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We study laser excitation of a hydrogen atom in the presence of a static electric field in the energy
region slightly above the zero-field photoionization threshold. With the help of a multiple-
scattering expansion, we derive an analytic expression for the time evolution of the initial-state
probability, which is nonperturbative with respect to the laser field and which is asymptotically val-
id in the limit of small electric fields. This allows us to study how the characteristics of the classical
periodic orbit, which qualitatively has been associated with the Stark-induced resonances above the
zero-field photoionization threshold, manifest themselves in the dynamics of the laser-excitation

process.

I. INTRODUCTION

Recently we have developed a theory' ~* that describes
laser excitation of Rydberg states close to a photoioniza-
tion threshold. It is based on the observation that the
atom-laser interaction is localized in a reaction zone,
which typically extends only a few Bohr radii around the
atomic nucleus and is small in comparison with the ex-
tent of high-lying Rydberg states.* Within this theory it
has been shown that photon absorption due to a short or
intense laser pulse leads to the generation of a radial elec-
tronic Rydberg wave packet as long as the characteristic
excitation time, which is either the pulse duration or the
depletion time of the initially occupied bound state, is
short in comparison with the classical orbit time of the
excited electron. Until now our work has been concen-
trated on cases, however, where the dynamics of the gen-
erated Rydberg wave packet at large distances from the
atomic nucleus is determined by the Coulomb potential
of the ionic core.

A hydrogen atom placed in a homogeneous static elec-
tric field represents one of the simplest physical examples
where this is no longer the case. Laboratory electric
fields up to a few kV/cm, which are negligible within dis-
tances of a few Bohr radii around the atomic nucleus
dominate the Coulomb field of the ionic core at large dis-
tances and may thus significantly influence Rydberg and
continuum states close to the photoionization thresh-
old.>® Historically, the behavior of a hydrogen atom in a
static electric field has been one of the first problems to
which quantum mechanics has been applied.” However,
certain aspects of this problem have become clear only
recently. In particular, the experiments of Freeman
et al.® and others,’!! in which asymmetric modulations
of the photoabsorption cross section above the zero-field
photoionization threshold have been found, have stimu-
lated theoretical work.'>"17 These studies have concen-
trated on the determination of the frequency dependence
of the photoabsorption cross section, which characterizes
laser excitation by a weak and long laser pulse. In partic-
ular, it has been shown that these modulations can quali-
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tatively be attributed to an unstable periodic motion of
the excited electron in the direction of the applied elec-
tric field.'»!”!® This kind of motion is even possible for
energies above the zero-field photoionization threshold.

In this paper, we extend our previous work and study
one-photon excitation of a hydrogen atom in the presence
of a homogeneous static electric field. Our approach is
not only nonperturbative with respect to the static elec-
tric field but also with respect to the laser pulse, so that
we are able to describe effects due to depletion of the ini-
tially occupied bound atomic state. Motivated by the re-
cent work on the Stark effect in hydrogen, we concentrate
on the energy region slightly above the zero-field photo-
ionization threshold, where the asymmetric modulations
of the photoabsorption cross section have been found. In
particular, we are interested in situations where the excit-
ing laser pulse becomes so intense that an electronic wave
packet is generated. The time evolution of this wave
packet is reflected in the time dependence of the initial-
state probability, because whenever the excited wave
packet returns to the reaction zone, where the atom-laser
interaction is localized, it may recombine with the ionic
core to increase the initial-state probability.> This pro-
vides a method for studying the dynamics of the unstable
periodic motion of the excited electron, which qualita-
tively has been associated with the modulations of the
photoabsorption cross section above the zero-field photo-
ionization threshold.

