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We study one-photon excitation of atomic Rydberg- and continuum states close to a 
photoionization threshold in the presence of a weak static external magnetic field. A 
semiclassical closed orbit representation for the atomic transition amplitudes is derived, 
which exhibits the connection between quantum mechanics and the classical dynamics 
of the excited electron whose motion under the combined influence of the Coulomb 
field of the ionic core and the magnetic field is chaotic. 

PACS 32.80.Rm; 32.60. +i  

I. Introduction 

Recently a theory of laser excitation of atomic Ryd- 
berg- and continuum states close to a photoionization 
threshold has been developed, which is based on the 
observation, that for optical frequencies and suffi- 
ciently small laser intensities, / < l A x  1017 W/cm 2, 
the atom-laser interaction is localized in a finite reac- 

t ion zone [1, 2]. Typically, this region extends a few 
Bohr radii around the atomic nucleus and is therefore 
small in comparison with the extent of highly excited 
Rydberg states. If, in addition, the excitation process 
is also localized in time, because the characteristic 
excitation time (i.e. the pulse duration or the depletion 
time of the initial state) is short in comparison with 
the classical orbit times of the excited Rydberg states, 
many Rydberg- and continuum states are coherently 
exicted and a radial electronic wave packet is generat- 
ed [3, 4]. So far, applications of this theory have con- 
centrated on cases, where outside the reaction zone 
the atomic Hamiltonian is separable [2, 4, 5]. 

The application of semiclassical methods and the 
corresponding relations between quantum- and clas- 
sical mechanics in Hamiltonian systems, which are 
not separable or integrable, has been an active field 
of research for many years [6-11]. In particular, 
Gutzwiller's periodic orbit formula [7], in which, 
within a semiclassical framework, the density of states 
of a nonseparable system is expressed as a sum of 

contributions of all periodic orbits, clearly exhibits 
these connections. In a pioneering work recently Du 
and Delos [12] and Bogomolny [13] have applied 
similar semiclassical methods to the description of 
photoabsorption processes in hydrogen. Motivated 
by recent experiments [14, 15], they investigated laser 
excitation of hydrogen by a long and weak pulse in 
the presence of a static magnetic field in the energy 
region close to the photoionization threshold [16]. 
Analogous to Gutzwiller's periodic orbit formula, 
they represented the (energy averaged) photoabsorp- 
tion cross section in the classically chaotic regime as 
a sum of contributions of all isolated, unstable closed 
orbits which start from the nucleus. 

In this paper we extend our previous work and 
study one-photon excitation of an atom close to the 
photoionization threshold in the presence of a weak 
external static magentic field. In particular, we are 
interested in excitation by a short or intense laser 
pulse, so that the excitation process cannot be de- 
scribed by a time independent photoabsorption cross 
section and an electronic wave packet is generated. 
Using ideas of Quantum Defect Theory (QDT), in 
the case of a weak external magnetic field we can 
distinguish between three characteristic spatial re- 
gions as far as the dynamics of the excited electron 
is concerned [17], namely the react ion zone, the sur- 
rounding Coulomb zone, where the dynamics of the 
excited electron is dominantly determined by the 
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Coulomb force of the ionic core and the asymptotic 
zone, where the external field is at least as important 
as the Coulomb field of the ionic core. By using quan- 
tum-defect-type matching procedures and solving the 
problem in the nonseparable asymptotic zone semi- 
classically, we derive analytical expressions for var- 
ious transition amplitudes. They can be represented 
as a sum of contributions of all isolated, unstable 
closed orbits of the excited electron which start from 
the reaction zone. Within this framework we discuss 
nonhydrogenic core effects as well as effects originat- 
ing from depletion of the initially occupied atomic 
state. 

In Sect. II we derive the basic equations describing 
one-photon excitation of Rydberg- and continuum 
states close to threshold from an energetically low- 
lying bound state. Thereby the quantity of central 
importance is the self-energy of the initial state, for 
which we derive a closed orbit representation, which 
is asymptotically valid in the limit of weak external 
magnetic fields. With the help of this result in Sect. III 
we discuss coherent laser excitation of Rydberg- and 
continuum states by a short or intense laser pulse. 

2. Basic equations 

In this section we derive a semiclassical closed-orbit 
representation for the atomic self-energy, which de- 
scribes one-photon excitation of atomic Rydberg- and 
continuum states close to a photoionization thresh- 
old. 

We consider one-photon excitation of atomic 
Rydberg states from an energetically low lying bound 
state [g > of energy %, which is assumed to be nonde- 
generate. The atom is placed in a weak, external mag- 
netic field of field strength B, whose influence on the 
bound state Ig > is negligible. However, at large dis- 
tances from the nucleus the magnetic field eventually 
starts to dominate the Coulomb field of the ionic core 
and thus significantly influences Rydberg and contin- 
uum states close to the photoionization threshold 
[173. 

