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%e develop a theory describing laser excitation of a Rydberg series by an intense laser Seld.
Our theory is based on the fact that the radiative coupling is restricted to a region around the
atomic nucleus (the reaction zone} which is small in comparison with the extent of the excited

Rydberg states. The physical processes inside the reaction zone are characterized by a few param-

eters which are slowly varying functions of energy across the Rydberg threshold. This Snite range
of the radiative coupling allows us to apply methods from quantum-defect theory and to treat the
laser interaction with the Rydberg series and the adjoining electron continuum as a whole. %'ithin

this approach we derive analytical expressions for transition probabilities as a function of time in

either a dressed-state representation which is appropriate as long as only a few Rydberg states are
excited or a multi@/e-scattering expansion which is particularly suited for a description of the exci-

tation process close to threshold. The physical picture emerging in this limit is one of a radial

electronic wave packet which is generated within the reaction zone and moves in the Coulomb po-
tential of the ionic core. Every time it returns to the inner turning point of its orbit, i.e., to the re-

action zone, it is either deexcited back to the initial atomic state or is scattered by the ionic core.

I. INTRODUCTION

Rydberg states play an important role as intermediate
and final states in laser-induced ionization and excitation
of atoms and molecules. The purpose of this paper is to
address the problem of near-threshold excitation of Ryd-
berg series from one of the low-lying atomic states by an
intense laser field. ' In particular the hst of questions to
be discussed includes the time evolution, intensity, and
frequency dependence of transition probabilities close to
threshold when an infinite number of both Rydberg lev-
els and continuum states participate in the laser-induced

dynamics.
Usually, laser excitation of atoms and molecules is de-

scribed within models where the Schrodinger equation is
solved in a finite basis of resonant atomic states in the
rotating-wave approximation (in the simplest case a
two-level system}, s' while the coupling to nonresonant
levels is treated in perturbation theory. Diagonalizing
the Hamiltonian of the atom in the laser field then leads
to a set of dressed atomic states. The time dependence
of the transition probabilities exhibits the familiar Rabi
oscillations. Obviously, the validity of this approach is
confined to an energy region far below threshold as long
as the Rabi frequency which characterizes the laser-
induced coupling is much smaller than the frequency
separation between adjacent excited states. ' On the
other hand, transitions from bound states to the Hat elec-
tron continuum are usually formulated within a pole {or
Markov) approximation which describes the (exponen-
tial) decay of a discrete state into a continuum with a
rate given by Fermi's golden rule, and thus serves to
de6ne an ionization cross section. Again this approxi-
mation becomes invalid when a threshold is ap-
proached. '2 ~

In the present paper we develop a theory of near-
threshold excitation with the essential feature that it
treats the laser interaction with the Rydberg series as a
whole, and thus includes from the very beginning both
the infinite number of Rydberg states and the adjoining
electron continuum. Our starting point is the observa-
tion that the coupling of the atom with the laser field
can be described as

aconite

range int-eraction in the sense
that the laser-induced dynamics (photoabsorption) is
confined to a finite reaction zone while the motion of the
electron outside in the asymptotic region is determined

by a pure Coulomb force. In this asymptotic regime the
wave function is a linear combination of regular and ir-
regular Coulomb functions. This allows us to apply
methods from quantum-defect theory (QDT), ' which
deals with the analytical properties of these Coulomb
functions. The electronic dynamics inside the reaction
zone is characterized by a small set of intensity-
dependent "quantum-defect" parameters, which as a
function of energy are almost constant across the Ryd-
berg threshold.

As far as transitions from low-lying bound states to
Rydberg states are concerned this property of a 6nite in-
teraction volume for the laser absorption process is obvi-
ous: the initial bound state typically has a size of a few
Bohr radii which is much smaller than the extent of a
Rydberg orbit so that photoabsorption to a Rydberg
state occurs within a small interaction zone close to the
atomic nucleus. The 6nite-range character of the laser
interaction in optical Rydberg-free and free-free transi-
tions has been discussed recently in detail in Ref. 11.

The property of a 6nite interaction volume proves
essential in extracting the rapid energy dependence of
the amplitudes of the Laplace-transformed time-
dependent atomic wave functions due to the Rydberg
resonances from a slowly varying background. In par-
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ticular, this allows us to obtain closed-form analytical
expressions for the time evolution of transition probabili-
ties. This is in contrast to previous studies which either
have been based on a numerical analysis or have includ-
ed the inhuence of the Rydberg states on the dynamics
only in an approximate way. ' In our case the time
dependence can be obtained in a dressed-state represen, ta-
tion, expressing the time evolution as a sum and integral
over the spectrum of atomic dressed states which diago-
nalize the atomic Hamiltonian in the laser field. In this
way we recover far below threshold the results of two-
level theories, while for transitions far above threshold
we find the expected exponential decay law for the ion-
ization probabilities in agreement with the pole approxi-
mation. Close to threshold when a large number of
Rydberg levels including the continuum contribute it is
more appropriate to write the atomic amplitudes in
terms of a m u Itiple scat te-ring expansion ' which
expresses the transition amplitudes as an infinite sum
over contributions of classical paths (Kepler orbits) Qf

the Rydberg electron. The physical picture emerging in
this limit is the one of a (radial) electronic wave packet
which moves in the Coulomb potential of the ionic core
and can either be excited (de-excited) by the laser from
(to) the initial state or scattered (elastically or inelastical-
ly} by the ionic core in the presence of the laser field

every time it returns to the inner classical turning point
of its orbit, i.e., to the reaction zone. This behavior
gives rise to oscillations of the initial-state probability
with the period of the mean classical orbit time of the
excited wave packet.