In Sec. II, we present the basic equations describing
one-photon excitation of hydrogen in the presence of a
static electric field above the zero-field photoionization
threshold. The resulting time evolution of the initial-
state probability is discussed in Sec. III. Taking advan-
tage of the separability of the hydrogenic Stark problem
in parabolic coordinates and using semiclassical methods
together with a multiple-scattering representation of the
initial-state-probability amplitude, we are able to relate
this quantum-mechanical observable asymptotically to
quantities, which characterize the classical motion of the
excited electron under the combined influence of the
Coulomb field of the ionic core and the external static
electric field.
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II. BASIC EQUATIONS

In this section, we discuss the basic equations describ-
ing one-photon excitation of a hydrogen atom by an in-
tense laser pulse in the presence of a static electric field.
We consider a one-photon excitation process where an in-
tense laser pulse of field strength E=&ee ' +c.c. ex-
cites a hydrogen atom from a low-lying bound state |g)
with energy €, to continuum states close to the photoion-
ization threshold. In addition, a homogeneous static
electric field of field strength F is applied to the atom in
the positive z direction. This static field is assumed to be
weak in the sense that its influence on the initially occu-
pied energetically low-lying bound state |g), which is
typically localized in a spatial region of a few Bohr radii
around the atomic nucleus, can be neglected, i.e., F <<1
(we use hartree atomic units). However, at large dis-
tances from the atomic nucleus of the order of r > F~!/2
the static electric field dominates the long-range Coulomb
field due to the ionic core and may thus significantly
influence excited Rydberg and continuum states close to
the zero-field (F =0) photoionization threshold.®

In particular, we are interested in the influence of the
static electric field on the time evolution of the initial-
state-probability amplitude a,(¢) in a case where we are
exciting states close to the photoionization threshold.
Assuming an instantaneous turn-on of the exciting laser
pulse at =0 in the dipole and rotating-wave approxima-
tion, the Laplace transform of the initial-state-probability
amplitude is given by

a,(2)=i[z—e,~2(z+w)]"", (1

with the resonant part of the self energy
S(e)=(g|D"(e—H ,+i0)"'Dlg)

incorporating all effects due to the intense laser field. The
atomic Hamiltonian H , includes the interaction term
—up-F due to the external homogeneous static electric
field F=Fe, and D= —pu-6e is the dipole-interaction
term due to the laser field with the atomic dipole opera-
tor u. In Eq. (1) we have neglected photon absorption
from the excited states.

In order to determine the energy dependence of the
self-energy, we exploit the fact that the atom-laser in-
teraction takes place in a reaction zone, which is of the
size of the initially occupied atomic state |g ) and there-
fore extends only a few Bohr radii around the atomic nu-
cleus. In this region, the external static electric field is
negligible.!® This finite range of the radiative coupling al-
lows us to characterize the laser-excitation process by a
few intensity-dependent parameters, which are approxi-
mately energy independent across the zero-field photoion-
ization threshold and do not depend on the electric field
strength as long as F << 1. The influence of the static
electric field on the dynamics of the excited electron at
large distances from the ionic core can be taken into ac-
count with the help of semiclassical methods.

Taking advantage of the separability of the Hamiltoni-
an H, in parabolic coordinates §=r+z, n=r —z (Ref.
19), the self-energy of the initial state can be written in
the form

S(e)=3[" dee 3 KeBm|Dlg)e—e+i0) .

n, =0
(2)

[eBm ) is an energy normalized eigenstate of H , with en-
ergy €, magnetic quantum number m, and separation
constant 3. Classically 8 can only assume values in the
range 0<3=<1 and is related to the angle a between the
intial velocity of the electron, which is excited at
£=n=0, and the direction of the applied static electric
field by'?