Assuming an instantaneous turn-on of the laser 
pulse at t = 0 and neglecting photon absorption from 
the excited states, in the dipole- and rotating wave 
approximation the initial state probability amplitude 
at time t is given by (in Hartree atomic units) [2] 

~ + i O  

ag(t) = 1/2re ~ dse-i~*- °')tag(e) (1) 
- ~ + i O  

with ag (e) = i [ 5 -  eg -  co + 6 cop- S (~)] - 1 The resonant 
part of the self-energy of the initial state Ig > is given 
by 

Z(~)= <g[ I t . e * E * [ ~ - - H n + i O ] - t l t . e g l g >  (2) 

and 6 cop = [g[2 co-2 is the Stark-shift (ponderomotive 
shift [18]) of the excited states. The parameters e, 
09 and g are the polarization, frequency and field 
strength of the exciting laser pulse, respectively. The 
atomic dipole operator is tt and Ha is the atomic 
Hamiltonian, which describes the dynamics of the ex- 
cited electron in the external field. For simplicity, we 
restrict our discussion to an atom with only one va- 
lence electron. The Hamittonian of the excited elec- 
tron is given by 

H~(x, 7)= - 1/2Ax+ V(x, 7)+ Vpar(x) (3) 

with V(x, 7)= Vc(x)+ Vaia(X ). Due to the finite extent 
of the ionic core, the effective electrostatic potential 
V~(x) deviates from a pure - 1 / r  Coulomb potential 
within a typical distance of a few Bohr radii around 
the atomic nucleus [19], The influence of the external 
magnetic field on the dynamics is characterized by 

he0 L 
the dimensionless parameter 7 = 2Ry = B/4.70 

x i 0 -  5 T -  1 with the Larmor frequency coL. The para- 
and diamagnetic interaction terms are Vpar(X)= --TL~ 
and Vdi,(x)= 1/272 r 2 sin 2 0, respectively. The z-com- 
ponent of the angular momentum is Lz with the z-axis 
parallel to the homogeneous magnetic field. 

The main problem in calculating various laser ex- 
citation amplitudes is the evaluation of the serf-energy 
S(e), which is related to the solution, F~(x), of the 
inhomogeneous Schr6dinger equation [1, 20] 

[5 + i 0 -  H a  (x, 7)] F~(x) = x .  e < x l g > (4) 

by 

S(e)= Igl2Sd3x < glx > x-e* F~(x). (5) 

As Ig > is an energetically low lying bound state, the 
serf-energy is determined by the behaviour of F~(x) 
within a distance of a few Bohr radii around the atom- 
ic nucleus. 

The solution of (4) is facilitated by noting that 
there are three characteristic spatial regimes as far 
as the dynamics of the excited electron is concerned. 
The atom-laser interaction is localized in a region 
of the size of the initial bound state Ig > and therefore 
typically extends a distance rc of the order of a few 
Bohr radii around the atomic nucleus [1]. This reac- 
tion zone is surrounded by a Coulomb zone (rc<r 

a = 7-z/a), in which the Coulomb field of the ionic 
core and the paramagnetic interaction term Vpar(X ) 
are dominant. In the surrounding asymptotic zone (r > 
a) the diamagnetic interaction term Vdi,(x) is no lon- 
ger negligible and significantly modifies the dynamics 
of the excited electron [17]. This physical distinction 
allows to solve the Schr6dinger equation by a step- 



wise procedure. In a first step (4) may be solved in 
each region separately and in a second step these local 
solutions are matched together. 

In the asymptotic part of the Coulomb zone 
(1 ~ r ~a)  the general solution of (4), which is regular 
for r--* 0, is given by [2] 

1 
F~ (x) ~ ~ YF' (0, (o) ~- [ 1/2 ~ ]  (r) ~ ,  m + °~..t (r) ~¢t,. (e)] 

l,m 

----- E (m) (m) eim [-I~out(r, O)q-Oin (r, 0)3 (6) 
m 

with em=a+Tm. The transition amplitudes N'~m 
=2i~[~,  ) determine a particular solution of the 
inhomogeneous equation (4) with the complex pho- 
toionization dipole matrix elements ~[,7) = 
-~d3xl/r~m~(r) Y["*(0, qo )x . e<xIg> .  As these di- 
pole matrix elements get their dominant contribution 
from a region of a few Bohr radii around the atomic 
nucleus they are approximately energy- and field-in- 
dependent close to threshold. ~,,~(r) is an energy nor- 
malized solution of the homogeneous part of (4). 
Semiclassically, its asymptotic form is given by 

