Alber et al.

Vol. 5, No. 12/December 1988/J. Opt. Soc. Am. B 2439

One-photon resonant two-photon excitation of Rydberg
series close to threshold

G. Alber and Th. Haslwanter

Institute for Theoretical Physics, University of Innsbruck, Innsbruck, Austria

P. Zoller

Joint Institute for Laboratory Astrophysics, University of Colorado and National Bureau of Standards, Boulder,
Colorado 80309-0440

Received May 23, 1988; accepted July 18, 1988

We study one-photon resonant two-photon excitation of a

utoionizing Rydberg series close to threshold. Analytical

expressions for the time evolution of bound-state amplitudes are derived by adapting ideas from quantum-defect
theory. We discuss in detail the two limiting cases of excitation of Rydberg wave packets and ac-Stark splitting

close to the threshold.

1. INTRODUCTION

In a recent series of papers we developed a general theory of
laser excitation of Rydberg states close to the ionization
threshold.!? Our approach is based on the observation that
the laser interaction with Rydberg electrons can be formu-
lated as a finite-range interaction coupling Coulomb-type
dissociation channels of the atom laser-field system. Physi-
cally this corresponds to the fact that an atom absorbs opti-
cal photons in an interaction volume much smaller than the
typical size of a Rydberg orbit. In particular this permits
ideas from quantum-defect theory”’ to be applied to this
problem, with the specific feature that the interaction of the
laser with the Rydberg series is treated as a whole; this is
opposed to familiar two-level-type theories, which require
each of the infinite number of bound (and continuum) states
to be explicitly included in a calculation. Furthermore,
quantum-defect theory permits an essentially analytical
treatment of these laser interactions.

[n a previous paper we discussed in some detail one-pho-
ton excitation close to a Rydberg threshold by an intense
(long) laser pulse.! One of the central results of that work
was that radial electronic Rydberg wave packets (RWP’s)
are generated whenever the depletion time of the initial
bound state owing to laser-induced transitions to the excited
states is less than the classical orbit time of the excited
Rydberg electron. We emphasize that this is in contrast to
the excitation of RWP’s by short pulses, for which the laser-
pulse duration has to be shorter than the classical orbit time
of the Rydberg electron.*

In the present paper we extend this work to one-photon
resonant two-photon excitation of autoionizing Rydberg
states. We assume that a first laser induces a transition to a
fesonant intermediate state, from which the electrons are
excited by a second laser close to a Rydberg threshold (see
Fig. 1). In particular, we will be interested in two limiting
cases. First, when the time scale of the laser-induced deple-
tion of the bound states is much shorter than the orbit time
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of the Rydberg electron, we again find that RWP’s are gener-
ated. If the two bound states are strongly coupled by the
light so that we have ac-Stark splitting (i.e., there are Rabi
oscillations in the time evolution of the low-lying bound
states), two interfering RWP’s are excited, with different
orbit times corresponding to transitions from the two ac-
Stark split bound states. The second case of interest to be
studied below is ac-Stark splitting of a Rydberg series.?
This occurs when the first laser is weak and the second laser
strongly mixes the (intermediate) resonant state into the
Rydberg series, i.e., the “excited bound state plus one pho-
ton from the second laser” is nearly degenerate and strongly
coupled to a large number of Rydberg levels, which is an
obvious generalization of the familiar ac-Stark splitting be-
tween two resonantly coupled bound states. The structure
of this strongly perturbed Rydberg series can be probed as a
function of the detuning of the weak first laser. In this limit
the time scale of depletion of the ground state is assumed to
be much longer than the orbit time of the Rydberg states.

The paper is organized as follows: In Section 2 we derive a
dressed-state representation and multiple-scattering expan-
sion for the time evolution of the bound-state amplitudes.
In Section 3 we discuss numerical examples of the genera-
tion of RWP’s and ac-Stark splitting.