The paper is organized as follows. As an introductory
example we consider in Sec. II one-photon excitation of
Rydberg states neglecting possible ionization channels to
higher continua. The purpose of this section is to devel-

op the essential physical ideas of the dressed-state repre-
sentation and the multiple-scattering expansion. Section
III extends our study to excitation of an autoionizing
Rydberg series, which allo~s us to study the inNuence of
an additional decay channel. Finally in Sec. IV we take
into account laser-induced transitions from the excited
Rydberg states to higher electron continua.

energy energy
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FIG. 1. Schematic representation of the excitation processes
studied in Secs. II, III, and IV.

~

O(t)) =
~ g )a (t)+ g ~

n )a„(t)+ f ds s)a, (t)

—:
~ g )a, (r)+ ~F(r)), (2.1)

with
~

F (t) ) characterizing the time evolution of the ex-
cited Rydberg states and the adjoining electron continu-
um. All forlnulas in the following are written in Hartree
atomic units (e =A =m = 1). We assume that the elec-
tric field of the laser is turned on instantaneously at t =0
and for t ~ 0 has the form

E(t)=@ae ' '+c.c. , (2.2)

with 8 the amplitude, co the frequency, and s the polar-
ization of the laser light. In the rotating-wave and di-
pole approximations the Laplace transform of the
initial-state amplitude as(z), defined by

as(t)=(1/2n) f dz e "'az(z), (2.3)—oo +i 0

has the solution

II. NEAR-THRESHOI. D EXCITATION
OF A RYDBERG SERIES—AN INTRODUCTORY

EXAMPLE

a (z) =i [z —ss —X(z +co)]

Here

X(~)=(g dA" . dN g)

(2.4)

In this section we discuss the dynamics of excitation
of Rydberg states from an initial low-lying atomic state
by an intense laser field as schematically shown in Fig.
1(a). This corresponds to the simplest possible excitation
scheme. The purpose of this section is to discuss the
dressed-state representation and the multiple-scattering
expansion and to point out the essential physical picture
emerging in the problem of near-threshold excitation.

For the wave function
~

4'(r)) of the atomic electron
which is excited from the initial state

~ g ) with energy
e to Rydberg states

~
n ) with energies E„and energy-

normalized continuum states
~

e ) (0 & c, & ao ) we make
the ansatz

= g ~
d„s4

~

'/(c, —c.„)

+ J de'
i d, 8

i
/(e —s'+i0) (2.5)

is the self-energy of the initial state with H„ the atomic
Hamiltonian and d =d. r. With the atomic dipole opera-
tor d. Before proceeding to a discussion of near-
threshold phenomena we find it worthwhile to review
briefly the solution in the energy region far below
threshold (in the two-level approximation} and far above
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threshold (exponential decay of the initial-state probabil-
ity due to ionization).

A. Far belovv threshold: The two-level approximation

( f—e )(Z —e„)——,
' 0„=0 (2.7)

with the mean excited energy E=c~+m. In particular,
this equation describes the positions of the ac Stark split
energy levels.

Inverting the Lap1ace transform we obtain

( —,
' 0„)

(E, —e) +(—,'0„) (2.8)

The initial-state probability therefore exhibits the well-
known Rabi oscillations with frequency [(s„—K)

+ II2 ]1/2 3

B. Far above threshold: Exponential decay

If the laser field is tuned well above the photoioniza-
tion threshold, the dominant contribution to X(s) comes
from the excited continuum states near the energy-
conserving value e'=e. As the bound-free dipole matrix
elements d, are smooth functions of energy, we may ap-
proximate X(z +co) by its value at z =as (pole approxi-
mation) (Ref. 4),

X(z+co)=5' iy/2 .— (2.9)

5co is an approximately energy-independent quadratic
Stark shift (which in the following is assumed to be ab-
sorbed in the initial-state energy s ) and

(2.10)

%henever the exciting laser field is tuned to near reso-
nance with one of the bound states

~

n ) (i.e.,
~

s +co—e„~ &&
~

e„—s„+i
~

), and the intensity is
su{ficientiy low (II.=2d.s I

@
I « I e. —s.*i I

) so that
only state

~

n ) is dominantly excited, the self-energy
X(e) as given in Eq. (2.5) may be approximated by

X(e)=—,'0„/(e —s„)

with 0„ the Rabi frequency. Inserting Eq. (2.6) into Eq.
(2.4) we find the poles z, 2 of a (z) and the quasienergies
(or dressed-state energies) X, 2

—z, 2+co of the two-level
system from the quadratic equation

significantly contribute to the self-energy X(s) in Eq.
(2.5). Taking the Laplace transform of

~
%(t)) we find

the following system of close-coupling equations:

(z —ss)as{z)+(g
~

d*8'
~
F(z+co)) =i,

(z +co H—„)
~

F(z +co) ) +d e
~ g )ag(z) =0 .