B=cos*(a/2) . (3)

In general, the Coulomb force due to the ionic core and
the applied electric field leads to a periodic motion of the
excited electron for all energies in the & coordinate,
whereas its motion in the 1 coordinate is dominated by a
potential barrier at negative energies, as schematically
shown in Fig. 1. This implies that contrary to the case of
a pure Coulomb field even for € >0 the excited electron
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FIG. 1. Effective potentials V 4 of the & and n coordinates
for m =0 and different values of p. Panel (a)
Vegl§)=—B/§+0.25F&; B=0.1, curve a; O, curve b; —O0.1,
curve c¢. Panel (b) Vg=—(1—B)/n—0.25F%; B=0.9, curve a;
1, curve b; 1.1, curve c.
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may perform a periodic motion. The quantum number
n,;, which is associated with this motion, is related to
€,/3,m by the semiclassical quantization condition'®

w(e,Bm)=m(n +1), 4)
with the classical action

£
w(S»B,m)=f§ dE[e/2+B/E—m?/(4E*)—FE/4]'?

between the inner and outer turning points § _, &,
Within a semiclassical treatment the dipole matrix ele-

ments between the initial state |g) and the energy nor-

malized eigenstates |efm ) may be written in the

form!316

—1/2

1 dw D » 5)

(eBm|D|g)=4"" Y

with D s, representing dipole matrix elements between
the initial state |g ) and B-normalized energy eigenstates
leBm ) of H ,, which for 0 <& << 1 are normalized so that

eim¢

(x|eBm ) ~N g, (Em)™1/2 or

(|x] «<1) 6
with

V2[B(1—B)]"2(Im|) " 26e(1—B)e(B)

(m=++0)
Nepm = V(14 e ~2mB/k)y=1/2(| 4 o —2m1=B)/ky=1/2
(m=0)

and k=V2e. O(x) is the unit step function with
©(x)=1 for x >0. Thereby, the factors (1+e ~2™8/k)=1/2
and (1+4e 21 7B/k)=12 approximately take into ac-
count effects due to the Coulomb barriers, which are
formed in the cases of 8<0 or B>1 (see Fig. 1) and
which are most important for m =0 states, due to the
lack of the angular momentum barrier.'?

Since the dipole matrix elements D g,, get their dom-
inant contribution from a region of the size of the initial-
ly occupied low-lying bound state |g ), Eq. (6) shows that
D, g, is approximately independent of € and F as long as
le], F <<1. As has been shown by Fano'> and Harmin'®
and as outlined in the Appendix, these matrix elements
may be related to spherical hydrogenic dipole matrix ele-
ments {elm |D|g ).

The quantities 4 ~! and [(1/7)(dw /3B)]'/? contain
information about the motion of the excited electron in
the £ and 7 coordinate at large distances from the nu-
cleus, where the static electric field is comparable to or
larger than the Coulomb field due to the ionic core. The
quantity

_ X 2iN|win,n,)—m/2+8]
A 2 2 e 1 RN
N=0
X —2iNlw(n,n,)—m7/2+8]
+ 3 e v RYN @)
N=1

describes all effects due to the potential barrier associated
with the motion in the 7 coordinate.! For energies

below this potential barrier, w(7,,7,) is the classical ac-
tion between the inner and outer turning points of the po-
tential well and

R=(1+¢ 'mm=122

is the reflection coefficient of the barrier, which involves
the tunnel integral w(m,,7m;). & is an additional phase
shift due to the potential barrier, which tends to zero far
above or below the top of the barrier. Above the top of
the potential barrier, w(7,,7;) <0 and R rapidly tends to
zero.?® In particular, for energies above the zero-field
photoionization threshold (e>0), we may therefore
neglect effects due to reflection above the potential bar-
rier and approximately have 4“2~ 1.

With the help of the Poisson summation formula,?! the
sum over the quantum number n, in Eq. (2) can be con-
verted to a sum over integrals involving factors of the
form e?Mw(®Bm)  The corresponding energy integrals
can then be performed with the help of contour integra-
tion in the complex-¢ plane, thereby using the fact that
for |e|— oo we have ¢™®F™)_, 0 in the upper half of the
complex-¢ plane. Setting 4 =1 and using Egs. (5) and
(A5) we thus obtain, in the case 0<e<<1, for the self-
energy the expression

2( )Iz(sl_z - - wd e2iM[w(£,B,m)—7r/2]
e mi 3 zfﬁo B

M=1m
X|Degpl? (8)
with B°=B(n‘ =0, ¢,m) and
39=8w—il/2 .