2. BASIC EQUATIONS

We consider the process of one-photon resonant two-photon
excitation of an autoionizing Rydberg series, as schematical-
ly shown in Fig. 1. A laser of frequency w,, polarization e,
and amplitude &, induces a resonant transition in the atom
from the ground state |g) to the (low-lying) bound state [e).
The energies of these levels are denoted by ¢g and ¢,, respec-
tively (all energies below will be expressed in atomic units).
A second laser with frequency w,, polarization e», and laser
amplitude &5 subsequently excites the atom to autolonizing
states close to threshold. For simplicity, we assume that the
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Fig. 1. Schematic representation of the excitation process.

autoionizing series is described within a two-channel model.?
The thresholds of the first and second channels are denoted
by E; = 0and E; = ¢; > 0, respectively. Thus we have for the
total energy E = E; + ¢; (i = 1, 2), where ¢; is the energy of the
Rydberg electron in channel i. Autoionizing states corre-
spond to Rydberg resonances in the first channel with ener-
gy 0 < ¢ < ¢, which can decay into the second channel.
Following Seaton,® we parameterize the 2 X 2 electron-ion
scattering matrix ys (free—free scattering matrix) above
both thresholds by

X1 = i ;: exp(27ia),

1-r71 .
= 2716
X22 e exp(2mid),

27
L 4t

X12 = Xo1 = explim(a + )], (1)

where 7a and 76 are continuum phase shifts and r is a
measure of the channel mixing. Dipole-interaction matrix
elements for photoionization from the excited state le) to the
first and second channels are denoted by D!, and D!}/,
respectively. These matrix elements are proportional to the
amplitude &,. In general the D) are complex and can be
expressed in terms of real (standing-wave) dipole elements
D, .. and D,, according to?

DEI_e) = —iei""(Dl,e + i\/;nge)/(l +7),
Df;’ = —ie"’"j(D(?‘3 + I'.V/7Df,e)/(1 + 7). (2)

A Fano q parameter is defined as ¢ = —=D,,o/\7Dee. The
interaction matrix element for the bound-bound transition

,,%h‘“
£
T
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is Doy = —(eld - eilg)E1; Qe = 2ID,,l is the corresponding
Rabi frequency.

In our model the atomic wave function can be expanded
according to

V() = lg)ag() +leda (&) + D IF(0)). @)

j=12

The first two terms correspond to excitation of the bound
states |g) and le) (bound channels). The state vectors
IFj(t)) (j = 1, 2) describe the time evolution of the atomic
electrons in the first and second channels (free channels).
In configuration space |F;(t)) is represented by

Fix,t) = d’,‘(Q)Fm(P, t)/p. (4)

Here x denotes the collection of spin-space coordinates of all
atomic electrons, ;(Q) is a channel function that character-
izes the state of the ionic core (including the angular momen-
tum part of the Rydberg electron), and FV'(p, t) is the time-
dependent radial function of the excited Rydberg electron.
In what follows we assume that the channel functions ¢,(Q)
and the bound states lg) and le) are mutually orthogonal.
Inserting the ansatz (3) into the Schrodinger equation for
the many-electron atom in the two laser fields, we find an
equation for the time evolution of the amplitudes a,(t) and
a,(t) and the wave functions F/'(p, t). When the dipole and
rotating-wave approximation are used and when the lasers
are assumed to be turned on instantaneously at ¢t = 0, the
Laplace transform of this equation gives a system of close-
coupling equations? of the form

(e = Hyale) + 0 doDyy (p)Flp, o) = id, (5a)
(e = Hy)F(p, &) + Dyylp)ate) =0, (5b)

with
ale) = [Z*E: o wg)} ®)

and

1
FP(p, e)] o

P = I:F““”(p, )

being the Laplace-transformed amplitudes and radial wave
functions, respectively. The Laplace transformation of,
e.g., ay(t) is defined by

a,(z) = j dteiz‘ag(t) (z=€—w —wy), (8)
0
with similar definitions for the other quantities. The vector

g
J= [0] 9)

in Eq. (5) incorporates the initial condition |[¢(t = 0)) = lg).
The 2 X 2 bound-bound Hamiltonian matrix

