2I +~+~8+p,

-12
e

e

e

d = (I +a.8)—
( 1+28)

]/2

3
log lQI/~'

(i.e., d (a) and @=ad.
For the approximation k& -k3 to be valid we require

FICx. 4. Logarithmic plot of R against ~Q ~/v for 6/v=O
and equal pump and probe bandwidths b/~=10 (solid line),
b/~= 10 (dashed line), and 6/a = 10 (dotted line). The effect
of finite probe bandwidth is seen by comparing this figure with
Fig. 2(a) where p =0.

For large p the above form may still be used. This form
clearly demonstrates the Doppler broadening of the
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~ ~
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' ~

-16 .
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log IQ I~/~~

FIG. 5. Logarithmic plot of R against
~
0

~
/s to show effects

of atomic motion for 6=0, p =0, and b/~=10'. Doppler
widths 6D/~=0, no atomic motion (solid line); 5D/~=10
(dashed line); and 6 D/~= 10' (dotted line).

probe response. Saturation now occurs as I in contrast
to the I ~ dependence predicted by Eq. (21). This
modified resonant response is shown in Fig. 5 for a laser
bandwidth of b jir = 10 (p =0) and two values of Doppler
width: AD/~=10 and 10, together with the result ob-
tained for no atomic motion. Note that Eq. (21) cannot
be used in any form when Doppler motion occurs.

In conclusion, +e have presented a theory of DFWM
for cases where the pump laser bandwidth exceeds all
other atomic relaxation rates. Our solution takes account
of cross correlations in the atom-field products involved
in the simultaneous averaging over space and the laser
field fluctuations. The decorrelation approximation can

only be used if all the averages are performed simultane-
ously. The effects of the laser bandwidth on the effective
saturation intensity have been calculated for resonant and
near resonant pump beams, showing a general trend for
the effective saturation intensity to increase with increas-
ing bandwidth. Our solution takes into account effects
due to the spatial modulation induced in the nonlinear
medium by the counterpropagating pump waves. In par-
ticular, if the resonantly excited atomic transitions
~g )~

~

e ) are saturated, these efFects become important.
We have shown also that the spectral width of the signal
produced by broadband pumps and probed with a
coherent or narrow-linewidth probe beam will be
Doppler broadened in the presence of atomic motion.
Our calculations apply to optically thin media. In the
presence of strong absorption at the atomic line center
the results will be significantly modified since the laser
line shape will be dramatically altered as it propagates
through the medium.
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APPENDIX A

Combining Eqs. (12)—(14) we have

2

&p
' '(x, t)[p ' '(x't)]*) = e " ' f dt, f '

dt2 f dt, f dt4 f dt, f dt6

P3t
&

+P3 t2 '4] —P(t3 —t4)Xe ' ' ' 'A(x, t, )Q*(x', t2)[A( t3x)e
' ' ' +A(x, t4)e ' ' ]

)
P2 5 6 ~4( )

P 5 6 1 3 2 5 (Al)

In order to evaluate this integral we must decorrelate the rapidly fluctuating field terms. This can be done by writing

(0( xt, )Q*( 'xt )O(x, tk)A*(x', t()) =20 (e ' ' " ' +e ' ' ' " ), (A2)

where we have made use of the phase-matching condition k&+kz+k3+k4=0, and assumed a chaotic field with a
Lorentzian line shape of half-width b, to give a sum of eight six-dimensional time integrals of the form

2

I, =n4 '
e 2r' '

dt1
'

dt2
'

dt4
'

dt5
' dt6e'" ' "

—
p2 (t5 —t4) —p2(t5 —t6) —a(tl —t3) —a*(t2 —t5 j —bit l

—t2I —bIt& —t5 (A3)

Each of these integrals must be evaluated with due care over the ordering of the various times because of the
—bit —t2I —bIr3 t5e ' ' ' terms. This can be done analytically in the limit of large b, to order 1/b, to give
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( 2, —
1( t) 2, —

1( t) )
3 n4 b 1 1 1 + b 1 1 I +~In I' 2

b'+&' b +5' r'b, ' «b'+b, ' b'+a' r'K (r+ )'+g'

1 b 1 1 1 1Rer b+g r+ a, +r+ a, (A4)

Because we have only included terms up to 1/b this ex-
pression is not valid for large values of detuning A. If
6-b then all the terms presented here are of order 1/b
and become comparable to those neglected in the integra-
tion. Therefore, in Eq. (15) given in the text we have
simplified Eq. (A4) by setting b ))b, .

APPENDIX B

In this Appendix we derive an expression for

( [ 0,0 ~0~0]( t )[ 0,0 ~0~0]( t ) )

in order to demonstrate the eigenfunction expansion
method and decorrelation approximation we have used
to derive Eq. (20).

We start from the nine density-matrix equations for the

products

Aao(x, x', t) = (p g
—p„)(x,t)(pgg —p„)(x',t),

A, o(x, x', t)=p,'s (x, t)(pgg p„' )—(x', t),
etc. If the weak probe beam is coherent and the counter-
propagating pump waves are statistically independent
and their fluctuations may be described within the PDM,
we can easily derive from these nine equations the corre-
sponding equations for the time evolution of the atom-
field averages

In particular, we want to calculate Aoo '(x, x', t), whose
equation of motion is given by

+2m Ao'0' '(x, x', t)=a[po' (x, t)+po (x', t)]—2Im[n*, (x)A', 0 (x, x', t)+n2(x)A, D (x,x', t)

—n&(x')A02' (x,x', t) —n2(x')A02 '(x, x', t)],

with

n, (x)=ne ', nz(x)=ne

In the equations for A'&0' '(x, x', t), etc. , we keep only
couplings to atom-field averages with n] =n2=0. All
other couplings can certainly be neglected in the broad-
bandwidth limit ~ This procedure corresponds to a
decorrelation approximation and yields, e.g. ,

= (n*(x)n'(x') ) =0].
Proceeding with the equation for A', 2 (x,x', t) and the

various density-matrix elements

p,
' '(x, t),

in a similar way, we Anally obtain in the broad-bandwidth
limit

d 1

dt
ia+r+~+—b A""=—n (x)A""(x x' t)10 2 1 00

—in&(x') A ', 2' '(x, x', t)

(A ( 00, xxt~oo))= ((p ' —p„' )(x, t ) )

2~ 8 cos [k, .(x—x')]1—
I

(1+28) 1+—8r

+~p,' (x, t) . (B2)
(B3)

As indicated in the text, similar equations are obtained
by using the method of Georges for either phase-
diffusing or chaotic fields. Physically, this decorrelation
approximation takes into account only the dependence of
atom-field averages of the type ( n(x) A &0 ) which deter-
mine ( A~). The equations for (n(x)A, D) are
then decorrelated to give products such as
(n(x)n*(x'))( A~), etc., [and assuming (n(x)n(x'))

with the stationary mean population inversion

((pgg —p'„' )(x, t ~ )) = 1

1+28 (B4)

From Eq. (B2) we notice that the large-bandwidth re-
sult is independent of the higher-order statistics of the
laser fluctuations. Owing to correlations

(A (x,x', t ))W((p ' —p„' )(x, t ))
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