(2.12)

Systems of this type, which describe the coupling be-
tween a bound channel

~ g ) and a free channel

~

F(z+co)), have been studied in QDT. ' In the
present example the radiative coupling is of finite range
due to the localization of the initial-state wave function

~ g ) to a region extending a few Bohr radii around the
atomic nucleus. As is shown in Appendix A, Eq. (2.12)
implies'

~

5' i y /2—(s & 0)
5'+(y/2)cotn[v(s)+a] (a&0) .

(2.13)

Below threshold (s & 0) a is the quantum defect of the
excited Rydberg series. It is due to a deviation of the
ionic core potential from a pure Coulomb form. Ac-
cording to standard QDT assumptions this deviation is

restricted to a region around the atomic nucleus (defined

as the reaction zone) which is small in comparison with
the extent of highly excited Rydberg states. This implies
that a is approximately energy independent across the
Rydberg threshold. Above threshold (e&0}, ma is the
continuum phase shift characterizing electron-ion
scattering inside the reaction zone. ' 5c0 and y [see Eq.
(2.10)] are a quadratic Stark shif-t contribution and the
ionization rate in agreement with Fermi's golden rule.
As a consequence of the finite-range character of the
laser interaction, 5co and y are (approximately) energy
independent across threshold.

The rapid energy dependence of X(s) below threshold
is determined by the long-range Coulomb potential of
the ionic core. This is refiected in the dependence of
X(s) on the effective quantum number v(s)=( —2s)
Typically X(e) exhibits poles at the energies of the Ryd-
berg states e„=——,'(n —a)

It is not difficult to see that Eq. (2.13) reduces to the
result of the two-level approximation when only a single
state

~

n ) is significantly excited. Expanding the
denominator of Eq. (2.13) near the resonance energy
e =s„we obtain Eq. (2.6} provided we make the
identification

is the ionization rate in agreement with Fermi's golden
rule. The self-energy (2.9) gives rise to a complex
quasienergy at Z =z +~=E—i y /2. Inverting the I.a-
place transform we find

(2.11)

i.e., the initial-state probability is exponentially decaying
as a function of time.

C. Near threshold

—'0„= (n —a) (2.14)

Note that Eq. (2.14) implies the familiar (n —a)
scaling of dipole matrix elements d„g from the initial
state

~ g ) to Rydberg states
~

n ). Above threshold Eq.
(2.13) is identical with Eq. (2.9).

The dressed-state energies E„=z„+~are determined
by the poles of ag(z). According to Eqs. (2.13) and (2.4)
they are solutions of the transcendental equation

%hen the laser is tuned close to the photoionization
threshold many bound and continuum states

Z„=——,
' [n —a —

iM {'E„)]

with the intensity-dependent quantum defect

(2.15)
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(M(s ) = ( —I/m )arctan[(y/2)(c, —F) '] .

The rapid energy variation of p, (e) around the mean ex-
cited energy E rejects the fact that the laser field tends
to pull the quasienergies Z„away from E. The appear-
ance of an intensity-dependent quantum defect is not
surprising. It is well known that the mixing of a bound
state into a continuum leads to a resonant phase shift
~p(E). ' In the case of excitation from a low-lying atom-
ic state such a continuum phase shift manifests itself in
the appearance of laser-induced autoionizinglike reso-
nances' whereas in the process of laser-assisted
electron-ion scattering, which is described by the scatter-

ing matrix

f(s) e2in[a+P(c)] (2.16)

it gives rise to a "capture-escape" resonance. ' On the
other hand, scattering phase shifts correspond to quan-
tum defects in the bound-state region, in agreement with
Eq. (2.15)

%e now return to study the time evolution of the
initial-state amplitude. Using Eq. (2.13) and inverting
the Laplace transform by contour integration we 6nd the
initial-state amplitude in the dressed-state representa-
tion

—i(e„—a))t 1ag(t)= ge " —7„
(s„—&)'+(y/2)' 1+ 2 —-3

yK

e '" "Ie )' [E)( ist yt—/—2) 2iir—e(K)] er' —E ( ist+yt—/2)I .2' 1 (2.17}

e(x) is the unit step function which vanishes for x g0. The form of the integration contour is given, e.g., in Ref. l.
E, (x) is the exponential integral as defined in Ref. 18. Equation (2.17) shows that all quasienergies in an energy inter-
val of width y(1+(2/ny)v )'/ around the mean excited energy 5 are significantly involved in the excitation pro-
cess. We can therefore distinguish between two different dynamical regimes, namely, the two-level (or weak-field) lim-
it characterized by y &&v and the threshold (or intense field) limit where y »0 ~. The last case implies

T, =2m( —2K) / »2m/y (2.18)

with T, the classical orbit time of an electron of energy s in a Coulomb potential. ' In the time domain Eq. (2.18)
expresses the fact that the depletion time of the initial state corresponding to the "ionization rate" y as induced by
the intense laser 6eld is shorter than the classical orbit time for the electron excited into the Rydberg series.