S
Hy, = -D - J (10)
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with € = ¢, + w; + wp and ¢ = ¢, + ws, describes the laser-
induced coupling between the bound states |g) and |e). The
2 X 2 free—-free matrix Hamilton operator

¢+ h, M) Vilp)
H, =
e [mem By (o) )

characterizes the atomic dynamics of the electron in the
excited free channels, including configuration interaction.
haY(p) is the radial part of the atomic Hamiltonian in chan-
nel ; J =1, 2), and Via(p) is the electrostatic potential
responsible for the mixing between the channels. Dg(p) is a
(real) 2 X 2 matrix

by 2 [Pst®) D)
o0 =1 D0 Do | (12)

whose matrix elements are defined by

D, =0 (i=1,2),

D, (o) = o j d6*(Qd - e6,(xle)  (i=1,2) (13)

and correspond to the laser-induced coupling between the
bound states |g) and |e) and the free channels; = 1 and i = 2.
We have adopted a matrix notation in Eq. (5) to emphasize
that our results are easily generalized to systems with more
than two bound states and two free channels.

Equation (5b) is a system of close-coupling equations for
the radial wave functions F(p, ¢), which is coupled to Eq. (5a)
for the Laplace-transformed bound-state amplitudes a(e).
It is well known that the non-Coulomb part of the atomic
potentials V;j(p), which reflects the complicated many-elec-
tron interaction in the core region, is restricted to a finite
reaction zone (with a typical size of a few Bohr radii). Out-
side this interaction volume the potential is essentially Cou-
lombic [Vij(p) >~ —=(1/p)6;(p = po)]. In addition, because of
the localization of the bound states, we have D..(p) =~ 0forp
2 pg. This localization of atomic configuration interaction
and laser-induced couplings to a finite reaction zone p < P0
permits quantum-defect theory to be applied to solve Egs.
(5). Following the methods outlined in Ref. 1, we find for
the Laplace-transformed atomic probability amplitudes
that

ale) = [e = Hyy — 2, (e)] 7 lid, (14)
with 2y}, a 2 X 2 self-energy matrix:
e (e, <e)
Zyple) = { 26— 27D [x.. — exp(=2rive)] D)
(0<e<e)

The self-energy matrix above both thresholds (0 < e <e)
is denoted by Z{}). This corresponds to a situation when the
second laser ionizes level le) to the continua in channels 1
and 2. The superscript (s) indicates that it is a smooth
function of energy. Explicitly, =, is given by

0 0
(8) = ,
2:bb [0 Sw — i‘/21‘] (16)
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with 6w a quadratic Stark shift (which can be absorbed in a
renormalized transition frequency) and I' is the total ioniza-
tion rate of level |e):

I=2r z D2, 1mn

j=12

Df;’ (J = 1, 2) is the photoionization dipole matrix element
from le) to the first and second channels defined in Eqgs. (2).
We have

D(;) D(—)
=) € €e
Dy’ = D7 DY ’ (18)
with3
Dg’=j0 dpFi (6, ©'Diy(o), (19)

where F{7)(p, ¢) is the 2 X 2 matrix of linearly independent
(regular) solutions of the homogeneous part of the close-
coupling equation (5b) with boundary conditions appropri-
ate to photoionization [compare Eqgs. (2)]. We emphasize
that 2{%), D}, and xr are approximately energy independent -
across the Rydberg threshold. This is a consequence of the
finite range of the non-Coulomb interactions in Egs. (5).
Below threshold, in the autoionizing region 0 < ¢ < ¢/, the
self-energy is obtained according to Eq. (15) as the sum of a
background term Z{3) (smoothly extrapolated from the ener-
gy region above threshold) and a resonant term, which shows
arapid variation as a function of energy.! The subscript ¢ in
Eq. (15) indicates the restriction of indices to the closed
channels: in the two-channel problem (Fig. 1) we have
D' = (D, D) = (0, D),
Xee = X11 = exp[27i(a + 18)] (tanh 738 = ), (20)
and v, = vy, the effective quantum number in the first chan-
nel [e = ¢, — 1/(2v12)]. Note that the resonant term has poles
at energies corresponding to vy = n — « — i3 (n integer), i.e., «
+ I8 is the complex quantum defect of the autoionizing
Rydberg series. The analytical separation of slowly energy-
dependent quantities from resonant terms in the self-energy
Zub(e) [Eq. (15)] is of central importance for the following
inversion of the Laplace integrals to obtain the time evolu-
tion of the atomic wave function.
The time evolution of the bound-state amplitudes,