of~., (r) ~ 1/2 [ ~ a  ) (r) -- ~b~2t ) Z,] (1 ~ r) (7) 

with 

q~{o +- ), (r)  = ] / - - 2 - -  e +- it~.,,,o. <, ~) -(~ + llZ) ,~ + ~/41 (g) 
. . . . .  I/ rcp~ 

where w~m(r<, r) is the radial classical action of zero 
angular momentum, p, and I are the radial- and angu- 
lar momenta of the electron. The scattering matrix 
elements Z~ describe elastic scattering of the valence 
electron inside the core region due to the presence 
of the residual core electrons. This scattering process 
can only affect low angular momentum states of the 
excited electron with l < lo, which have a sufficiently 
large overlap with the ionic core. Therefore we may 
write 

Z, = 1 +fi (9) 

with f i = 0  for t>  Io. The wavefunction (") 
represents the outgoing or incoming part of ~ ( x ) ,  
which is proportional to ~++>(r) or ~Td(r) respective- 
ly. In the absence of an external field the Coulomb 
zone extends to infinity and according to standard 
procedures of Q D T  the complex amplitudes ~ , , ( 0  
are determined by the requirement that F+(x) has to 
remain finite for r--+ oo [2, 19]. According to (5) the 
self-energy is related to these amplitudes by 

z(~) = z (~ + I~! ~ ~ ~[~+) ~ ( ~ )  (lO) 
Im 
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with the recombination dipole matrix elements 
N/m+)=~dax<glx>x-e  * Y+m(O, q~) 1~robot(r) and 
Z m =  6 e)-iF/2. The shift 6 co is a quadratic Stark shift 
contribution and F=2~z ~,1~[,2 ) g[2 is the total ioni- 

Im 

zation rate of ]g > according to Fermi's Golden rule. 
The quantity Z "(*) characterizes the atom-laser interac- 
tion inside the finite reaction zone and is therefore 
approximately independent of energy and magnetic 
field strength as long as lel, 7<1 [23. 

For the evaluation of the self-energy of (10) we 
have to determine the unknown amplitudes ~,,(~). 
For  this purpose we solve the Schr6dinger equation 
(4) in the asymptotic zone and match this solution 
with F+(x) in the asymptotic part of the Coulomb zone. 
Taking advantage of the cylindrical symmetry of the 
problem and introducing scaled coordinates i = x/a 
and energies ~=~/72/3, we therefore have to solve the 
boundary value problem 

[ - ~  1/2As~ + V(:~, ? =  1 ) -  gm] O(')(f, 0 ) : 0  (11) 

in the region f >  r o with the boundary condition 

tP{m)(f, 0)l~=~o = tP},~)(aro, 0) (") -4- @out (a to, 0), 

(1/a ~ ro ~ 1) (1.2) 

where 2 = ~ / ~ = 7  -1/3 is a measure for the order of 
magnitude of the classical actions involved in the 
problem. In the case of a weak magnetic field, i.e. 
7 ~ 1, and for energies close to threshold, i.e. [g[ < 1, 
we may solve (11) asymptotically in the limit 2>> 1 
with semiclassical methods as developed by Maslov 
and Fedoriuk [21]. 

In order to construct this asymptotic solution we 
start from the outgoing part of the boundary condi- 
tion • eo~t'1'(")~v, 0), which involves a rapidly oscillating 
radial function and a slowly varying function of 0. 
The function (m) ~#out(r, 0) therefore determines the 
one-dimensional Lagrangian manifold g'~ 

={(f, 00, /%, P0l K= ro, 0<00<re ,  ~r=l/2(gm+l/r+), 
/~0=0} [21]. Propagating /J~') through phase space 
along the Hamiltonian flow generated by the Hamil- 
tonian 

H (') = 1/2 [p~ + po2/72 + m 2 2-  2/(f2 sin 2 0)] - 1/f 

+ 1/272 sin 2 0 (13) 

we obtain the two-dimensional Lagrangian manifold 
I~'~ = {ff(~, 0o), 0(~, 0o), j%(~, 0o), /%(~, 0o))10 < 0o < ~, 
0 < z  < T}. Here, T is some large time of interest, 
which is determined e.g. by the pulse duration of the 
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laser. The asymptotic solution of (11) at point i is 
then given by [21] 

¢(m)(f, 0 ) = ~  ]/J(O, Oo;)/IJ(~, 0o~)1 
J 

• ei(~s~"(~>°°~)-m~fg,'~/z)~f/om~(aro, 0o~). (14) 

The summation index j represents a sum over all pro- 
jections of/3~ ) onto the two-dimensional configura- 
tion space at point (f, 0) and 