Under condition (2.18) a direct evaluation of Eq. (2.17) is inconvenient because many dressed states contribute to
the sum. Instead we prefer to represent the initial-state amplitude in the form of a multiple-scattering expansion' (for
a derivation see Appendix B)

(X) p
e s( s m) te —Yt /2+—g— d & e

—i ( E ru )t[ l ( e
——E + I y /2 )

—lg)( —) ]e 2( n v( c )

m=1

(2.19)

with the complex photoionization amplitudes

(2.20}

and the laser-assisted electron-ion scattering matrix f(s) as given by Eq. (2.16). Since y »v, e ' ""' (which in-
volves the classical action 2nv(e) along a closed Coulomb trajectory' ) is a rapidly oscillating function of energy.
Therefore the dominant contribution to the energy integrals with m =1,2, . . . comes from points of stationary phase
e, (rn, t), defined for given t and m by

t=mT, (,) (m =1,2, . . . ) . (2.21)

Performing the energy integration in Eq. (2.19) with the stationary-phase method we find

(t (t) e
—i(c ~)te —yt/2+ y (2~/

~

@(2)
~

))/2ein 4 i/+e(c, m'~)(y/ 1T)2[( eF) +(y/2) )
m=1 c, =c, (m, r)

(2.22)
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with

4(e, m, t) = —(e —ca}t +2m m[v(e)+a+@(e)]

8 4(e~ pl~i)

BE
=6nm( —2e)

Bm(e, r)
F

=3[t/T~y/( —2K)] . (2.23}

If hm && 1 contributions due to successive returns of the
excited electron to the ionic core are well separated in
time. For sunciently long times eventually hm ~ 1 and
they start to overlap. This reflects the fact that at these
times the generated radial wave packet has already
spread out over the whole Rydberg orbit. For these long
times we can de5ne a "mean" initial state probability by

For a given time t, the only terms in Eq. (2.22) which
contribute are those for which

~
e, (m, t) e—

~

&y. For
times t «T~ (i.e., for times much shorter than the clas-
sical orbit time) the initial-state amplitude therefore de-

cays exponentially with the "ionization" rate y as there
are no stationary phase contributions. With T, which

we use here and in the following for simplicity, we mean
more precisely the minimum classical orbit time associ-
ated with the significantly excited Rydberg states, i.e.,

c = max(
~
a ),y}

The depletion of the initial state
~ g ) on a time scale

t =1/y « T~ implies the generation of a radial electron-
ic wave packet because the excitation process is localized
not only in space but also in time. The exponential de-
cay law for the initial state reflects the fact that during
the formation of the wave packet the electron is not
affected by the outer turning point of the Coulomb po-
tential of the ionic core, and therefore for times r «T,
behaves as if in a true ionization process above thresh-
old. For times r ~ T, the dominant contribution of Eq.
(2.22) stems from the term with rn =1 which describes
the first return of the wave packet to the inner turning
point of its orbit where it can be de-excited back to the
initial state

~ g },which leads to a recombination of the
electron-ion complex. Similar arguments can be present-
ed for times t=mT~ (rn =2, 3, . . . ), so that the initial

state will show population pulsations with the period of
the classical orbit time. Equation (2.22) further shows
that the mth contribution contains not only information
about the initial excitation and Snal recombination but
also about the intermediate (rn —1 } laser-assisted
electron-ion scattering events which occur whenever the
excited electron approaches the core and are character-
ized by X(e) of Eq. (2.16). With increasing time the
wave packet will spread, which manifests itself in a
broadening of the stimulated recombination peaks. The
number of m terms hm contributing at a particular time
t to the initial-state amplitude can be estimated from Eq.
(2.21) by

X
1 y/2
~ (s —e)'+(y/2)'

2

(2.24)

Thereby we have neglected all quantum-mechanical in-
terferences between probability amplitudes due to suc-
cessive returns of the excited electron which give rise to
rapid oscillations of the initial-state probability around
this mean value. Replacing the sum by an integral we
find in the long-time limit t &gy

(2.25)

The "mean" population trapped in the initial state is
given by

1 /2
—,'[(2e/y) +1]' cos

+[(2e/y) +1] ~ sin
2/3

(2.26)

with

tang= — (0(/&2m) .y/2

Equation (2.25) shows that in the long-time limit
(

~
ag(t)

~
} is monotonically increasing and approaches

its asymptotic value according to a power law involvingt, which is a universal feature of threshold excita-
tion of a Rydberg series. A result similar to Eqs. (2.25)
and (2.26) has been obtained for the special case

~

e
~

&&y in Ref. 2 by a numerical analysis.
In Fig. 2 we have plotted the initial-state probability

as a function of time for different mean excited energies
e and a fixed value of y (a=0). Figure 2(a) represents a
case where only a few quasienergies contribute to Eq.
(2.17) giving rise to slightly modified Rabi oscillations.
As soon as the mean ionization time 1/y becomes com-
parable to or smaller than the mean classical orbit time
T, the time dependence of the ground-state probability
drastically changes [Figs. 2(b) —2(d)]. In Fig. 2(c) many
Rydberg states are excited and the initial-state probabili-
ty rejects the dynamics of the generated radial electron-
ic wave packet. Whenever it returns to the inner turn-
ing point of its orbit it is de-excited back to the initial
state, which corresponds to a stimulated recombination
of the disintegrated electron-ion complex. The broaden-
ing of the recombination peaks with increasing time
re6ects the spreading of the excited wave packet. If we
excite so close to threshold that

~

e
~

& y, many m terms
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and rotating-wave approximation the Laplace transforms
of the radial part of the electronic wave function
F'J'(p, z) and of the initial-state amplitude a (z) are
determined by

(z —eg )ag(z)+ g I dp DJ.*(p)F{~'(p,z +co)=i,
j=1

(3.2)

(1)+~—e

V{z(P} Z +N —Ag
(2)

F "{(p, z+co) D{(P)
X F{p)( )

+ag(z) D ( )
(3.3)

(1 r)—
(I+r)

i n.(,a+5)2
8(1+r)

(3.4)

n a and m 5 may be identified with the unperturbed con-
tinuum phase shifts (quantum defects) of channels 1 and
2. ~ is a channel-mixing parameter.