1 +o+in ) +
a0 = 5 f de expl—ife — v, = wptlale) (7 —0%),

T J—wtin

(21)

with

_{a(®)
alt) = a,(t)exp(iw,t) '

can be obtained in two alternative but equivalent forms,
namely, in a dressed-state representation and in terms of a
multiple-scattering expansion.

Performing the integration in Eq. (21) with the help of the
residue theorem, we obtain the dressed-state representation
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a(t) = Z exp[—i(E, — w; — wy)t]
d -1
X {a [é - be - Ebb(e_)]}(=? J

n

% 1 j-m-ﬂnd [ ( ) ]
— € exp|—ile — w; — w,)t
27 € tin ! ?

X [f - be == be(e)]‘l 1J

N 1 e,+ind .
o L_im € exp[—i(e — w; — wy)t]
X [6 - be - Ebb(f)]—lie]. (22)

Equation (22) expresses a(t) in terms of a sum over dressed
states of the atom-field system. The dressed energies are
determined by the requirement that

det(Xcc(,) — exp(—i2x5,)] =0, (23)

with &, = ¢, — 1/(27,%) and n labeling the different solutions.
The 2 X 2 matrix ¥ is defined as a scattering matrix of the
electron-ion scattering complex,

%etl€) = xq + 27D [e = Hy, — 217D, (24)

where the second resonant term is due to laser-induced tran-
sitions from the free channels to the bound states |g) and |e).
In Eq. (23) the submatrix % = x1; again refers to the closed
channel 1.

For two channels Eq. (23) can be rewritten in the form

- 1
(E,,—?),:En—e—‘m

+i=v,
1 (g—10)? 1 2
-2 : . —(- Qeg> =0, (25

-
1+ 2
2 “tanw(i, + a)/7 +1i 2
which is a transcendental equation for the dressed-state
energies é,. vz = 27|D,,.[? is the ionization rate of level le) to
the second channel. Close to the threshold, an explicit sum-
mation over many dressed states that contribute in Eq. (22)

becomes impractical. Instead we can expand a(t), using the
results of Ref. 1, into a multiple-scattering series:

1 +o+ip
alt) = z—f de exp[—i(e — w; = wy)t]

T J—a+in
Xile = Hy, = 28] 71

®

+ Z j de exp[—i(e = w; — wy)t]fife — Hyy

- 217! DG lexp(2riv,) [%ec(e)exp(2miv )|

X |Dgile = Hyy, — 2171, (26)
which expresses the atomic probability amplitudes as a sum
over contributions of classical trajectories. m =0, 1,2,...
counts the number of returns of the (classical) electron to
the core region.

The dressed-state representation [Eq. (22)] and the multi-
ple-scattering expansion [Eq. (26)] are the central results of
this paper. Numerical examples and a physical discussion
of Egs. (22) and (26) will be given in Section 3. Specializing
to excitation far above threshold reduces Eq. (22) to results
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first given by Beers and Armstrong® for one-photon resonant
two-photon ionization. When the second laser excites only
a single isolated Rydberg resonance, Eq. (26) simplifies to
equations discussed in Refs. 7 and 8 in the context of strong-
field excitation of autoionizing resonances (for details re-
garding this reduction to an effective three-level system, see
Appendix A).