The laser-induced quadratic Stark shift of state |g),
8w, due to the laser field and the ionization rate

r=273 [{elm|D|g)|?
ILm

are independent of € and F and characterize one-photon
ionization from the initial state |g ) in the absence of a
static electric field. The residual terms in Eq. (8) may be
attributed to repeated returns of the excited electron to
the reaction zone, where the atom-laser interaction is lo-
calized and the dipole matrix elements D g, get their
dominant contribution. With the mth return to the reac-
tion zone, the wave function of the excited electron has
accumulated a phase 2M[w(g,B,m)—m/2], which is
determined by the classical action associated with the
motion in the § coordinate w(e,3,m ) and the additional
phase shifts of 7 /2, due to reflection at the classical turn-
ing points. [With each turning point there is associated a
Morse index of 1 (Ref. 22).] e?w(&B.mM s 3 rapidly oscil-
lating function of B with monotonically increasing phase.
Furthermore, according to Eq. (6) the dipole matrix ele-
ments D g, rapidly tend to zero as a function of 8 out-
side the interval (0,1). As long as dw /33 >>1, the dom-
inant contributions to these integrals come from small re-
gions around the end points f=0,1 with the contribution
at =0 negligible, since, for ¢>0, dw /9B tends to
infinity at =0. Evaluating the S integrals asymptotical-
ly with the help of partial integration,?’ we thus find
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(e)=3"~mnb,, , 3 e?Mlwehmi=r2{sinh[MA(e)]} ' |D%,, |*V2elpe, , 9)

M=1

with the dipole interaction matrix element

D% im—0= 3 (—D"V2I+1(elm=0|D|g)
1=0

between the initially occupied state |g ) and a hydrogenic
energy eigenstate, which describes asymptotically an elec-
tron moving in the direction of the applied electric field

The asymptotic expression (9) demonstrates the fact
that only electrons, which leave the atom in the direction
of the static electric field, i.e., with a=0 or equivalently
=1, are able to return again to the reaction zone and
thus contribute to the self-energy. Such an electron emis-
sion can only take place, if the excited electron hydrogen-
ic states have a zero-angular-momentum component in
the direction of the electric field. Otherwise, the proba-
bility of finding the excited electron along the electric
field axis is negligibly small.

For £ >0 the modification of the self-energy due to the
static electric field is completely determined by quantities
characterizing the classical periodic motion of the excited
electron in the direction of the electric field, namely, the
classical action

w(e,B=1,m=0)=F " '2B71[2CK (x)+ 2eBE(k)]
(10)
with
B=2(>+4F)"?/F ,
C=[(e*+4F)'?/F[(?+4F)'*—¢] ,
k=[(e?+4F)'?+e]/[2(e*+4F)'?] ,
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FIG. 2. Lyapunov exponent of the isolated classical periodic
orbit.

and the Lyapunov exponent

Ms):\/ze%“i =Vv2e2B V2FTV2K(k) (1)
B=1

of the isolated periodic orbit. K(«) and E (k) are com-
plete elliptic integrals of the first and second kind as
defined in Ref. 24. Figure 2 shows the Lyapunov ex-
ponent, which only depends on the scaled variable
e/V'F. Whereas the classical trajectory is stable at ¢ =0,
i.e., A(e=0)=0, it becomes unstable for ¢>0 with a
monotonically increasing Lyapunov exponent A(e). For
e/V'F <<1, this Lyapunov exponent has recently also
been evaluated by Wintgen by numerical integration of
the classical equations of motion. !

According to Eq. (9) in the limit F <<1 the dominant
contributions to the self-energy Z(¢) are of the order of
O(F'%). Any modifications of this result due to the
linear Stark effect of the initial atomic state |g ) give rise
to corrections, which are at most of the order of O(F),
and are therefore negligible in the limit F <<1.

