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I. INTRODUCTION 

Rydberg states play an important role as intermediate or final states 
in laser induced processes studied in atoms and molecules. A typical one 
photon excitation process of Rydberg states I~n> from a low-lying atomic 

state Ig> 
the laser 

frequencies 

is characterized by three parameters: The spectral width of 
pulse ..:II.>L "" to/Tp whose pulse durat.ion is 'rp ' t.he Rabi 

an associated with the transitions Ig> -+ I~~> and the 

level spacing between adjacent Rydberg states 3/2 ..:II.> "" 2Ry/to(-~ /Ry) . 
n n 

Depending on the relative magnitudes of these parameters we can 
distinguish between three dynamical ca.c;es: (1) The simplest situation 
arises, if we excite an isolated Rydberg state well below threshold 
(..:II.> > S2 , ..:II.>L): This regime is well understood on the basis of a two-(or . n n 
few-) level approximation, which treats the coupling between the resonant 
atomic states nonpertutbatively and takes into account the influence of 
all other nonresonant states perturbatively. On the cont.rary, cases (2) 
and (3), which correspond to excitation by. a short (..:II.>L) ..:II.>n' an) or 

intense (S2n> ..:II.>n' ..:II.>L) laser pulse and arise if we are exciting 

sufficiently close to a Rydberg threshold, are not so well understood. In 
the extreme situation of excitation directly at a Rydberg threshold both 
(infinitely) many Rydberg states and part of the adjoining electron 
continuum are excited and traditional theoretical approaches based on a 

few-level approximationl for the bound-bound transitions Ig> -+ I~n> or 

the pole-approximation 1 as far as the bound-free transitions 
are concerned break down. 

Recently we have developed a theory2, which is capable of describing 
laser excitation close to a Rydberg threshold. It is based on the 
observation that the photon absorption process Ig> -+ I~n> takes place 

in a region around the atomic nucleus (= reaction zone), which is small in 
comparison with the extent of highly excited Rydberg states. This finite 
range of the radiative coupling allows us to· use concepts of quantum 

defect theory ("QDT)3 and to derive closed analytical expressions for 
transition amplitudes, whose time dependence can conveniently be studied 
with the help of a multiple scattering expansion. This expansion expresses 
these amplitudes as an infinite sum over contributions due to all 
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classical paths of the excited Rydberg electron (Kepler orbits). In 
particular, for excitation close to a Rydberg threshold, Le. cases (2) 
and (3), it leads directly to the physical picture of a (radial) Rydberg 
wave packet, which is generated inside the reaction zone and moves in the 
Coulomb potential of the ionic core. 

The main purpose of this paper is to discuss laser excitation close to 
a Rydberg threshold. Therefore in section two we study generation and 
detection of Rydberg wave packets by short laser pulses and in section 
three we deal with the excitation of a Rydberg series by an intense laser 
pulse (generalized Rabi problem). 

2. SHORT LASER PULSES 

According to our introductory remarks a short laser pulse implies 
.d.>L> an so that the initial atomic state Ig> is undepleted and the 

excitation of the Rydberg electron can be determined by time dependent 
perturbation theory in the laser field. For times t long after the 
interaction with the laser pulse the state of the atom is therefore 

approximately given by 11I'(t» = e-ie.gt Ig> + 11I'g(t» with the state of 

the excited Rydberg electron described by 

+00 

11I'g(t» = iJdt' e-iHA(t-t') d·t £(t') 

-
-ii""t' 

e (2.1) 

HA is the atomic Hamiltonian, d the dipole operator, t and £(t) the 

polarization and slowly varying electric field amplitude of the laser 

field and i"" = e. + w is the mean excited energy (We use Hartree atomic g 
units). From Equ. (2.1) we iDDDediately notice that the laser excitation 
process affects only a spatial region of the size of Ig>. This region 
(= reaction zone) is small in comparison with the extent of the highly 
excited Rydberg states so that the laser excitation process is localized 
in space. . 

A short laser pulse also implies .d.>L>.d.>n so that many Rydberg 

states are excited. In the time domain this condition states that the 
interaction time between atom and laser field Tp is small in comparison 

with the mean classical orbit time. T- = 2n(-2i"")-3/2 of the excited 
e. 

electron in the Coulomb potential of the ionic core. The laser excitation 
process is therefore also localized in time. Both conditions, namely 
localization of the photon absorption process in space and time imply that 

a (radial) Rydberg wave packet is generated4, 5. Note that due to dipole 
selection rules only a few angular momentum eigenstates are excited so 
that only the radial coordinate of the Rydberg electron is localized. 