3. RESULTS AND DISCUSSION

In this section we discuss the dynamics of one-photon reso-
nant two-photon excitation of Rydberg series (Fig. 1) on the
basis of the dressed-state representation [Eq. (22)] and mul-
tiple-scattering expansion [Eq. (26)] for the amplitudes of
the bound states |g) and le). This process is characterized
by the following parameters: Q. and A = w; = (¢, —¢,) =& —
¢, which are the Rabi frequency and detuning for the first
excitation step lg) — le), respectively; T, the total ionization
rate of level |e), which is a measure of laser-induced coupling
between |e) and the Rydberg series, and the corresponding
Fano g parameter; Ae, = (n — a)~3, the level spacing between
adjacent Rydberg states; and « and 7, the quantum defect in
the first channel and the channel mixing parameter, respec-
tively. Depending on the relative values of these parame-
ters, we distinguish between different limiting cases, which
are discussed in what follows.

A. Excitation of Rydberg Wave Packets
Here we study situations below the threshold ¢;, where many
dressed states contribute to the sum in Eq. (22) for |a,(t)[?
and la,(t)[2. In this case a qualitative physical picture of the
dynamics of the excitation process is obtained from the
multiple-scattering expansion.

The non-Hermitian Hamilton matrix Hyy, + =4 has eigen-
values

NI =Y @+ & = 0 & (6 - 2= D)2 + Q2]12 (27)

Its right (left) eigenvectors A;,(B,;)(r = 1,2;j = e, g) are given

by
%,Q %0
A= 2%%eg 2%eg ,
i }\(1) P x(?)
B=A"% (28)
Physically Hy, + Z{}) describes the time evolution of one-
photon resonant two-photon excitation above both thresh-

olds. In terms of these eigenvectors and eigenvalues, the
multiple-scattering expansion of Eq. (26) reads as

a;(t) = Z exp{—i[A” — w, — wy|t}4; B,

r=12

@

* 2l

rr=12m=0""

de exp[—i(e — w; — wy)t]A,,

X PR B,.D\; exp(i27v,)[x,,()exp(2imy,)]™
€ —

N 12 .
X D{;'A,, 0 B, (i=¢3g), (29)

with »; = [2(; — ¢)]7"2. In the present case of interest,
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exp(2wiv,) is a rapidly oscillating function of energy in com-
parison with the rest of the integrand. This assumes that
the imaginary parts of A" (r = 1, 2) [Eq. (27)] (which roughly
characterize the scale of the energy variation of the nonoscil-
lating part of the integrand) are much larger than the level
spacing of the Rydberg states. This corresponds to excita-
tion close to the photoionization threshold. Under these
conditions we can perform the energy integration in Eq. (29)
with the method of stationary phase. The dominant contri-
bution at time ¢ then comes from energies ¢,(m, t), deter-
mined by

t=mT, g (m=12..), (30)

with T, = 27[2(¢; — €)]7%2 the classical orbit time of the
Rydberg electron with energy ¢ in the first channel.

This suggests the following physical picture of the excita-
tion process: The condition that exp(i2x») is a rapidly
oscillating function of energy implies that the initially occu-
pied atomic state |g) is depleted on a time scale that is short
in comparison with the classical orbit times associated with
the significantly excited autoionizing Rydberg states. The
laser-induced excitation process is therefore localized not
only in space (see the discussion in Section 2) but also in
time, so a localized RWP is generated. For times much
shorter than the classical orbit time of significantly excited
Rydberg states, this wave packet has not yet “seen” the
outer turning point of the Coulomb potential due to the ionic
core and therefore behaves as in an ionization process. This
is reflected by the first term in Eq. (29), which gives the
dominant contribution to a;(t) for these times and consists of
a linear combination of exponentially decaying terms that
we would obtain in the case of a one-photon resonant two-
photon ionization process in an energy range above both
thresholds.® Eventually the RWP is reflected at the outer
turning point of its orbit and returns to the ionic core. With
each return either it is deexcited into one of the bound
atomic states by a stimulated recombination process or it
experiences a laser-assisted electron-ion scattering process
and leaves the core region again.