The photoionization dipole matrix element between
the initial state and channel k,

{{if'is the radial part of the atomic Hamiltonian of chan-
nel j and the thresholds of channels 1 and 2 are located
at z+cu=cl and a+co=0. The laser-induced coupling
is characterized by the radial-dependent dipole matrix
elements D (p}=pJ dQ@J'(Q)d@4g(Q, p) j =1,2. The
homogeneous part of Eq. (3.3) describes the
configuration interaction between both excited channels.
V,i(p) is the electrostatic potential responsible for this
mixing which leads to autoionization of channel 1. Ac-
cording to standard QDT treatments of interchannel
coupling ' we assume that V,2(p) =0 for p ~ p„with
the core radius p, of the order of a few Bohr radii. In
addition we have D (p) =0 for p &p„which refiects the
finite range of the radiative coupling.

Following Seaton we characterize the configuration
mixing between both excited channels within the reac-
tion zone (p &p, ) by the 2)&2 scattering matrix

(I-r)
( I+r)

For the following it is convenient to introduce the Fano
q parameter

q= —d i /(v'rd, i ), (3.7)

which measures the relative strengths of the direct radia-
tive transition from the initial state to channel 1 and the
indirect one via channel 2, which also involves
configuration mixing.

In summary, the dynamics of the excited electron in-
side the reaction zone is characterized by the 2)&2 ma-
trix g and the photoionization-dipole matrix elements
S', ,

' and 2)',i ', which are approximately energy in-
dependent across the photoionization threshold.

The time evolution of the initial-state probability is
determined by the self-energy X(e, ) as defined in Eq.
(2.5). Using well-known analytical properties of
Coulomb functions we show in Appendix A that this
self-energy can be written in the form

with the total ionization rate I"=2m.g» i ~2)',»
'

~

and
the quadratic Stark-shift contribution 5', which below
threshold (e &et) is modified to 5t0=5to+yirq/(1+r)
due to the presence of the autoionizing resonances (5'
and 5' are in the following absorbed in the initial-state
energy eg). Furthermore, we have defined x (s)
=tanm[v(e)+a]/r with the efFective quantum number
v(s)=[2(et —e)] ' and the ionization rate

yi 2nd, 2g6——" In the l.imit r~0 and 2)',i '~0 Eq. (3.8)
reduces to the self-energy X(e) given in Eq. (2.13).

A. Initial-state probability

The initial-state amplitude ag(t) is obtained from Eq.
(2.4) by using Eq. (3.8) for the self-energy and inverting
the Laplace transform by contour integration (compare
with Sec. II). The quasienergies Z„=z„+co& et are
determined by the condition

—2im v{Z„)
X»(~. ) —e "=0 (~. &et)

with

(3.9)

5' i I'/—2 (e y et )
X(s)=

5co iyi—/2+(yi/2)(q i) /[x (—e)+i] (e & et)

(3 8)

2 I dp[+»'" '(p, E)]*D,(p) (k =1,2),
j=l

X{{(e)=X„+2{~2)„(c,—c, +i I /2) 2),i (3.10)

(3.5}

ie' (d, ig+iv rd, 2g)6/(1+x—},
ie' (d,zg—+i v'rd„g )6/(1+v) .

(3.6)

is determined by the energy-normalized regular solution
'(p, e) of the homogeneous part of Eq. (3.3) with

outgoing-wave boundary conditions in channel k. These
quantities are related to the corresponding real
(standing-wave) dipole matrix elements d, »g (k =1,2)

8

characterizing the elastic electron-ion scattering process
in channel 1 under the inhuence of the laser field inside
the reaction zone. The laser field thereby induces radia-
tive transitions to the initial atomic state

~ g ). Equation
(3.9) determines the quasienergies of an autoionizing
Rydberg series which is coupled to a single interloper.
This problem has been studied in the context of complex
resonances. '

Before we proceed to the general case of threshold ex-
citation it is instructive to consider the excitation of an
isolated autoionizing resonance positioned at
e„=—

—,'(n —a) well below threshold so that r«1
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and I g& v„. DCSn}ng
I „=(2rlm)(n —a) na11d

&„=(@21„q)' we find for
state

the autoionization rate
the Rabi frequency

the resolvent of the initial

ag (z)=i[z-+ co —a+i y2/2

——'0 (1—i—I /q ) /(z +co —s„+i I „/2) ]

(3.11)

This relat' ion is well known and the
dependence of th

an t e associated time
e initial-state probabiliti i y has been stud-

ex o strong-field ex
'

g- excitation of isolated

If I &&v tt e number of excited re g
contour-integration mg method becomes in-

or etermining t2 (i). In thi

tude
ering expansion of the initial-state ampli

)

(r) e
—itr culte ——I'ti2 + d& e

—i( t coltse [i(c,—s+iI /2) tl

ei2 trv( tgl(&) 2i ltrvl]t—rrt 1[ ( —} ~i(s s+—iI /2) (3.12)

which is derived in Appendix B.
As many autoionizing resonang o ces are excited, e ' rapidly oscillating func ion

ua s o s. The energy integrals get their dom
T Th t ihtf d t eva uation of Eq. (3.12) yields