The center of this wave packet performs a periodic motion in the 
Coulomb potential of the ionic core with period Ti""' If we are exciting a 

multi-electron atom with one valence electron, for example, the 
electrostatic potential due to the ionic core deviates from a pure 
lip-Coulomb form inside the core region, which is essentially. identical 
with the small reaction zone where the initial laser excitation process 
has taken place. Therefore, whenever the excited wave packet returns to 
the .reaction zone it experiences an additional electron-ion scattering due 
to this modified core potential, which can be characterized by a 
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i2na scattering matrix element >( = e Due to the fact that inside the 
reaction zone there is no difference between energy normalized Rydberg­
and continuum states close to the Rydberg threshold (~=O) >( is a slowly 
varying function of energy across threshold. Above threshold (~>O) na is 
a continuum phase shift and below (~< 0) a is the quantum defect of the 
excited Rydberg series. This physical picture suggests that I?g(t» can 

be represented by a multiple scattering expansion as a sum over 
contributions due to all these subsequent (below threshold) electron-ion 
scattering events, which take place inside the reaction zone and are 
characterized by a scattering matrix >( (compare with Equ.(3.6». 

The periodic motion of the generated wave packet can be probed by any 
process which is also localized in space and time. One example is a 
two-photon Raman process with two time delayed short laser pulses. In such 
a process a radial electronic wave packet is generated by a first short 
laser pulse, which excites an atom from an initial state Ig>. A second 
short laser pulse then deexcites this wave packet after a time delay 
At »Tp by inducing a transition to some low-lying bound state If>. As 

excitation and deexcitation (= stimulated recombination) both take place 
inside a small reaction zone around the at.omic nucleus we expect a large 
Raman transition probability whenever At ~ mT~. This can be seen in Fig.l 

where the Raman transition probability is plotted in arbitrary units as a 
function of At/T~ in the case of excitation of a single Rydberg series. 

Each peak at At ~ mT~ is associated with a stimulated recombination of 

the elect.ron--ion complex. The broadening of the recombination peaks 
reflects the spreading of the generated wave packet. After sufficiently 
long times (here At 2. ST;:) the wave packet has spread out over the whole 

extent of its orbit so that cont.ribut.ions due to subsequent returns to the 
reaction zone overlap in time thus giving rise to a complicated 
interference pattern. 

Additional int.erest.ing effects can arise in multi-electron atoms. 
Figs.2 show the Raman transition probability in the case of excitation of 
two Rydberg series, which are coupled by configuration interaction 
(coupling parameter FO.02) and converge t.o different ionization 

..,.5 
thresholds (~1::;4.7.l0' , ~2=0 a.u.). The first short laser pulse now 

generates a Rydberg wave packet in each channel with mean classical orbit 
times Tl and T2 (here 2T2~3Tl)' In this case we expect a large Raman 

transition probability whenever At ~ mI T1+m2T2 . Recombination peaks 

associated with values ml > 0 and , m2> 0 are possible, because with each 

return to the inner turning point of its orbit the wave packet can be 
scattered int.o the other channel by an inelastic (below threshold) 
electron-ion collision inside the reaction zone, which can be 
characterized by an off-diagonal matrix element. of the approximately 
energy independent scattering matrix >(. The transition amplitude 
associated with a particular recombination peak (ml ,m2) in Figs.2 is 

proportional to excitation- and deexcitation dipole matrix elements 
multiplied with scattering matrix elements of >(. So the amplitude of the 

peak (1,1), for example, is proportional to 
(-) (-) (-) (-) 

(~2f >(21~lg + ~lf >(12~2g ) 
and its value therefore strongly depends on the relative phases of the 

various photoionization dipole matrix elements 

apparent 
~(-)/~-) = 
IgGg 

peak (l, 1) 

from Figs. 2a and 2b. 
~(--) I~(-) = 1 in Fig.2b ~(-) /~(-) 
If 2f 19 2g 

has dissapeared due to destructive 

(-) (-) 
~ig '~if i=I,2. This is 

Whereas in Fig.2a 

= -~(-)/~(-) = 1 and the 
If 2f 

interferences between the 

99 



two contributing quantum paths. Eventually both generated wave packets 
overlap (here at 4t~ 2T2~ 3Tl ) and interfere quantum mechanically. 

Whether this interference is constructive (Fig.2b) or destructive (Fig.2a) 
also strongly depends on the relative phases of the photoionization dipole 
matrix elements. 

6t/Tr 

Fig.l: Raman transition probability as a function of time delay 4t/Te:-

with Tp=lOps, Te:- =94ps. 

a b 
0.5 

0.5 15 
41/'2 

Fig.2a: Raman transition probability 

as a function of 4t/T2 with 

Tp =Tp =14ps, T2=1.5.Tl =107ps, 
1 2 

$(-)/~(-) = $(-)/~(-) = 1 
Ig 2g If 2f . 

100 

o. 

0.5 

Fig.2b: Same as Fig.2a but with 
$(-)/~(-) -~(-)/$(-) = 1. 