~ . d f  
S~:)(zj, Ooj)=~o dz[p~ ~ +  (i5) 

is the classical action along trajectory j, which starts 
at point (ro, 0o~) with ~=0 and reaches point (~, 0) 
with r=vj .  In (14) we have used the fact that the 
term involving the z-component of the angular mo- 
mentum m in the Hamittonian of (13) is negligible 
unless the electron is reflected at the z-axis and 0 
becomes small. Therefore, in the limit 2>> t we have 
approximately S (")t.c. Oo.i) = S~ (z~, 0o) + m ~c vj 2-  
with v~ beeing the number of reflections at the z-axis 
and S~m(~cj, 0oj)- S~ = o)(z~, 0o~). The amplitudes of the 
asymptotic wave function are determined by the pro- 
jection of the Lagrangian manifold/_J~) onto configu- 
ration space at point (~, 0), i.e. 

J(z~'0°~)= d'cAd0oadq~d2Ad~Ad2 (~,Oo~) 

d~/x d0 (~,Oo~)" = f2 sin 0 d • / ,  d 0o (16) 

#j is the Morse index of trajectory j for f >  r0 [21]. 
The unknown amplitudes ~,~(e) of (10) are deter- 

mined by the requirement that ~(~)(~, 0) has to fulfil 
the boundary condition of (12), which implies 

sCt,,(e) = 2 rc i dO sin 0 Y["(0, 0)*(-  1) ~ e i2w',.(v<"ar°) 
0 

• 2 l /J(°,  Oo~)/Is(~j, Ooj)l 
J 

. e i [  z s ~ , ~  (~j ,  0os)  - m ~ v~ - ( ~  + 1) ~ / 2  ] 

• ~ ~/~(Oo~, o)(-  ly' [~ ,~ - z , ,  ~,,~(~)] (17) 

with ~(zj, 0oi)= ro, ~:~ > 0. Equation (17) may be solved 
iteratively with the starting value ,~(m°)(e)=0. In the 
limit 2>>I, e~XS~,, ~'°°~ I~=~o is a rapidly oscillating 
function of 0 in comparison with the rest of the inte- 
grand and ~(~)(e) may be evaluated with the method 
of stationary phase. The dominant contributions 

•Ssr n thereby arise from final angles 0j with 8-~--I(~o,Oj) 

=P0(ro, 0j) = 0. Noting that -frO- t(,o,0~)> 0 for 
i6~(ro, 0 ) < 0  we find 

s~z(~)(~) = i(2~) a/2 Z ]//sin Oj sin 0-~ Y["(Oj, 0 ) * ( -  1) t 
J 

(2 [M(~) 1 D- t/2 e itzsj(~m)- m~j- ("i + 2)'/2 + ~/41 

"~ Yvm(oo~, 0)(-- 1)vNv,,. 
l '  

(18) 

The sum now includes all closed trajectories j of the 
Hamiltonian H (°) of (13) starting at f=0.  S~(em) are 
their classical actions. The symplectic monodromy 
matrix M u) is evaluated at f =  ro and characterizes 
the separation of trajectories in the neighbourhood 
of the closed orbit j, i.e. 

AO~ ( Mll M12~(AO°] ( 1 9 )  

~o]=\M2~ M221 \ADofl" 

Taking into account (9), the second iterate s~l(m2)(e) 
consists of two parts: The first term corresponds to 
the replacement Z ~ 1 on the r.h.s, of (17) and is of 
the order of 0(2-~/z). The second term involves the 
scattering amplitudes f and describes effects due to 
elastic scattering of the excited electron inside the core 
region. Typicallyft # 0 only for low values of the angu- 
lar momentum l, so that this contribution to 0~)(~) 
is of the order of 0(2 -~) and may therefore be ne- 
glected in the limit 2 >> 1. Thus, neglecting electron-ion 
scattering inside the core region also in all higher 
iterations, we finally find 

~m(s)= - - E  ~(2g) 5/2 1//~in Oj sin 0o~ Y[~(Oj, 0)*(-- 1) z 
j nj 

.(2 Mu~ sinh(njuJ) ) -1/2 
sinh uj 

• e i[nJ(. tsJ (~m) -- m ~ v~ - (u~ + 2 )  1tI2 ) + ~ I 4 ]  

. E ~"(Ooj, o ) ( -  1¢' ~},=~ (20) 
g 

with n~ indicating the number of returns of the j-th 
trajectory to the reaction zone. In the derivation 
of eqn. (20) we have used the relation 