III. RESULTS AND DISCUSSION

In this section we calculate the time evolution of the
initial-state probability amplitude a,(¢) on the basis of
Eqgs. (1) and (8) for the case of laser excitation of continu-
um states slightly above the zero-field photoionization
threshold, i.e., 0<e <<1. With the help of a multiple
scattering representation of a, (1), we derive an asymptot-
ic expression valid in the limit F <<1, which explicitly
shows how the classical properties of the periodic motion
of the excited electron in the direction of the applied elec-
tric field manifest themselves in the dynamics of the
laser-excitation process.

In order to obtain the time evolution of the initial-state
probability amplitude a,(z), we have to invert the La-
place transform a,(z) as given in Eq. (1). Traditionally
this is achieved with the help of contour integration in
the complex z plane, which yields the initial-state-
probability amplitude as a sum over contributions due to
all dressed states of the strongly coupled atom-laser sys-
tem. Here, however, it is much more convenient to ex-
press the initial-state-probability amplitude as a sum over
contributions which may be attributed to the repeated re-
turns of the excited electron to the reaction zone, where
the atom-laser interaction is localized. This multiple-
scattering expansion? is obtained from Egs. (1) and (8) by
rewriting them in the form



LASER EXCITATION OF STARK-INDUCED RESONANCES 1325

I&

a(e—w)=i(e—E+il[/2) ' +2mi(e—e+il/2)"" 3

oo 0 *
fﬁ? dB, fﬁ(z) AB2D pym, ¥ pym, gy,

21[w(£,62,m2)—7r/2]
e

my,m,

D ile—E+il/2)7",

(12)
with
_ © 2ifw(e,By,my)—7/2]
Yﬁl’"lﬁz’"z__B(Bl—ﬁz)sml’m2+2fﬁg dB}YB!'"IBJ'"Je e Bymy.Bym, (13)
ms
and the scattering matrix
xﬁlml,ﬂsz=8(B1—Bz)zsml,mz—2m'DEﬁl,,,l(s—§+ir/2)“1):32,,,2 . (14)

The second term of Eq. (14) thereby describes laser-assisted electron-ion scattering between the excited electronic
channels (By,m ) and (B,,m,) inside the reaction zone. €=¢, +w+06w is the mean excited energy. Inverting the La-
place transform we obtain from Eq. (12).

ag(t)=e"‘(E_“’)'e"r’/z-%foc dee e ON(g—g+i[/2)7!

HlwteBymy)=m/2] i(e—E+iT/2)"' . (15)

eBym,

X 2 fﬂ‘lj B, fﬁg dﬁzD:Blm, Yg,m gym, €

my,m,
Solving Eq. (13) iteratively with the starting value
0 -
YBImlﬁzmz - _B(B] —ﬁZ)Sml,mz

and inserting the resulting series in Eq. (15), we obtain the multiple-scattering representation of the initial-state-
probability amplitude.

As for the asymptotic expression for the self energy given in Eq. (9), the integrals over the separation parameter 3 in
the multiple-scattering expansion can be performed by partial integration as long as dw /3B« F ~'/*>>1 [see Eq. (11)].
Then f3 values around B=1 dominate. Furthermore, if we are exciting an energy region above the zero-field photoion-
ization threshold, which is sufficiently small in that 8%w /BSZIB:1F2 << 1 we may approximate the energy integration in

Eq. (15) by linearizing the phase of the exponential functions to obtain

g

+e ~—i(€~w)t2,n_l-8m,0|DgBm 12 ‘/—E%/F)em‘[w(E,B,m )—m/2]

X {sinh[2A(€)]} “'xye 2O(x,)|g=y+27i| DO

with x,, =(T'/2)(t —MT_) and the classical orbit time of
the excited electron T, =23w /d¢e|z_ .