(I) e
—i(t ra)te ——I t/2 [2~/

/

Ct(2)
/

]1/2 tri /4 —t(E —6&) t''—' — 'trv

PN =1

(2) 1 2e
'

e
—' — t[I (& &+I I /2) —1~(—l]e2itr (t)

g [g (e)e2itrvtt) m —I ( —1
~

] [~,, I(e —F+iI /2) ']
~ F=c,{m,t) ' (3.13)
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For times much smaller than T~ a (t) is exponentially

decaying on a time scale of the order of 1/I and a radi-
al Rydberg wave packet is generated. As soon as
t T, »1/I" the initial-state amplitude is dominantly
determined by contributions which reAect the bounded
motion of the excited electron in the Coulomb potential
of the ionic core.

In Fig. 4 we show the initial-state probability as a
function of time for diferent values of the mean excited
energy e and fixed values of q, a, r, I (a=O). Figure
4(a) represents excitation of only a few autoionizing reso-
nances. Typically we observe slightly modified Rabi os-
cillations which decrease in amplitude due to the fact
that the initial state can decay into the open channel 2
with a rate I'2 ——2m ~$~ '~ . This is rellected also in

Figs. 4(b)-4(d) which show the change in the time
dependence of the initial-state probability as we increase
the laser frequency. In the case of Fig. 4(c} many Ryd-
berg states are excited and a radial electronic wave pack-
et is generated. Each time it returns to the core it can

be deexcited back to the initial state. In Fig. 4(d) for
t 2 T, contributions due to successive returns of the ex-
cited electron to the core overlap in time. As in Sec. II
Figs. 4(a) —4(c) have been obtained by summation over
the contributions of all dressed states whereas Fig. 4(d)
has been evaluated by using Eq. (3.13).

8. Ionization probability

We now study the ionization probability of channel 1,
i.e., the probability of finding the excited electron in this
channel within the energy range (et, 00 ). In Appendix A
we show that the Laplace-transformed excitation ampli-
tude of channel 1 is given by [see Eq. (A12)]

a',"(z+~}=—n(;, )a, (z)/(z+ co —s) . (3.14)

As in Eq. (3.12) we can represent the time evolution of
the excitation amplitude by a multiple scattering expan-
sion

a(l)(t) [ cg( —)/(e s+tl /2)][e ist e
—irte —i (/—2]

)(e2ivv(e )g (s )e2imv(c')]m —lg)( —)[i( —+ I /2) —(] (3.15)

In the case of excitation close to threshold the dominant contribution to the energy integrals for fixed values of t
and m again comes from points of stationary phase s, (m, t) with t =mr, (,) and a stationary-phase evaluation of Eq.
(3.15) is straightforward.

The first term of Eq. (3.15) describes the direct excitation which does not involve any return of the excited electron-
ic wave packet to the ionic core and gives the dominant contribution for times t &~T,. In this case we find for the
ionization probability into channel 1

P, (t)= f ds
~
a,'"(t) ~2=2m ~XL(, '

~

/1(1+e ') j —,'+(1/m)arctan[2(K —st)/I ]]
I

+(2 ~2)(,, '~ /I )Im(E, [i(e—st)t+I t/2]+e '[E)[—i(s —et)t —I t/2] —2ime(e —st)J}.

(3.16)

Well above the second ionization threshold this reduces
to the expected expression

X [ —,'+ (1/n. )arctan[2(e —et )/I ] j

At threshold we find

(E—et » I ) . (3.17)

P)(t)=(2m. iXL(, i
'i /I )(1—e ')/2

(
i
e e

i
«I ),—(3.18)

rejecting the fact that with a probability of —,
' the au-

toionizing Rydberg states close to threshold are excited;
they decay into channel 2 and are therefore lost for the
ionization signal Pi(t). If the initial state is completely
depleted we obtain from Eq. (3.16)

(1/I «t «&-, ), (3.19)

which shows the smooth dependence of P, (t} on the
laser frequency co across threshold.

For times t ~ T, the short-time behavior as described

by Eq. (3.16) is modified. This can be seen from Fig. 5
which shows the ionization probability P, (t) as a func-
tion of time for the same parameters as have been used
in Fig. 2(d). Typically we see the exponentially increas-
ing short-time behavior, which reaches a stationary
value after a time of the order of 1/I". For t ~ T, we

observe the contributions due to the return of the gen-
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crated wave packet to the inner turning point of its or-
bit. The rapid oscillations of the ionization signal there-
by refiect quantum-mechanical interferences between
ionization amplitudes associated with successive returns.

In the long-time limit when many terms contribute

simultaneously at time i to the sum in Eq. (3.15) we can
define a mean ionization probability in analogy to the
mean initial-state probability of Sec. II. Neglecting for
simplicity autoionization we thus find with the help of
Eq. (3.15)

(Pi(t)) = —,'+(1/ir)arctan(2e/I )+ g (I /m)( —2e) '(2m/~ 4' '
~

) (1/m)
m ='i (e- e)'+(I /2)'

Replacing the sum by an integral we obtain for t g& I

c=c,{m,t)
(3.20)

I 1/2

(P&(t)) = —,'+(1/m)arctan(2e/I ) — —,'[(2e/I ) +1] ' cos +[(2e/I ) + 1]' sin
2

2

. . I 1 r/2
m' e i+(I /2)2

(3.21)

This shows that (P, (t)) is monotonically increasing in

time and reaches its stationary value according to a
power law involving t ', which is in agreement with the
numerical study in Ref. 2. The behavior of (P, (t) ) as a
function of time is shown in Fig. 5 (dashed curve).

