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Laser excitation of Stark-induced resonances
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We study laser excitation of a hydrogen atom in the presence of a static electric field in the energy
region slightly above the zero-field photoionization threshold. With the help of a multiple-
scattering expansion, we derive an analytic expression for the time evolution of the initial-state
probability, which is nonperturbative with respect to the laser field and which is asymptotically val-

id in the limit of small electric fields. This allows us to study how the characteristics of the classical
periodic orbit, which qualitatively has been associated with the Stark-induced resonances above the
zero-field photoionization threshold, manifest themselves in the dynamics of the laser-excitation
process.

I. INTRODUCTION

Recently we have developed a theory' that describes
laser excitation of Rydberg states close to a photoioniza-
tion threshold. It is based on the observation that the
atom-laser interaction is localized in a reaction zone,
which typically extends only a few Bohr radii around the
atomic nucleus and is small in comparison with the ex-
tent of high-lying Rydberg states. Within this theory it
has been shown that photon absorption due to a short or
intense laser pulse leads to the generation of a radial elec-
tronic Rydberg wave packet as long as the characteristic
excitation time, which is either the pulse duration or the
depletion time of the initially occupied bound state, is
short in comparison with the classical orbit time of the
excited electron. Until now our work has been concen-
trated on cases, however, where the dynamics of the gen-
erated Rydberg wave packet at large distances from the
atomic nucleus is determined by the Coulomb potential
of the ionic core.

A hydrogen atom placed in a homogeneous static elec-
tric field represents one of the simplest physical examples
where this is no longer the case. Laboratory electric
fields up to a few kV/cm, which are negligible within dis-
tances of a few Bohr radii around the atomic nucleus
dominate the Coulomb field of the ionic core at large dis-
tances and may thus significantly inhuence Rydberg and
continuum states close to the photoionization thresh-
old. ' Historically, the behavior of a hydrogen atom in a
static electric field has been one of the first problems to
which quantum mechanics has been applied. However,
certain aspects of this problem have become clear only
recently. In particular, the experiments of Freeman
et al. and others, " in which asymmetric modulations
of the photoabsorption cross section above the zero-field
photoionization threshold have been found, have stimu-
lated theoretical work. ' ' These studies have concen-
trated on the determination of the frequency dependence
of the photoabsorption cross section, which characterizes
laser excitation by a weak and long laser pulse. In partic-
ular, it has been shown that these modulations can quali-

tatively be attributed to an unstable periodic motion of
the excited electron in the direction of the applied elec-
tric field. ' ' ' This kind of motion is even possible for
energies above the zero-field photoionization threshold.

In this paper, we extend our previous work and study
one-photon excitation of a hydrogen atom in the presence
of a homogeneous static electric field. Our approach is
not only nonperturbative with respect to the static elec-
tric field but also with respect to the laser pulse, so that
we are able to describe effects due to depletion of the ini-
tially occupied bound atomic state. Motivated by the re-
cent work on the Stark effect in hydrogen, we concentrate
on the energy region slightly above the zero-field photo-
ionization threshold, where the asymmetric modulations
of the photoabsorption cross section have been found. In
particular, we are interested in situations where the excit-
ing laser pulse becomes so intense that an electronic wave
packet is generated. The time evolution of this wave
packet is reAected in the time dependence of the initial-
state probability, because whenever the excited wave
packet returns to the reaction zone, where the atom-laser
interaction is localized, it may recombine with the ionic
core to increase the initial-state probability. This pro-
vides a method for studying the dynamics of the unstable
periodic motion of the excited electron, which qualita-
tively has been associated with the modulations of the
photoabsorption cross section above the zero-field photo-
ionization threshold.