Equation (16) shows that as soon as the exciting laser
pulse becomes so intense that the depletion time of the in-
itial state 1/I" is short in comparison with the classical
orbit time of the excited electron T, the various contri-
butions to the initial-state-probability amplitude are well
separated in time. Then the laser-excitation process is
not only localized in space by the finite size of the reac-
tion zone but also in time so as to generate a radially lo-
calized electronic wave packet.? This wave packet leaves
the reaction zone in a time of the order of 1/I", corre-
sponding to the exponential decay of the initial-state-
probability amplitude evident from the first term of Eq.
(16). In the energy region slightly above the zero-field
photoionization threshold, which we are studying here,
only a small fraction of the excited electronic wave pack-

EBm |

a.(t)=e {E-@a=T1/2 4, ~i(€_w)127ri8m,0ng/3m IZ(\/2_€/F){sinh[A(€)]} “leAlwEBmI=T 2y o _"'G(xl =1

AV/28/T){sinh[ME)]} "2ixde 20(x,)lpm;+ - - (16)

2

—

et is able to return later to the reaction zone. This re-
turning part is due to electron emission within a small an-
gular region around the direction of the applied static
electric field, which corresponds to a small range of B
values of the order of AB=~(dw /8[3’),}:1] around B=1.
The combined Coulomb field of the ionic core and the ap-
plied static electric field cause the residual part of the
wave packet to leave the atomic core without returning.
At time t =T, the returning part of the generated wave
packet reenters the reaction zone, where the atom-laser
interaction is localized. There the electron may recom-
bine with the ionic core, increasing the initial-state prob-
ability as evident from the second term of Eq. (16). Alter-
natively, the returning part may also leave the ionic core
region again with part of it scattered in all directions by
the action of the laser field inside the reaction zone. This
laser-assisted electron-ion scattering process is character-
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ized by the second term of the scattering matrix
Xp,m,.Bym, of Eq. (14). The part of the wave packet which
returns again to the reaction zone at ¢t ~2T_ consists of
two contributions: one originates from the unscattered
part and is described by the third term of Eq. (16) and the
other one is due to the scattered part and is represented
by the fourth term. Aslong as (dw /9f)z—,>> 1, the con-
tribution due to the scattered part is negligible in com-
parison with the unscattered part so that laser-assisted
electron-ion scattering inside the reaction zone may be

J

g

G. ALBER

40

neglected. Physically this occurs because the periodic
motion of the excited electron in the direction of the stat-
ic electric field with a=0 is represented by an isolated
and unstable classical trajectory. Electron emission at
slightly different angles a0, which, e.g., is due to any
scattering process inside the reaction zone, no longer
leads to a periodic motion and therefore cannot manifest
itself in the initial-state-probability amplitude. Neglect-
ing laser-assisted electron-ion scattering inside the reac-
tion zone, we thus finally find from Eq. (16)

o0

a (l‘)zeﬂﬁ*‘“”e7r'/2+e_i(E_‘”)’ZﬂiS,n_oiDgBmlz(\/Z_E/I") 2 {Sinh[Mk(g)]}*leZiAM[w(E,B‘m)*rr/Z]xMe*XMe(xM)IBZI .

M=1

The general expression for the multiple-scattering repre-
sentation of a,(z) as given in Eq. (15) and the approxi-
mate relation of Eq. (17) are the main results of this pa-
per.

Figure 3 shows the time evolution of the initial-state
probability according to Eq. (17) in the case of laser exci-
tation of hydrogenic states with €=5X 1073, 1=1, m=0,
and F=10"%. The total ionization rate is [=7X10"°so
that 1/ < T_ and the laser-excitation process is localized
in space and time. This implies the generation of an elec-
tronic wave packet. Typically, for t <T, |ag(t)|2 decays

exponentially and for t> T, Iag(t)|2 increases at multi-

(17)