Ig 2g If 2f 



3. INTENSE LASER PULSES 

We consider excitation of a Rydberg series with quantum defect a 
from a low-lying atomic state Ig> by an intense laser pulse, which is 
turned on instantaneously at t=O and whose electric field envelope e(t) is 
constant for t>O. In particular we are interested in situations where the 
initial state Ig> is depleted and many Rydberg states (and possibly part 
of the adjoining electron continuum) are excited so that the traditiopal 
two-Cor few-) level approximation is not applicable. The state of the atom 
at time t is approximately given by IF(t»= Ig>ag(t) + IF(t» with IF(t» 

characterizing the time evolution of the excited electron. Taking the 
Laplace transform of IF(t» and neglecting ionization from the excited 
Rydberg states to higher electron continua we find in the dipole- and 
rotating wave approximation the system of equations 

(3.1) 

+oo+iO 

with IF(t» = 1/2n JdZ e- izt IF(Z». In the language of QDT these 

-oo+iO 
equations describe the coupling between a bound channel Ig> and a free 

3 channel II"(z+lo) > . According to Equs. (3.1) the Laplace transform ag(z) 

is given by 

a (z) = i [ Z - ~ - I (Z+lo) ]-1 
g g 

with the resonant part of the self energy 

(~ > 0) 
-? 

(~=-1/2lJ ~< 0) 

(3.2a) 

(3.2b) 

'- The final result for I ( ~) can be obtained with the help of QDT methods 

or the Poisson summation formula) 2. 6w is a contribution to the quadratic 

Stark shift of the initial state Ig> and ~ = 2n 1<~ld.t elg>1 2 is the 
ionization rate according to Fermi's Golden rule and characterizes the 
radiative coupling between Ig> and the excited channel. It is important 
to note that both parameters are approximately energy independent across 
the Rydberg threshold (~=O), because inside the reaction zone, where the 
laser excitation process Ig> --+ I~n> takes place and which is of the 

size of the initial state Ig>, there is no difference between energy 
normalized Rydberg- and continuum states close to threshold. This 
reflects the localization of the laser excitation process in space. 

In order to determine the time evolution of ag(t) we have to invert 

the Laplace transform. Traditionally this is done with the help of contour 
integration in the complex z-plane. This approach leads to a dressed state 
representation, which expresses ag(t) as a sum over contributions due to 

all dressed states and a cut contribution from the electron 
2 --2 

continuum(~>O) . The dressed state energies ~n= zn+w =-1/2lJn < 0 are 
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associated with the poles of a (z) at z • From Equs.(3.2) we find in our g n 
- - -2 case the implicit transcendental equation E.n == -1/2 (n - a - J./(E.n» 

for the dressed states so that the influence of the radiative coupling is 
characterized by the intensity dependent quantum defect 

-1 J./(E.) = -lin arctan(~/2 (E. - i) ) (3.3) 

with E. = E.g + W + ~ =-1/2v -2. The appearance of this quantum defect is 

not surprising, because it is well known that mixing of an isolated bound 
state into an electron continuum leads to an additional continuum phase 
shift nJ./(E.). In laser excitation such a phase shift gives rise to 
laser-induced autoionizing-like resonances whereas in the process of 
laser-assisted electron-ion scattering, which is described by the 
scattering matrix 

(3.4) 

6 it manifests itself in a "capture-escape" resonance. Furthermore, 
continuum phase shifts correspond to quantum defects in the bound state 

region3. So we finally find in the dressed state representation2 

with the exponential integral El(x) and the unit step function ST(x). In 

the limit ~« v -3 we are exciting an isolated Rydberg state well below 
threshold and Equ.(3.5) reduces to the two-level result. 

. . -~ 
In the case of an intense laser pulse, however, ~ > IJ and many 

dressed states contribute to Equ.(3.5). In this limit it is more 
convenient to expand ag(z) in terms of the rapidly oscillating function 

ei2nIJ (Note that 2nIJ is just the classical action along a closed Kepler 

orbit of energy E.). This way we obtain the multiple scattering expansion2 

(3.6) 

00 0 2 JdE.e-i(E.-w)t[i(E._~+i~/2)-l~~;)]e2inIJ[~(E.)e2inIJ]m-l 
m=l-

with 
~(-) = 

E.g 

the complex photoionization dipole matrix elements 

-i eina <E.I<t·te Ig>. If ~»v -3 we can evaluate the various 

energy integr:als in equ. (3.6) in the stationary 
the dominant contributions arise from energies 

the stationary phase condition t = TE. (m,t)' 
s 

102 

phase approximation and 
E. (m, t), which fuHfiH s 



In the case of laser excitation close to the photoionization threshold 
by an intense pulse the physical interpretation of Equ.(3.6) is straight 
forward. For times t«T- the stationary phase contributions to Equ.(3.6) 