Y["(O~, O) Y~m(02,0)* ~ 1/(27r) 6(0~ -02)/sin 0~, 
I 

which is exact for m = 0 and approximately also valid 
for small values of m. Furthermore, we have taken 
into account that the required matrix element of the 
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Table 1. Emission- (return-)angle 0o(0), action S, orbit time T, monodromy matrix element Mza, stability exponent u, Morse index/~ +2, 
number of crossings of z-axis v and multiplicities of closed orbits with T< 4.5 ~/7 at ~ = 0 as evaluated by Wintgen [-23] 

Orbit 0o 0 S Tx 7 ME 1 u /~ + 2 v mult 

11 90.0 90.0 5.782 2.094 2.816 1.317 3 0 1 
I2 53.832 53.832 8.580 4.935 10.969 2.892 5 1 2 
13 42.810 42.810 10.213 8.111 24.360 3.743 7 2 2 
I4 37.311 37.311 11.428 11.288 39.272 4.239 9 3 2 
Ilbo 63.649 116.351 12.537 6.739 31.637 3.897 7 2 2 
11a~ 81.677 128.246 14.233 7.427 56.826 4.291 8 1 2 
IIa~ 51.754 98.323 14.233 7.427 56.826 4.291 8 1 2 
Ilbl 46.679 112.505 14.513 9.568 67.944 4.756 9 3 2 
llbx 67.495 133.321 14.513 9.568 67.944 4.756 9 3 2 
llaz 79.114 138.459 15.777 10.878 107.925 4.937 10 2 2 
IIa2 41.541 100.886 15.777 10.878 107.925 4.937 10 2 2 
Ilb2 39.602 110.506 15.884 12.521 97.671 5.144 11 4 2 
lib 2 69.494 140.398 15.884 12.521 97.671 5.144 11 4 2 
III1 60.270 60.270 16.158 9.066 108.283 5.144 9 3 2 

nith i terate of the symplect ic  mat r ix  M (s) is given 
by  [13] 

sinh (nj us) 
I(MnS)(~)l - a~(s) I (21) 

. . . .  21 sinh uj 

The  stabili ty exponen t  u s > 0  of the uns table  closed 
orbits  are related to the eigenvalues 2} 1'2) of  M (j) by  
12}Lz)[=e -+"s. Inser t ing (20) into (10), we obta in  for 
the self-energy 

S (e) = S (~) --[g[2 (2 ~)5/2 ~ ~ ] / s in  0 s sin 00s 
m j n j  

-(2 M~)I sinh(ns us) ] -1/2  

• e ~ t . ~ ( ~ s ~ ( , ~ ) - , .  ~ ~ - ( . j  + 2 ) ~ / 2 ) +  ~/41 d + (Os) dZ. (0o s) 
(22) 

with the r ecombina t ion -  and  pho to ion iza t ion  dipole 
mat r ix  elements  d + ( 0 j ) = ~  Ylm(0j, 0 ) * ( -  1) z ~}+) and  

l 

d.~ (0oj)=Y ~(0os,  0)(-  1) ' ~}.~). 
l 

Equa t ion  (22) is the ma in  result  of this section• 
I t  expresses the a tomic  self-energy as a sum of contr i-  
but ions  of  all uns table  closed orbits  of the classical 
H a m i l t o n i a n  H ~°) of  (13), which start  f rom f =  0. These 
trajectories have  a l ready been studied numer ica l ly  in 
great  detail  [12, 22]. Accord ing  to (22), the following 
classical proper t ies  of  orbi t  j are impor t an t :  The  emis- 
sion- and re turn  angles 0os and  0j, the classical act ion 
S j, the m o n o d r o m y  mat r ix  element  M~)~ together  with 
the stabili ty exponen t  u s and  the Morse  i n d e x / ~ j +  2 
together  with the n u m b e r  of  crossings of  the z-axis 
vj. Table  1 summar izes  these pa rame te r s  for closed 
orbits  with T < 4 . 5  ~z/7 at  e = 0  [23]• The  der ivat ion 
of (22) shows, tha t  in the limit 2 >> 1 nonhydrogen ic  

core effects are only  i m p o r t a n t  in the initial exci ta t ion 
and  final r ecombina t ion  process,  which are charac ter -  
ized by the dipole mat r ix  elements  d,~ (0os) and  d + (0s). 
The  imaginary  par t  of  (22) is p ropor t i ona l  to the pho-  
t oabso rp t i on  cross section• In part icular ,  in the hyd-  
rogenic limit it reduces to the result which has pre- 
viously been derived by  B o g o m o l n y  [13]. 

3. Results and discussion 

Using  the a sympto t i c  expression for the a tomic  self- 
energy as given in (22), we s tudy coherent  o n e - p h o t o n  
exci tat ion of a tomic  Rydberg -  and  con t inuum-s ta tes  
close to threshold  by a shor t  or  intense laser pulse 
in the presence of a static magnet ic  field. 