IV. PHOTON ABSORPTION FROM EXCITED
CHANNELS

As has been discussed in detail in Ref. 11 the problem
of Rydberg states in laser fields can be formulated as a
scattering-type problem where the laser-induced dynam-
ics can be described as a finite-range coupling of
Coulomb fragmentation channels, once the asymptotic
(elastic) oscillations of the electron in the laser field are
removed. This allows the definition of a radiative reac-
tion matrix, which is a smooth function of energy across
the Rydberg threshold and for the case of hydrogen in a
circularly polarized light has been obtained numerically
in Ref. 11 by solving a system of close-coupling equa-
tions in a space-translated frame. The essential result of

0
&(e)=

~ 0 (e &0) (4. 1)

with the dipole matrix element

g=n. (el
i

d'6'*
i
e+co2) (4.2)

between the energy normalized Coulomb eigenstates
~
ej } of channel j=1,2 and energy e. The correspond-

ing unitary scattering matrix is given by

this work is that the laser-induced couplings between
channels can be treated in analogy to configuration mix-
ing of Rydberg series.

Let us now consider a variant of the excitation scheme
already studied in Sec. II [Fig. 1(a)], where instead of an
autoionizing decay of the Rydberg states the electron
can be ionized to a second channel from Rydberg states
of channel 1 by absorbing a further laser photon [see
Fig. 1(c)]. As mentioned above the coupling of these
two channels can be described by a radiative reaction
matrix A(e). In lowest-order Born approximation,
which is valid for light intensities I such that the elastic
oscillation amplitude ao of the electron in the laser field

is small, i.e., uo=&Ico &pl (the a.u. of intensity is

Io = 1.41 X 10' W/cm ), the radiative reaction matrix is

given by"

7=[1+iA(e)][1 i%(e)]—

(1—g')/(1+(') 2ig/(1+(')
2g/(1+(') (1—g )/(1+/')

(s)0) . (4.3)

I
(

l
)

I
I I

2

FIG. 5. Ionization probability P&(t) as a function of time (in
units of T, ) for the same parameters as have been used in Fig.
2(d). The dashed curve shows the mean ionization probability.

Comparing Eqs. (4.3) and (3.4) we notice the correspon-
dence with the 7 matrix of the autoionization problem
already studied in Sec. III (a=5=0,r=g ~~1). The
finite range of the radiative coupling implies that the
channel-coupling parameter g is approximately energy
independent across threshold and that all methods
developed in Appendix A for determining below-
threshold quantities still apply. Using these methods we
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find that below threshold the scattering matrix exhibits
poles at the complex energies

s„=—
—,'(n i—g /m).= —1/2n i—y„/2 . (4.4)

V. CONCLUSIONS

We have studied laser excitation of a Rydberg series
from a low-lying atomic state. In our theory we have
treated radiative excitation and configuration interaction
in a unified way using the fact that both act within a re-
action zone small in comparison with the extent of the
excited Rydberg states. Effects due to configuration in-
teraction or ionization from the excited Rydberg states,
which all take place inside the reaction zone, have been
taken into account. We have derived analytical expres-
sions for transition amplitudes as a function of time, fre-
quency, and intensity in a dressed state representation
and by using a multiple scattering expansion In part. icu-
lar, the multiple scattering expansion, which is con-
venient for describing excitation close to threshold, leads
to the siinple physical picture of a (radial) electronic
wave packet which is generated by the laser-excitation
process inside the reaction zone. Every time this wave
packet returns to the inner turning point of its orbit
(which is located in the reaction zone) it is deexcited
back to the initial atomic state which corresponds to
stimulated recombination of the disintegrated electron-
ion complex. This manifests itself in oscillations of. the
initial-state probability as a function of time with the
period of the classical orbit time. The spreading of the
excited wave packet leads to a broadening of the stimu-
lated recombination peaks.

The imaginary part

y„=2mn '
)
(c 1

~

d*8*
~

e+co2)
(

'

is the ionization rate of the bound state
~

n ) in agree-
ment with Fermi's golden rule. [A consistent perturba-
tive evaluation of the above-threshold scattering matrix
X up to second order in the coupling parameter ao
would result in phase shifts of the excited channels pro-
portional to the laser intensity, which are analogous to a
and 5 in the autoionization problem of Sec. III. In Eq.
(4.4) the phase shift associated with channel 1 would
give rise to an intensity-dependent energy shift (quadra-
tic Stark shift). ]

Using the above threshold scattering matrix of Eq.
(4.3) and the results of Appendix A we are able to obtain
the initial-state amplitude as a function of time. Due to
the formal correspondence with the autoionization prob-
lem the elects due to radiative interchannel coupling are
the same as the ones already studied in Sec. III.

the excitation amplitudes into the free channels. The
generalization to more bound channels is straightfor-
ward.