In Sec. II, we present the basic equations describing
one-photon excitation of hydrogen in the presence of a
static electric field above the zero-field photoionization
threshold. The resulting time evolution of the initial-
state probability is discussed in Sec. III. Taking advan-
tage of the separability of the hydrogenic Stark problem
in parabolic coordinates and using semiclassical methods
together with a multiple-scattering representation of the
initial-state-probability amplitude, we are able to relate
this quantum-mechanical observable asymptotically to
quantities, which characterize the classical motion of the
excited electron under the combined inhuence of the
Coulomb field of the ionic core and the external static
electric field.
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may perform a periodic motion. The quantum number
n1, which is associated with this motion, is related to
s,p, m by the semiclassical quantization condition'

below this potential barrier, w(2)„r/2) is the classical ac-
tion between the inner and outer turning points of the po-
tential well and
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with D,& representing dipole matrix elements between
the initial state lg ) and /3-normalized energy eigenstates

I rpm ) of H„, which for 0 ( E (& 1 are normalized so that
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and k =v'2E. e(x) is the unit step function with
e(x)=1 for x )0. Thereby, the factors (1+e ~ ")
and (1+e ' ' ~)/") ' approximately take into ac-
count effects due to the Coulomb barriers, which are
formed in the cases of p&0 or p& 1 (see Fig. 1) and
which are most important for m =0 states, due to the
lack of the angular mornenturn barrier. '

Since the dipole matrix elements D,& get their dorn-
inant contribution from a region of the size of the initial-
ly occupied low-lying bound state lg ), Eq. (6) shows that
D,&

is approximately independent of c and F as long as
Isl, F «1. As has been shown by Fano' and Harmin'
and as outlined in the Appendix, these matrix elements
may be related to spherical hydrogenic dipole matrix ele-
ments (8/m IDlg ).

The quantities /1
' and [(1/7r)(Bw/Bp)] ' contain

information about the motion of the excited electron in
the g and 7) coordinate at large distances from the nu-
cleus, where the static electric field is comparable to or
larger than the Coulomb field due to the ionic core. The
quantity

—2 2iN'jw(gl, q2) —~//2+bi Ne
N=0

—2iN! w( pl, q2) —m/2+ 5]
e

N=1

describes all effects due to the potential barrier associated
with the motion in the g coordinate. ' For energies

with the classical action

w(s, P, m )= J dg[E/2+P/g —m /(4g ) Fg—/4]'/2,
(

between the inner and outer turning points g&, g&,
Within a semiclassical treatment the dipole matrix ele-

ments between the initial state lg ) and the energy nor-
malized eigenstates

I s/3m ) may be writ ten in the
form

—1//2

is the reAection coefficient of the barrier, which involves
the tunnel integral w(2)2, 2)3). 5 is an additional phase
shift due to the potential barrier, which tends to zero far
above or below the top of the barrier. Above the top of
the potential barrier, w(2)2, 2)3) &0 and R rapidly tends to
zero. In particular, for energies above the zero-field
photoionization threshold (c)0), we may therefore
neglect effects due to reAection above the potential bar-
rier and approximately have A = l.

%'ith the help of the Poisson summation formula, ' the
sum over the quantum number n, in Eq. (2) can be con-
verted to a sum over integrals involving factors of the
form e' ~w"~' '. The corresponding energy integrals
can then be performed with the help of contour integra-
tion in the complex-c. plane, thereby using the fact that
for Isl~ ~ we have e' "~ '~0 in the upper half of the
complex-s plane. Setting 3 =1 and using Eqs. (5) and
(A5) we thus obtain, in the case 0&E «1, for the self-
energy the expression

y1s) 2
. y y f dp 2&M[w(cp'm ) —77/2)

M=1 m

xlD, p I',
with P =P(n, =0, E, m ) and

r."=6~—i ry2 .

The laser-induced quadratic Stark shift of state lg ),
5co, due to the laser field and the ionization rate

1 =2vrg l(elm IDlg)l'
l, m

are independent of c. and F and characterize one-photon
ionization from the initial state lg ) in the absence of a
static electric field. The residual terms in Eq. (8) may be
attributed to repeated returns of the excited electron to
the reaction zone, where the atom-laser interaction is lo-
calized and the dipole matrix elements D,& get their
dominant contribution. %'ith the mth return to the reac-
tion zone, the wave function of the excited electron has
accumulated a phase 2M [w( E,P, m )