3.1. Short pulse 

We assume tha t  the exciting laser pulse of  field 
s t rength gl(t), f requency col and  polar iza t ion  e~ is 
so short,  tha t  the initial s tate Ig > is not  significantly 
depleted and  m a n y  Rydbe rg -  and c o n t i n u u m  states 
are coherent ly  excited• This implies tha t  the influence 
of the laser field on the a t o m  m a y  be t aken  into ac- 
count  per turba t ive ly  and  an electronic wave packet  
is generated,  which is well localized with respect  to 
its radial  coord ina te  in c o m p a r i s o n  with the typical  
extent  of  highly excited Rydbe rg  states [3, 4]. The  
t ime evolut ion of this electronic wave  packe t  can be 
p robed  e.g. by a second t ime delayed shor t  laser pulse 
of  field s t rength ~2(t), f requency (D 2 and  po la r iza t ion  
e2, which induces a t ransi t ion to some other  energeti-  
cally low lying b o u n d  state [ f  > with energy el [4]. 
The  probabi l i ty  of  finding the a t o m  in state [ f  > is 
large, whenever  a pa r t  of the initially genera ted  wave 
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packet returns again to the reaction zone, where the 
stimulated recombination process takes place. This 
way we are able to probe the motion of the electronic 
wave packet as it propagates under the combined in- 
fluence of the Coulomb force of the positively charged 
ionic core and the external static magnetic field. 

Assuming Gaussian envelopes for both laser 
pulses with pulse duration z, i.e. 

gi(t) = gi exp [ -  1/(2zz)(t-  ti)2], 

i--1, 2, we find for the final state probability long 
after the interaction with both laser pulses in second 
order perturbation theory 

[<flO>~lZ=ll/(2ni)  ~ dee -i~°~-t~)Sfg(e) 
-o9  

• ~ (~- ~ -  o~0 2~* (~- ~s- ~:)1 ~ ( 2 3 )  

with the Fourier-transforms of the laser pulses g~(A) 

= ~ dtgi( t)e ~(t-t'). In (23) we have assumed that 
--O9 

the mean time delay between both laser pulses, tz - t~, 
is large in comparison with their durations. The gen- 
eralized self energy 

Z f g ( ~ ) =  < f l x . e * [ e - - H a + i O - I  - I  x 'e l  Ig> (24) 

may be evaluated asymptotically in the limit 2>> 1 
with the methods described in section II. In particu- 
lar, if both pulses are not too short so that dispersion 
of the excited wave packet is negligible, i.e. 

n~ 7- 5/3 a2 S~ le (t/z~) ~ i, we may linearize the classical 

action around the mean excited energy g=eg+COl. 
Using (22) and assuming that the second laser is tuned 
on resonance, i.e. g= ~s+ coz, we obtain for the final 
state probability 

I< f lO >~I 2 = IZ Z (2n) a/2 d+ (0j) t/sin 0j sin 0oj 
in j~tli 

sinh uj 

• e i [nJ(asj  (e,~) - m ~ v~ - (u~ + 2) ~ /2)  + ~/41 d ~  ( 0 0  j )  

• T g  1 °2A2" ~,~"1"3/2 ~,~- (t2 - t l  -njT(J))2/(4g2)nrn Ig=g2 (25) 

with the classical orbit time T3J)=7-x--J[~ of 
orbit j. 

Figures 1 show the final state probability as a 
function of the time delay between both laser pulses 
in the case of laser excitation of p-states of sodium 
at the (zero-field) photoionization threshold. For sim- 

plicity we assume that ~1 =~2 and that both laser 
pulses are linearly polarized in the same direction. 
0po~ is the angle between the laser polarization and 
the magnetic field axis. The initial and final state are 
assumed to be the same s-state. The magnetic field 
strength is B= 0.47 T. As the pulse duration z is less 
than the classical orbit time of the fastest closed orbit 
11 (see Table 1), the laser excitation process is not 
only localized in space but also in time and an elec- 
tronic wave packet is generated, which is well local- 
ized with respect to the extension of the classically 
accessible region. As soon as this wave packet enters 
the asymptotic zone it is broken up and performs 
a complicated motion under the combined influence 
of the Coulomb field of the positively charged ionic 
core and the magnetic field. The maxima in Fig. 1 
correspond to returns of various fractions of the ini- 
tially prepared wave packet to the reaction zone, 
where the laser-atom interaction is localized and 
where the second probe pulse may induce a transition 
to the final state I f  >,  whenever the (mean) time delay 
between both pulses, t2 - tl, is a multiple of the classi- 
cal orbit time of one of the closed orbits. The form 
of the recombination peaks reflects the laser pulse 
profiles and their heights are determined by the 
monodromy-matrix elements ~,~za~/r(1?[ of these orbits. 
In the evaluation of Fig. 1 we have included the closed 
orbits, whose parameters are summarized in Table 1 
for e---0. Their form and the corresponding recombi- 
nation peaks are schematically shown in Fig. 1 (see 
also [22, 23]). The photoionization- and recombina- 
tion dipole matrix elements of sodium are related to 
the total ionization rate of the initial s-state, F, by 