the excited periodic orbit, which is characterized by the
Lyapunov exponent A(e) of Eq. (11), the amplitudes of
successive recombination peaks decrease rapidly.
According to Eq. (17) in the case of a laser pulse with T’
longer than 7', the various contributions associated with
different returns of the excited electron to the reaction
zone overlap in time so that the initial-state probability
reflects the quantum-mechanical interference between the
corresponding probability amplitudes. An extreme situa-
tion arises in the case of excitation by a long and weak
laser pulse with T_<<T <<1/I". Then essentially all
terms of Eq. (17) contribute to Iag(T)I2 and the laser-

ples of the classical orbit time because of stimulated  excitation process can be described by a time-
recombination. However, due to the large instability of  independent rate
J
R=-L(1—|a,(T)))=T |1+278,, D |2‘/2’S s sin[2M[w(E,Bm)—m/2]} , (18)
dT PEml T e sinh[ MA(E)] B=1
which in general is related to the imaginary part of the 2.000
self energy of Eq. (2) by I
>
R=—-2Im[3(®)]=273 3 KeBm|DIg)|*. (19 £
m n; =0 % i
s |
An expression equivalent to Eq. (18) has been derived a
by Bogomolny?’ for the time-independent rate describing R
laser excitation by a weak and long pulse. =
Figure 4 compares the energy dependence of the |
asymptotic excitation rate R of Eq. (18) (dashed line) with 0.000 J ‘ ¢ |
the exact rate of Eq. (19) (solid line). In Eq. (19) the re- o 1 2 3
quired parabolic dipole matrix elements have been evalu- time

ated with the help of Egs. (5), (6), (A3), and (A4). The de-
viations of the result of Eq. (18) from the exact Eq. (19)
occur because at a field strength of F=10"° the asymp-
totic parameter (0w /9f)g=; « F7V% is still not

FIG. 3. Initial-state probability Iag(t)‘2 as a function of time
(in units of the classical orbit time T,) for F=10"%,§=5X10"?,
Fr=7xX10"%a.u.
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FIG. 4. Energy dependence of the asymptotic excitation rate
R /T of Eq. (19) (solid line) and of the corresponding asymptotic
expression of Eq. (18) (dashed line) for F=10"° a.u.

sufficiently large to allow asymptotic evaluation of the f3
integrals in Eq. (15).

Figure 5 shows the energy dependence of the excitation
rate R for F=108 (solid line). For this value of the field
strength the results of Egs. (18) and (19) are indistinguish-
able. Close to the zero-field photoionization threshold,
the periodic orbit is relatively stable, i.e., A(E) <<1. The
line shape of the excitation rate resembles a characteristic
saw-tooth,!»2® which corresponds to the limit E—0 in
Eq. (18) and is shown by the dashed line in Fig. 5. With
increasing values of €, the periodic orbit eventually be-
comes sufficiently unstable so that A(€)>1 and the line
shape becomes more and more sinusoidal as the number
of significant terms in Eq. (18) becomes smaller and
smaller.

Figure 6 shows the initial-state probability |a,(7)|* as
a function of the mean excited energy for a weak and
short laser pulse with 1/ >>2T__,>T>T,_,. Accord-
ing to Eq. (17) then, only the contribution associated with
the first return of the excited electron to the reaction
zone contributes to |ag(T)|2 for sufficiently small values
of € With increasing values of the mean excited energy
g, the classical orbit time T eventually becomes larger
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FIG. 5. Energy dependence of the asymptotic excitation rate
R /T of Eq. (18) (solid line) and of the limiting saw-tooth-like
line shape (dashed line) for F=10"*% a.u.
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FIG. 6. Initial-state probability |a,(7)|* as a function of the
mean excited energy for F=10"% T=2X10° (T,_,=1.7X10°

a.u.

than the pulse duration T and the excited electron is no
longer able to return to the reaction zone during the in-
teraction with the laser pulse. In this case, the laser-
excitation process is localized in space and time and an
electronic wave packet is generated. As a consequence,
the initial-state probability is completely determined by
the direct ionization process, which takes place before the
excited wave packet has left the reaction zone, and be-
comes independent of €.