—~/2], which is
determined by the classical action associated with the
motion in the g coordinate w(s, p, m ) and the additional
phase shifts of ~/2, due to reAection at the classical turn-
ing points. [With each turning point there is associated a
Morse index of 1 (Ref. 22).] e ' "~' ' is a rapidly oscil-
lating function of p with monotonically increasing phase.
Furthermore, according to Eq. (6) the dipole matrix ele-
ments D,& rapidly tend to zero as a function of p out-
side the interval (0,1). As long as Bw/Bp)& 1, the dom-
inant contributions to these integrals come from small re-
gions around the end points p=0, 1 with the contribution
at p=0 negligible, since, for E )0, Bw /Bp tends to
infinity at P=0. Evaluating the P integrals asymptotical-
ly with the help of partial integration, we thus find
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~(q) g y 2iM(m(E, t), m) — I ][sinh[Mg(e)]]
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with the dipole interaction matrix element and the Lyapunov exponent

B =2(E +4F) /F

C=[(c, +4F)' /F][(E +4F)' —E],
a.=[(e +4F)' +]E[/( 2e+4F)' ],

20

F 1I2
30 50

FICx. 2. Lyapunov exponent of the isolated classical periodic
orbit.

D,& ) o= g( —1)'&21+1(Elm =0 D~g )
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between the initially occupied state ~g ) and a hydrogenic
energy eigenstate, which describes asymptotically an elec-
tron moving in the direction of the applied electric field

The asymptotic expression (9) demonstrates the fact
that only electrons, which leave the atom in the direction
of the static electric field, i.e., with +=0 or equivalently
f3=1, are able to return again to the reaction zone and
thus contribute to the self-energy. Such an electron emis-
sion can only take place, if the excited electron hydrogen-
ic states have a zero-angular-momentum component in
the direction of the electric field. Otherwise, the proba-
bility of finding the excited electron along the electric
field axis is negligibly small.

For E )0 the modification of the self-energy due to the
static electric field is completely determined by quantities
characterizing the classical periodic motion of the excited
electron in the direction of the electric field, namely, the
classical action

w(e, /3=1, m =0)=F 'i B '
[—,'CK(tr)+ —,'EBE()r)]

(10)
with

k(E)=v 2E =&2E2B ' F ' K()r)
()g g

of the isolated periodic orbit. K(tr) and E(x.) are com-
plete elliptic integrals of the first and second kind as
defined in Ref. 24. Figure 2 shows the Lyapunov ex-
ponent, which only depends on the scaled variable
E/&F. Whereas the classical trajectory is stable at 8=0,
i.e. , A(e=0)=0, it becomes unstable for E)0 with a
monotonically increasing Lyapunov exponent A.(e). For
e/V'F «1, this Lyapunov exponent has recently also
been evaluated by Wintgen by numerical integration of
the classical equations of motion. '

According to Eq. (9) in the limit F « 1 the dominant
contributions to the self-energy X(e) are of the order of
O(F' ). Any modifications of this result due to the
linear Stark effect of the initial atomic state ~g ) give rise
to corrections, which are at most of the order of O(F),
and are therefore negligible in the limit F ((1.

III. RESULTS AND DISCUSSION

In this section we calculate the time evolution of the
initial-state probability amplitude a (t) on the basis of
Eqs. (1) and (8) for the case of laser excitation of continu-
um states slightly above the zero-field photoionization
threshold, i.e., 0(E((1. With the help of a multiple
scattering representation of a (t), we derive an asymptot-
ic expression valid in the limit F ((1, which explicitly
shows how the classical properties of the periodic motion
of the excited electron in the direction of the applied elec-
tric field manifest themselves in the dynamics of the
laser-excitation process.