This physical picture of the excitation process close to
threshold manifests itself in the time evolution of the bound-
state probability amplitudes. Figure 2 shows lag(t)l2 as a
function of the interaction time between the atom and the
laser fields in the case of one-photon resonant two-photon
excitation of a Rydberg series of bound states for A = 0 and
different mean excited energies & The Rabi frequency of
the first laser Q,, is assumed to be much larger than T', which
characterizes the strength of the laser-induced transition
between le) and the bound Rydberg states. In this case we
find from Eq. (27) that

R (31)
which reflects the ac-Stark splitting associated with the
strongly coupled transition |g) —le). InFig. 2(a) the deple-
tion time 1/T of the initially occupied state |g) is comparable
with the classical orbit time of the significantly excited
states T:. The excitation process is therefore not well local-
ized in time, and the time dependence of |ag(t)|2 is rather
complicated. In Fig. 2(b) we are exciting Rydberg states
closer to the Rydberg threshold so that 1/T « T:. We notice
the characteristic time dependence, which reflects the gen-
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Fig. 2. Ground-state probability as a function of time (in units of
T:) in the case of excitation of a Rydberg series of bound states for
Qeg=4X1078T=7TX10"7,A=0,a =0,and (a) ¢ = —1.5 X 1075, (b)
§=—8X1076 (c)é=—-2X% 1075,

eration of a RWP. For times ¢t < T, la,(t)[? exhibits expo-
nentially decaying Rabi oscillations, which is typical for one-
photon resonant two-photon ionization. Because IQegl »> T,
two RWP’s with energies ¢ = ¢ + 1,Q,, are generated by the
excitation process [see Eq. (31)]. At time ¢ ~ Tz—l/zneg the
faster wave packet has returned to the core region, giving
rise to an increase of la,(t)I2, which is due to stimulated
recombination of the disintegrated electron-ion complex.
For the parameters chosen in Fig. 2(b), we have Tz+1/23¢‘ ~
2T;_1/29,g, so that the faster wave packet overlaps with the
slower wave packet in the core region at t =~ 2T;_ 1/20,,-- This
manifests itself in quantum-mechanical interferences be-
tween the recombination amplitudes, which determine
Iag(t)lz-
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In Fig. 2(c) we are exciting Rydberg states so close to
threshold that Ter120,, » Ti-1120,, Correspondingly, be-
fore the slow RWP has significantly moved away from the
reaction zone the fast RWP has already had enough time to
return to the core region many times.. The recombination
peaks in Fig. 2(c) are due therefore only to successive returns
of the fast wave packet. We also notice small interference
effects, which are due to the overlap between both wave
packets inside the reaction zone.

We emphasize that the above discussion rests on the as-
sumption of rectangular laser pulse envelopes. When the
first laser is turned on adiabatically, only a single dressed
state of the bound-bound transition is populated, and only
one wave packet is generated.

B. Ac-Stark Splitting of a Rydberg Series

If we are exciting Rydberg states sufficiently far below the
Rydberg threshold, only a few dressed states contribute to
the atomic transition amplitudes, which are therefore most
conveniently expressed in terms of the dressed-state
representation [see Eq. (22)]. In Appendix A we show that
in the limit where r <« 1 and where max{|A|, Qegy T, Qe?/T) <
A, only the autoionizing state with energy ¢, = ¢, — 1/2(n —
a)~? is dominantly excited, and the dressed-state represen-
tation reduces to the results that were previously obtained in
Refs. 7and 8. In particular, these studies show that by using
aweak first laser pulse and by varying its frequency over the
atomic transition |g) — |e), we can probe the dynamics of an
isolated autoionizing resonance, which is strongly coupled to
the bound atomic state |e) by our intense second laser field.
In this case quantum-mechanical inteferences between am-
plitudes associated with different excitation paths lead to
asymmetric spectra and to the appearance of bound states in
the continuum?® when the configuration interaction and la-
ser-induced couplings are of comparable strength.