We start from the generalization of Eqs. (3.2) and (3.3)
to X free channels, which is given in compact matrix no-
tation by

(E—Es —co)as(e —co)+ f dpD (p) F(p, s)=i, (Al)

(s &—) F(p, e)+D(p)a~(c,c—o)=0[1m(s)=+0] . (A2)

The X components of the column vectors F(p, s) and
D(p) are the radial channel functions F"(p,e) and the
dipole matrix elements D;(p) with i =1, . . . , X. The ra-
dial Hamiltonian & characterizes the interchannel cou-
pling between the N free channels and includes the
threshold energies cz' of channels i =1, . . . , X. If
c.;=a—cl'&0 then channel i is open, otherwise it is
closed.

If all X channels are open the physical solution of Eq.
(A2), which is bounded for all pE [0, co ), is given by

F(p, s}=F,(p, s)= (s—&—)
' D(p)as(s co—)

-P'+'(p, s) %(s)/2 (p» ~ ) . (A3)

P'*'(p, E) is the diagonal X&(X matrix of energy-
normalized outgoing (+ ) [incoming ( —)] Coulomb func-
tions as defined in Ref. 8. The column vector S(s) is
determined by Eq. (A2), from which we obtain

"(p,s ) F(p, s )
dp

'(p, s) F(p, e)
dp

(A4)

9' '(p, c, ) is the X XX matrix of linear-independent
energy-normalized solutions of the homogeneous part of
Eq. (A2), which asymptotically behave as

'(p s)--'[P' +'(p s) —P' '(p E) X' ] (p» ~ )

J +'(p &)-—'[P' '(p e)—P'+'(p s) X] (p» ~ ) .

The first index of 7'*'(p, e) labels the channel com-
ponents and the second one identifies a particular solu-
tion. g is a smooth function of energy across threshold.
The components 2)'„' of the column vector 2)I ' are
photoionization dipole matrix elements. Inserting Eq.
(A3) into Eq. (A4) and using the relation
W(P,.+ (p, e),P, (p, E)}= 4i/m. fo—r the Wronskian we
find

APPENDIX A %(e)=2in2)', 'a~(s co) . — (A6)

In this appendix we consider the radiative coupling
between one low-lying bound state (bound channel) and
an arbitrary number of excited Coulomb-fragmentation
(free) channels. Within the framework of a QDT treat-
ment we calculate the self-energy of the bound state and

Using Eqs. (A3), (Al), and (2.4) we find for the self-
energy above threshold

X(e,}=5am—iI /2 [Im(e)=+0]
with the quadratic Stark shift 5u and the total ionization
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rate I =2~2)',-"n', '.
In order to determine X(e) for channels

i =1, . . . , X, «X closed we have to 6nd a solution of
Eq. (A2), which is bounded for all pE[0, ao ). For this
purpose we use the general solution of Eq. (A2)

F(p, e)=P'+'(p, s).A(E)+F, (p, c)

[Im(s) = +0] (AS)

and determine the column vector A(e} by the require-
ment that F(p, e) has to be finite for p~ao. Using the
asymptotic expansions of P' '(p, e) (Ref. S} we find for
the open [A,{e}]and closed [A, (e, )] channel com-
ponents

X(e)=5to —i I /2 —2i m2)'„' .(X„—e 2™vc)

(A10)

The excitation amplitudes of the excited channels can
be derived from Eq. {A2) and the relation

'(p, E')=0, lm(s')=0

which imply

(e —e')(P' '(e') ~F(e))
'a (e —to) [Im(s) =+0] . (Al 1)

The excitation amphtude of channel i, a', l'( e}, is there-
fore given by

a',"(e)=(9' '(s')
~
F(e));

A, (e)=0 (i =N, +1, . . . , N),

A, (e)=(X„—e ' "c) ' 9,(e) (i =1, . . . , N, ) .
(A9) = —S,'; )(s—e')' 'a (e —co) . (A12)

7„ is the scattering matrix in the closed-channel sub-

space and e ' c is a diagonal X, XX, matrix containing
the efFective quantum numbers v, (e)= f —2(e —e(t'))]

i =1, . . . , N, . Inserting Eq. (AS) into Eq. (Al) we ob-
tain the self-energy

APPENDIX 8

In this appendix we derive Eqs. (2.19) and (3.12} for
the case of one bound and N free channels. Inserting the
self-energy of Eq. (A10) into Eq. (Al) we find for chan-
nels i =1, . . . , N, (closed),

ag(e co)=—i[a a+i —I /2+2isr2), ', ' (X„—e ' 'c) ' 2)'„)].
=i(e —e+il /2) '+2m(e —a+il /2) 'SI, ) (X„—e ' c)

2)'„'((e—s+il /2)t[(X, —e " "c) ' S' ']

=i(s e+il —/2) '+2m[ —(e, —e+ii"/2) 'S'„) ] Ie ' "c [1—X„(e)e ' "c] '] [2),', '(s —e+il /2) '] .

(B1)

Expanding the term in curly brackets after the last equality sign in Eq. (Bl) into a geometric series we obtain

a (s —to)=i(s —e+il'/2) '+2m[i(s —e+il" /2) '2)'„' ] e'""c~ g .[X«(e)e ' "c] ' [2)'„'i(s—e+il /2) ']
m=1

with

X(e)=X+2in2),' )(s—e+il'/2) ' 2),' ' . (B3)

The first term of Eq. (B3) characterizes the finite-range

coupling between the X free channels whereas the
second term is due to the radiative coupling to the
bound channel.
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