In order to obtain the time evolution of the initial-state
probability amplitude a (t), we have to invert the La-
place transform a (z) as given in Eq. (1). Traditionally
this is achieved with the help of contour integration in
the complex z plane, which yields the initial-state-
probability amplitude as a sum over contributions due to
all dressed states of the strongly coupled atom-laser sys-
tem. Here, however, it is much more convenient to ex-
press the initial-state-probability amplitude as a sum over
contributions which may be attributed to the repeated re-
turns of the excited electron to the reaction zone, where
the atom-laser interaction is localized. This multiple-
scattering expansion is obtained from Eqs. (1) and (8) by
rewriting them in the form
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and the scattering matrix

=5(P, —P )5 2~i—D,p (c.—E+iI /2) 'D,*p (14)

The second term of Eq. (14) thereby describes laser-assisted electron-ion scattering between the excited electronic
channels (p), m) ) and (f32, m2) inside the reaction zone. E=e +0~+502 is the mean excited energy. Inverting the La-
place transform we obtain from Eq. (12).

e
—i(K—w)te rt/2+ J d & e

—i(E —
w)t& (e e+ 1 I /2)

—
1

1 I i ) 2 2

Solving Eq. (13) iteratively with the starting value

= —5(13)—P2)5

and inserting the resulting series in Eq. (15), we obtain the multiple-scattering representation of the initial-state-
probability amplitude.

As for the asymptotic expression for the self energy given in Eq. (9), the integrals over the separation parameter P in
the multiple-scattering expansion can be performed by partial integration as long as Bw/BP o: F ' »1 [see Eq. (11)].
Then P values around P= 1 dominate. Furthermore, if we are exciting an energy region above the zero-field photoion-
ization threshold, which is sufficiently small in that 8 w/BE ~p )I (( I we may approximate the energy integration in
Eq. (15) by linearizing the phase of the exponential functions to obtain

a (r)=e '" ")'e ' +e " ""2m5 ~D
~

(V 2e/I )Isinh[k(E)]I 'e ' w"P' ' ~ lx e 'e(x )~m, O cpm 1 1 P= 1

+e —i(E )t2 —
5 ~DO ~2(QP&/I )

4i[w(E, P, m) —tr/2}&l m 0 cpm

X I sinh[2A(s)] I 'x2e 'e(x2)
~ p ) +2~i )[D,p ~

(t/2E/I ) I sinh[A(F)]I —,'x 2e 'e(x2) ~p )+ (16)

with xM=(1 /2)(t MT, ) and t—he classical orbit time of
the excited electron T, =2Bw /BE

~ p
Equation (16) shows that as soon as the exciting laser

pulse becomes so intense that the depletion time of the in-
itial state 1/I is short in comparison with the classical
orbit time of the excited electron T, the various contri-
butions to the initial-state-probability amplitude are well
separated in time. Then the laser-excitation process is
not only localized in space by the finite size of the reac-
tion zone but also in time so as to generate a radially lo-
calized electronic wave packet. This wave packet leaves
the reaction zone in a time of the order of 1/I, corre-
sponding to the exponential decay of the initial-state-
probability amplitude evident from the first term of Eq.
(16). In the energy region slightly above the zero-field
photoionization threshold, which we are studying here,
only a sma11 fraction of the excited electronic wave pack-

et is able to return later to the reaction zone. This re-
turning part is due to electron emission within a small an-
gular region around the direction of the applied static
electric field, which corresponds to a small range of P
values of the order of hp=(Bw/Bp)p '1 around p= l.
The combined Coulomb field of the ionic core and the ap-
p1ied static electric field cause the residua1 part of the
wave packet to leave the atomic core without returning.
At time t = T the returning part of the generated wave

packet reenters the reaction zone, where the atom-laser
interaction is localized. There the electron may recom-
bine with the ionic core, increasing the initial-state prob-
ability as evident from the second term of Eq. (16). Alter-
natively, the returning part may a1so leave the ionic core
region again with part of it scattered in a11 directions by
the action of the laser Geld inside the reaction zone. This
laser-assisted electron-ion scattering process is character-
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ized by the second term of the scattering matrix
of Eq. (14). The part of the wave packet which

returns again to the reaction zone at t =2T consists of
two contributions: one originates from the unscattered
part and is described by the third term of Eq. (16) and the
other one is due to the scattered part and is represented
by the fourth term. As long as (t)w /t)P)ti, )& 1, the con-
tribution due to the scattered part is negligible in com-
parison with the unscattered part so that laser-assisted
electron-ion scattering inside the reaction zone may be