,~ i2~e(1/2sin2(Opot) ([ml=l) 
2 n.@~,, +) @t~,~) I~12/~=e ~cos2(Opol ) (m=0) 

with the nonhydrogenic core effects characterized by 
the approximately energy- and field independent 
quantum defect c~=0.854 of the excited p-states [19]. 
However, according to (25) this quantum defect gives 
only rise to a global phase factor, which does not 
affect the final state probability. 

In Fig. l a the polarization of both laser pulses 
is perpendicular to the direction of the applied mag- 
netic field• All recombination peaks can be attributed 
to repeated returns of the generated wave packet to 
the reaction zone. The first two recombination peaks 
correspond e.g. to the first and second return of the 
Edmonds-Garton-Tomkins orbit I~ [14, 22] and the 
third peak is due to the first return of orbit I a. In 
Fig. 1 b the angle between the laser polarization and 
the magnetic field axis is 45 ° . The angular distribution 
of the initially prepared wave packet is now different, 
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which leads to a change of the relative importance 
of the various recombination peaks. The most signifi- 
cant difference to Fig. 1 a is the disappearance of the 
recombination peaks associated with the first returns 
of orbits Iz and II b2. This is due to almost complete 
destructive interference between the m=0-  and 
m = _ 1-contributions of the corresponding transition 
amplitudes. In Fig. 1 c the laser polarization is parallel 
to the magnetic field and the angular distribution of 
the generated wave packet is concentrated around 
the magnetic field axis. As there is no electron emis- 
sion perpendicular to the magnetic field axis, the con- 
tribution of the orbit 11 is missing. 

3.2. Intense laser pulse 

If the exciting laser pulse is so intense that the initial 
state l g >  is depleted, the excitation process can no 
longer be described perturbatively. However, under 
the conditions discussed in Sect. II the time evolution 
of the initial state probability amplitude can be ob- 
tained from (1), (2) and (22). Expanding ag(e) to lowest 
order in the asymptotic parameter 2 >> 1, we obtain 

ag(e) = i ( ~ -  ~ + i f ~ 2 ) -  1 _ i(e - ~ + i F ~ 2 ) -  11gl2 
-(2~) s/2 • ~, ( s i n  0~ sin 0oj 

m j n j  

2 m~)l sinh(nj u j) ) 1/2 

sinh u) / -  
p 

• e i [ n j ( 2 S j ( e m )  - m ~ v j -  (l~j + 2)~t/2) + ~/4] 

• d + (0j) d,~ (0oj)(e- g+ iF~2)-1 + 0 (2-1) (26) 

with the mean excited energy g = eg + 09 + 6 o9-  6 ogp. 
The neglected terms of order 0(2 -1 ) describe effects 
of laser assisted electron-ion scattering inside the reac- 
tion zone. In the limit 2 >> 1 these terms are expected 
to be small and are neglected in the following. Fur- 
thermore, if the exciting laser pulse is not too intense, 

92 S 
i.e. Y- 5/3 ]eF 2 ~ 1, the energy integrals in (1), may ~g2 

Fig. 1 a--c. Raman- t rans t i t ion  probabil i ty Ra = I < f I~ > tl 2 / (F  T) 2 as 
a function of A z = ( t 2 -  t l ) / ( ~ / 7 )  for V = 10-6, z = 0.1 ~/V and different 
polarization angles 0po~. The form of the closed orbits is schemati- 
cally shown on top of the corresponding recombinat ion peaks. The 
straight lines indicate the direction of the magnetic field, a: 0po~ 
=90° ;  b: 0po1=45°; c: Opol=O ° 
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be evaluated by linearizing the classical action Si(e,, ) 
around the mean excited energy ~. So we finally find 

ag(t) = e -i(e-~°)t-rt/2 + i(2n) 5/2 

• Z Z [[g[2 d + (Oj) d j, (Ooj)]/(F/2) ~/sin 0j sin Ooj 
m in: 

"()~ ~1~)1 s i n h ( n j  u]) ) -  I/2 

sinh uj 
, e i [ n j ( 2 S j  (era) -- mn v,i-- (l~j + 2 ) ~ / 2 )  + ~ / 4 ]  