E. 

are negligible and the initial state probability is exponentially decaying 
with a rate .,. The laser excitation process is therefore not only 
localized in space but also in time, because the characteristic 
interaction time 1/., (5 depletion time of Ig» is short in comparison 
with the mean classi~al orbit time T_ This implies that a radial 

E. 

electronic wave packet is generated. The exponential decay reflects the 
fact that at times t«T- this wave packet has not yet "felt" the outer 

E. 

turning point of its Kepler orbit and therefore behaves like in a true 
ionization process above threshold. For times t~T- the stationary phase 

E. 

contributions associated with m=l,2, ... become important. They describe 
the periodic motion of the excited wave packet in the Coulomb potential of 
the ionic core. In particular, the m-th term is the contribution due to 
the m-th return of this wave packet to the reaction zone, where it can be 
deexcited back to the initial state Ig>. The periodic recombinations of 
the electron-ion complex inside the reaction zone manifest themselves in 

pulsations of lag(t) 12 with period T£". Equ. (3.6) shows that the m-th 

recombination peak centered at t~ mT- does not only contain information 
E. 

about the initial excitation- and final deexcitation process but also 
about the (m-l) intermediate laser-assisted electron-ion scattering 

events inside the reaction zone, which are characterized by ,,(E.) of 
Equ. (3.4). 

Figs.3 show the initial state probability lag(t) 12 as a function of 

tiT£" for 
-6 .,=10 a.u. and different values of £". In Fig.3a l/.,>T- and 

E. 

we observe the typical Rabi oscillations, which are slightly perturbed due 
to the presence of the nonresonant Rydberg states. In Figs.3b and 3c the 
laser excitation process is localized in time, Le. l/.,<T-, and we see 

E. 

the characteristic exponential decay for t«T­
E. 

and the pulsations with 

period T- for t~T-. As soon as the generated Rydberg wave packet has 
E. E. 

spread out over the whole extent of its orbit contributions due to 
successive returns to the reaction zone overlap in time and give rise to a 
complicated interference pattern. In Fig.3c we are exciting so close to 
threshold that this already happens at t~T-. 

E. 

Until now we have neglected photon absorption from Rydberg states to 
higher electron continua. Due to the large extent of highly excited 
Rydberg states it is not obvious that these transitions are also of finite 
range and it is therefore not clear how to include them into our 

treatment. However, it has recently been shown by Giusti-Suzor and Zoller7 
that the range of the radiative coupling PR as far as Rydberg-free or 

free-free transitions are concerned is determined by the frequency w and 
the intensity I of the laser pulse and is roughly given by 

-2/3 -2 17 2 PR<:$ max{w ,.;r·w} (The a.u. of laser intensity is 10=1.4.10 W/cm). 

This implies that for optical frequencies and not too high laser 
intensities photon absorption is of finite range even as far as these kind 
of transitions are concerned. This is an important result, because it 
allows us to include ionization from the excited Rydberg states in a 
straight forward manner into our approach and, more generally, to treat 
configuration interaction and laser coupling in a unified way due to the 
fact that both take place inside a reaction zone, which is small in 
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comparison with the extent of highly excited Rydberg states. All the 
physical processes inside this reaction zone can therefore be 

characterized by a laser-assisted electron-ion scattering matrix J«(e.) , 
which is a slowly varying function of energy across a Rydberg threshold as 
inside the reaction zone there is no difference between energy normalized 
Rydberg- and continuum states close to threshold. With the help of this 
general scattering matrix it is straight forward to derive multiple 
scattering expansions for the time evolution of various transition 
amplitudes and to study the threshold behaviour (compare with Equ.(3.6)). 

Fig.3d shows lag(t) 12 in the case of an additional decay channel of 

the Rydberg states (here due to autoionization with channel coupling 

parameter r=lO-2 and q=20). Whereas in Fig.3c the time averaged "mean" 
initial state probability (dashed curves in Figs.3c and 3d) reaches a non 
zero stationary value in the long time limit reflecting population 
trapping in Ig> the additional decay channel in Fig.3d finally leads to 
complete depletion of the initial state. 

1.00 a 

0 .50 

5 10 

tlTf 

15 20 

Fig.3a: Initial state probability as 

0.03 

0.02 

a function of t/T~ for 

~=lO-6a.u. and ~= -2.l0-4a.u. 

c 

Fig.3c: Same as Fig.3a but with 

~= -4.l0-6a.u. 
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o 2 3 4 

t/Tf 

Fig.3b: Same as Fig.3a but with 

~= -1.25.l0-5a.u. 

0 .02 d 

0.01 

5 

Fig.3d: Same as Fig.3c but with an 

additional decay channel. 
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