neglected. Physically this occurs because the periodic
motion of the excited electron in the direction of the stat-
ic electric field with o, =0 is represented by an isolated
and unstable classical trajectory. Electron emission at
slightly different angles a&0, which, e.g. , is due to any
scattering process inside the reaction zone, no longer
leads to a periodic motion and therefore cannot manifest
itself in the initial-state-probability amplitude. Neglect-
ing laser-assisted electron-ion scattering inside the reac-
tion zone, we thus finally find from Eq. (16)

a (t)=e " ""e ' +e " "2vri6 )D
~

(V 2K/I ) g Isinh[MA(E))I 'e ' 1 "@ ' ~ lx e e(x )~

M=]

The general expression for the multiple-scattering repre-
sentation of a (t) as given in Eq. (15) and the approxi-
mate relation of Eq. (17) are the main results of this pa-
per.

Figure 3 shows the time evolution of the initial-state
probability according to Eq. (17) in the case of laser exci-
tation of hydrogenic states with E = 5 X 10, l = 1, m =0,
and F= 10 . The total ionization rate is I = 7 X 10 so
that 1/I & T and the laser-excitation process is localized
in space and time. This implies the generation of an elec-
tronic wave packet. Typically, for t (T, ~a (t)~ decays
exponentially and for t ) T, ~a (t)~ increases at multi-
ples' of the classical orbit time because of stimulated
recombination. However, due to the large instability of

the excited periodic orbit, which is characterized by the
Lyapunov exponent A(e) of Eq. (11), the amplitudes of
successive recombination peaks decrease rapidly.

According to Eq. (17) in the case of a laser pulse with T
longer than T, the various contributions associated with

different returns of the excited electron to the reaction
zone overlap in time so that the initial-state probability
reflects the quantum-mechanical interference between the
corresponding probability amplitudes. An extreme situa-
tion arises in the case of excitation by a long and weak
laser pulse with T « T « 1/I . Then essentially all

terms of Eq. (17) contribute to ~a ( T)
~

and the laser-
excitation process can be described by a time-
independent rate

(1 —a, (T)~') = I 1+2776,~D'
sinh[MA(E)]

(18)

which in general is related to the imaginary part of the
self energy of Eq. (2) by

2.000

R = —21m[X(E)]=27rg g I ( EPm ID g & I

nz n =0
1

An expression equivalent to Eq. (18) has been derived
by Bogomolny for the time-independent rate describing
laser excitation by a weak and long pulse.

Figure 4 compares the energy dependence of the
asymptotic excitation rate R of Eq. (18) (dashed line) with
the exact rate of Eq. (19) (solid line). In Eq. (19) the re-
quired parabolic dipole matrix elements have been evalu-
ated with the help of Eqs. (5), (6), (A3), and (A4). The de-
viations of the result of Eq. (18) from the exact Eq. (19)
occur because at a field strength of F=10 the asymp-
totic parameter (t) w /t)P)t3, ~ F '~ is still not

0.000

time

FICs. 3. Initial-state probability ~a (t)
~

as a function of time
(in units of the classical orbit time T, ) for F=10 ', c.=5X10
I =7X10 a u.
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of significant terms in Eq. (18) becomes smaller and

Figure 6 shows the initial-state probability a (T)
l

as
a function of the mean excited fenergy or a weak and
short laser pulse with 1/I &)2T—

p
T — . cor-p& T) T . Accor-

t en, on y the contribution associ t d
'

h
return of the excited electron to the reaction

zone contributes to a ( T)
l

fo a„~ for sufficiently small values

g of the mean excited energyo E. With increasin values
c, t e classical orbit time T event 11 bven ua y ecomes larger

than the pu se duration T and the excited el t
onger a e to return to the reaction zone during the in-

n is case, the laser-eraction with the laser pulse. In this case,
excitation process is localized in space and time and an
electronic wave packet is generated. A

e initia -state probability is completely determined by
the direct ionization process wh h t k 1ic a es p ace before the
excited wave packet has left the reaction zone, and be-
comes independent of c..