IV. CONCLUSION

We have studied one-photon excitation of hydrogen in
the presence of a static electric field in the energy region
slightly above the zero-field photoionization threshold. It
has been shown that, in the case of laser polarization
parallel to the applied static electric field, excitation by
an intense or short laser pulse leads to the generation of
an electronic wave packet, part of which performs a
periodic motion which is controlled by the external elec-
tric field and the Coulomb field of the ionic core. With
the help of a multiple-scattering representation, we have
derived an analytical expression for the time dependence
of the initial-state-probability amplitude, which is asymp-
totically valid in the limit of a weak static electric field,
i.e., F<<1. This expression shows how the characteris-
tics of the corresponding classical periodic orbit manifest
themselves in the dynamics of the laser-excitation pro-
cess.

In the case of excitation by an intense laser pulse, we
have shown that with each return to the reaction zone,
where the atom-laser interaction is localized, the generat-
ed electronic wave packet may recombine with the ionic
core to increase the initial-state probability. The height
of the recombination peaks reveals how unstable the ex-
cited periodic orbit is. We have also studied laser excita-
tion by pulses weak in the sense that the depletion time of
the initially occupied bound state is larger than the classi-
cal orbit time of the excited electron. As long as the clas-
sical orbit time of the excited electron is small in compar-
ison with the pulse duration, the frequency dependence of
the excitation probability shows the characteristic behav-
ior, which has been found previously, namely, a change
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from a saw-tooth shape close to threshold to a sinusoidal
shape sufficiently far above threshold. However, smaller
pulse durations may change this type of behavior.
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APPENDIX

In this Appendix we summarize some relations be-
tween hydrogenic energy eigenstates in parabolic and
spherical coordinates, which are used in Sec. II.

The energy normalized parabolic eigenstates |e8m )y
of hydrogen are related to the corresponding spherical
energy eigenstates |elm ) by'’

leBmy= 3 (mlju,,ju_Delm) , (A1)

= ?ml
with the Wigner coefficients {(/m |ju,ju_). In particu-
lar, for € <0 we have j=(v—1)/2, u, =(mvA,)/2, and
v=(—2¢e)" "2 For £>0 the angular momentum j and
its component p, become complex. Following Fano'’
and Harmin'® this relation may be rewritten in the form

|

agr=(=D"Va +2(|m |21+ D] +m)—m

o NH
eBmdy= 3 ag—L"lelm) , (A2)
I1=Im| Nelm

with
(x|lelm ) ~N_, r'Y™6,6),

(x|efm Yy~NI, (&q)m!2 eim—¢

H effm \/277_

The coefficients a ' now characterize the pure geome-

trical aspect of the transformation between parabolic and

spherical coordinates and are independent of the normali-

zation of the wave functions.

Inside the Coulomb zone, which is characterized by

r << F 17216 where the external electric field is negligible

in comparison with the Coulomb potential, the energy

eigenstates |efm ) of H , can be related to spherical hy-
drogenic energy eigenstates |e/lm ) by

(]x] <<1) .

o

I N
(x[eBm)= 3 aj Neﬁm (xlelm) (|x| <«<F~'?)
elm

I1=|m|

(A3)

with Nem =2'*1/(21+1).. Since the dipole matrix ele-
ments {efm|D|g) are dominated by this spatial region,
the same relation holds between (eBm|D|g) and the
spherical dipole matrix elements (e/m|D|g). An expli-
cit expression for the coefficients a g’ is given in Ref. 16
which reduces in the limit 3, (1—/8)>>[V 2¢ to

Using Eq. (A4) together with the relation for N4, as given in Eq. (6), we find

o

f;dﬁlbeﬁm|2= S elm|Dlg)?

I1=|m]|

as long as /30=[J’(n1 =0,g,m) <0.

1—|m| I—Iml| | [1+|m] ‘
13 D Y Gl DLl B | Ba=p)TimTE
k=0
(A4)
(A5)
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