• e -  i(e- ~ e -  r/2 ( t -  n~ r '~)  ( F /2 ) ( t  - -  n j  ~ )  

• O( t -n j  T~)) I~ =e. (27) 

The various terms in the sum over nj in (27) may 
be attributed to repeated returns of the excited elec- 
tron back to the reaction zone along orbit j. With 
each return the laser pulse may induce a transition 
to the initial state thus increasing a~(t). In particular, 
if the exciting laser pulse is intense, so that the deple- 
tion time of the initial state, l/F, is short in compari- 
son with the shortest classical orbit time ~ ) ,  the var- 
ious contributions of (27) are separated in time• Physi- 
cally this reflects the fact that the intense laser pulse 
generates an electronic wave packet, parts of which 
return again to the reaction zone well separated in 
time. 

Figure 2 shows the initial state probability as a 
function of the interaction time. An intense laser pulse 
excites p-states of sodium around g= 0 with quantum 
defect c~ = 0•854 from an energetically low lying s-state. 
The depletion time of the initial state, 1IF, is shorter 
than the classical orbit time of the Edmonds-Garton- 
Tomkins orbit I~ so that a Rydberg wave packet is 
generated. For times t ~ Te (~) the wave packet has not 

yet moved away very far from the reaction zone, 
where it has been generated, and therefore behaves 
like in an ionization process. This manifests itself in 
an exponential decay of the initial state probability 
with rate F [-2]. Eventually parts of this wave packet 
return again to the reaction zone thereby increasing 
the initial state probability by stimulated recombina- 
tion. Apart from the exponential decay, Fig. 2 looks 
very similar to Fig. I. The only major difference is 
the form of the recombination peaks, which reflects 
the pulse form of the exciting laser pulse. 

If the pulse duration is long in comparison with 
some of the classical orbit times, many terms in the 
sum over jj  in (27) contribute. In particular, if the 
initial state is not significantly depleted, i.e. F r ~ l ,  
the excitation process may be characterized by the 
time independent rate 

R = d ( 1  --la~(t)l 2) I, =~ = - 2Ira [Z(~] 

= r { t  + 2(2n) 5/2 Z Z k s/~n 0j sin 00j 
m jnj 

.(2 M~) sinh(njuJ) ) -l/a 
sinh uj 

• Im [e i["~°'sj(~) -,,~ v~- (,j + 2)rr/2) + ~/41 

• d + (0j) d,2 (0oj)] Ig l2 / r } ,=g .  (28) 

The first term of (28) gives the "direct" contribu- 
tion to the excitation rate and the remaining terms 
represent contributions of successive returns of the 
excited electron to the reaction zone. The quantum 
mechanical interference between the corresponding 
excitation amplitudes manifests itself in the energy 
dependence of R, which is particularly sensitive to 
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phase shifts arising from quantum defects of the ex- 
cited Rydberg- and continuum states. 

Figure 3 shows the excitation rate R as a function 
of the mean excited energy. P-states of sodium with 
m = 1 are excited from an energetically low lying s- 
state by right circularly polarized light. The magnetic 
field strength is B = 4.7 mT (7 = 10- s). The pulse dura- 
tion is z =4.4 n/7, so that only terms with nj T~ ) < z 
contribute to the sum of(28). The dashed curve shows 
the contribution of the Edmonds-Garton-Tomkins 
orbit including contributions of multiple returns, 
which give rise to an asymmetric lineshape. In partic- 
ular, from (28) we notice that the elastic electronion 
scattering inside the core region, which is character- 
ized by the quantum defect of the excited p-channel, 
leads to a shift of the lineshapes in comparison with 
the corresponding hydrogenic results. 

Conclusion 

We have studied laser excitation of an atom close 
to a photoionization threshold in the presence of a 
weak static magnetic field. Within a semiclassical 
framework we have discussed the time dependent as- 
pects of the laser excitation process and effects orig- 
inating from a nonhydrogenic core. With the help 
of a semiclassical closed-orbit formula we have ex- 
pressed the transition amplitudes as a sum of contri- 
butions arising from all unstable closed orbits of the 
excited electron, which start from the reaction zone. 
This representation exhibits the connections between 
quantum mechanics and the complicated classical dy- 
namics of the excited electron. It has been shown that 
the generation of an electronic wave packet by a short 

or intense laser pulse offers the possibility of probing 
the time evolution of the excited electron under the 
combined influence of the Coulomb field of the ionic 
core and the static magnetic field. 

Stimulating discussions with E.B. Bogomolny, D. Wintgen and 
P. Zotler are gratefully acknowledged. 
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