IV. CONCLUSION

We have studied one-photon excitatio f h dn o y rogen in
the presence of a static electric field in the

y a ove the zero-field photoionization threshold. It
has been shown that, in the fe case o laser polarization
parallel to the applied static 1 t

'
fi 1,e ec ric e d, excitation by

an elec
an intense or short laser pulse 1 d hea s to t e generation of
an e ectronic wave packet, part of which performs a
periodic motion which is controll d b hro e y t e external elec-
tric field and the Coulomb field of he o t e ionic core. With

e e p of a mu tiple-scattering represent t ha ion, we ave
e an analytical expression for th t' dr e ime ependence
e initial-state-probability amplitude which

'

toticall valid in
u e, w ic is asymp-

i.e., F &(1.
y va i in the limit of a weak static 1 t fi ld,

This expression shows how the characteris-
tics of the corres ondin clp g c assical periodic orbit manifest
t emselves in the dynamics of th 1e aser-excitation pro-

have sho
n the case of excitation by an intense laser pulse, we

ave shown that with each return to tho e reaction zone,
w ere the atom-laser interaction is localized the
ed electronic wave

s oca ize, t e generat-
wave packet may recombine with th

core to increas
wi e ionic

ase the initial-state probabilit . The h
'

of the recombinatio
i i y. e eight

cited erio
ination peaks reveals how unstabl ha et eex-

tion b
p odic orbit is. We have also stud d 1~ s u ie aser excita-
y pulses weak in the sense that the de 1

the initiall occu
e ep etion time of

ia y occupied bound state is larger than the classi-
ec ron. s ong as the clas-cal orbit time of the excited ele t A 1

sical orbit time of the excited el te ec ron is small in corn ar-
ison with the pulse duration th

par-

t e excitation probability shows the characteristic b h
as een found previously, namely, a change
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from a saw-tooth shape close to threshold to a sinusoidal
shape suSciently far above threshold. However, smaller
pulse durations may change this type of behavior.
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APPENDIX

In this Appendix we summarize some relations be-
tween hydrogenic energy eigenstates in parabolic and
spherical coordinates, which are used in Sec. II.

The energy normalized parabolic eigenstates fEIlm &H

of hydrogen are related to the corresponding spherical
energy eigenstates fc.lm & by'

IEptrt &H= g (lm jIp+ j p & Ielm &,
I=fmf

(A 1)

with the Wigner coefficients t,
'

lm
f jp+,jp &. In particu-

lar, for e &0 we have j=(v—1)/2, p+=(m+vA, )/2, and
v=( —2e) '~ . For c. &0 the angular momentum j and
its component p+ become complex. Following Fano'
and Harmin' this relation may be rewritten in the form

im@

(xfePm &H-N, & (gvy) ( fxf «1) .
277

The coeScients a&& now characterize the pure geome-
trical aspect of the transformation between parabolic and
spherical coordinates and are independent of the normali-
zation of the wave functions.

Inside the Coulomb zone, which is characterized by
r ((F ', ' where the external electric field is negligible
in comparison with the Coulomb potential, the energy
eigenstates fePm & of H„can be related to spherical hy-
drogenic energy eigenstates felm & by

(xfEPm &= g aPi
'

(xfElm & (fxf «F '")
= Im f

Nc. lm

(A3)

with NEtm =2'+'/(21+1)!. Since the dipole matrix ele-
ments (elm fD fg & are dominated by this spatial region,
the same relation holds between (EPm fDfg & and the
spherical dipole matrix elements (elm fD fg &. An expli-
cit expression for the coeScients a&& is given in Ref. 16
which reduces in the limit P, (1 —P) » li/2e to

l —fmf
apt=( —1) v 4l +2( fm f!) [(21+1)!!]'[(l+m )!(I—m )!] '~ g (

—1)
l+fmf

Pk( 1 P)l —m! —k

I —k

(A4)

Using Eq. (A4) together with the relation for N, tt as given in Eq. (6), we find

f dpfD, tt
f'= g f(Elm fD fg & f'

1= fmf

as long as/3 =/3(n, =0,E, m ) &0.

(A5)
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