With the help of Eq. (22), these results may easily be
generalized to cases when the second laser pulse becomes so
intense that more than one autoionizing resonance is strong-
ly coupled to le).5 For this purpose we use the fact that in
the limit ’Qegl <« T this dominant contribution to the atomic-
transition amplitudes comes from the dressed state &, which
is approximately given by

IQ 2
g=t+ (e :
. - Tq Y2 Y2 (q-'i)2
E—e—yo——+r1 -
1+ 2 2 tan7m(v + a)/7 + 1

(32)

This implies that the initial-state probability |a,(t)|? is expo-
nentially decaying with the ionization rate

R=
1, 1
_EQeg Y
. - 7q . Y2 Yo (g—1)
E—€—1, ti- -
1+ 2 2 tan7(v + a)/7 +1

(33)

which reduces to the result of Ref. 7 if only one autoionizing
resonance is involved in the excitation process. ! Figures
3(a) and 3(b) show R as a function of w for a fixed value of
wg, which was chosen so that the second laser pulse resonant-
ly excites an autoionizing state. The positions of the two
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Fig.3. Ionization rate for fixed w; as a function of energy ¢ = ¢, + w;
+ ws (in units of Q,,*/T) foré = =5 X 1075, 7 =0.5,q = 10, « = 0, and
(a) y1=5% 1077, (b) y; =8 X 107.

maxima in Fig. 3(a) correspond to the ac-Stark split states
associated with the strongly coupled states le) and [n). The
different widths and heights of these two peaks reflect the
quantum-mechanical interferences between the direct laser-
induced transition le) — [n) and the indirect one through
the electron continuum, which also involves the configura-
tion interaction. However, in this figure the intensity of the
second laser is already so high that adjacent autoionizing
states are also affected by the laser-induced mixing between
le) and channels 1 and 2, which may be recognized by the
small side peaks. In Fig. 3(b) the second laser is so intense
that many autoionizing Rydberg states are significantly
mixed into le). Correspondingly the ac-Stark splitting is
much larger. Furthermore, all resonances experience an
additional quadratic Stark shift of magnitude vorg/(1 + 7).

4. CONCLUSIONS

In conclusion, we have studied one-photon resonant two-
photon excitation of autoionizating Rydberg series close to
threshold. We have derived analytical expressions for
atomic-transition amplitudes, adapting methods from quan-
tum-defect theory. Whereas the time evolution of the
bound-state amplitudes sufficiently below the Rydberg
threshold is conveniently expressed in the form of a dressed-
state representation, a multiple-scattering expansion is par-
ticularly suited to deal with excitation close to threshold.

In this paper we have discussed two limiting cases. Inthe
first case we assume that the time scale of depletion of the
low-lying atomic bound states is shorter than the classical
orbit time of the Rydberg electron. This leads us to the
physical picture of (radial) RWP’s moving in the Coulomb
potential of the ion core. The second limiting case is one
when a first, weak laser introduces a bottleneck in the excita-
tion process and the second laser strongly couples the inter-
mediate resonance to many Rydberg states, corresponding
to ac-Stark splitting of a Rydberg series.

APPENDIX A

In this appendix we derive expressions for the atomic-transi-
tion amplitudes in the three-level limit when an isolated
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autoionizing state is excited. If r « 1 and if max{|Al, Qg T,
Qe?/T} < |Ae,l, only the autoionizing state |n) with energy e,
= ¢, — Yo(n — a)~2is excited. Under these conditions we can
expand tan 7(7, + «) in Eq. (25) intoa Taylor series. Taking
only the first two terms, we obtain for the dressed energies
the equation

@, - e, — € + i%ys — (HhE) (1 = i/Q)*/E, — €, + T,
= (%R,)* = 0. (AD

T, = (2r/7)(n — a)~3 is the decay rate of the autoionizing
state, and @, is a generalized Rabi frequency describing the
laser-induced transitions le) — [n) and is defined by Q2=
voTng? The cubic Eq. (A1) determines the three dressed
states, which characterize the dynamics of the excitation
process. Making the analogous expansions in the resonant
part of Egs. (14) and (15), we obtain for the Laplace-trans-
formed atomic amplitudes
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This result coincides with Eq. (5.17) of Ref. 7, where it was
derived by using the resolvent operator formalism.
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