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1. Introduction

A theory of Rydberg states in intense laser fields [1,2] is developed
based on the observation that the effect of laser radiation can be described
in a scattering formulation as a finite volume interaction coupling Coulomb
type dissociation channels. Physically speaking, this picture emerges because
the long range effect of the laser corresponds to elastic forced oscillations
without real absorption or emission of laser photons. The identification of
radiative interaction as a short range coupling opens the route for a
theoretical approach which treats separately the short and long range
processes and connects them in a further step. In particular, laser induced
couplings may be incorporated in a quantum defect (QDT) treatment [3.4],
leading us to define a set of dressed channels with intensity dependent
quantum defects and mixing coefficients. These quantitites may be derived by
solving a system of close-coupling equations for the electron wave function
(in a frame where the asymptotic electron oscillations have been transformed
away) [5,6]. This allows us to read off a reaction matrix, which is a smooth
function of energy for an energy range small compared with the photon energy.

Section two below is devoted to a discussion of Rydberg-free and
free-free transitions (above threshold ionization) of hydrogen in circularly
polarized laser fields from a Quantum Defect Theory (QDT) point of view [7].

Section three gives an outline how the full time dependence of transition
probabilities from low-lying bound states to Rydberg states close to threshold
may be calculated within a QDT [8].

2. Rydberg-Free and Free-Free Transitions (Above threshold ionization) [7]

2.1 The Interaction Hamiltonian

We consider an electron moving in a potential V(;), which behaves
asymptotically like a Coulomb potential, and under the influence of a laser

field described by an electric field g(;t) In the dipole approximation the
Schrodinger equation is
1-2

i3 (R.1) = [ omp2 + V) ~eX-E(0.1)] ¥ (R.0). (2.1)

The subscript L for \PL indicates that in first order perturbation theory (in
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the light field) Equ.(2.1) leads to transition matrix elements in the length
form. For a discussion of Rydberg electrons it is more convenient to work in a
frame, where the asymptotic oscillations of the electron are transformed away.
In this "space translated frame"” [5,6] the Schrodinger equation is

3, (R.0) = [ b + VEE()] ¥,(%. ) (2.2)

2
with c_x)(t) the solution of Newton’s equation mg—tzt_;(t) = 8 g(O,t) for a free

electron oscillating in the laser field.The subscript A for the wave function
refers to the fact that Equ. (2.2) leads to the acceleration form for first
order transition matrix elements.

Approximate methods for solving the Schrodinger equation in a time
dependent field are usually based on separating the Hamiltonian H(t) into an
unper turbed Hamiltonian HO = %11_)’2 + V()—()), and an interaction part Hl(t). In

the cases (2.1) and (2.2) the "length" and "acceleration” interaction
Hamiltonians have the form Hy, (t) = -ex-E(0,t) and Hy,(t) = V(E+a(t))-V(X),

respectively. A central point we wish to emphasize is that the two forms of
the interaction Hamiltonians put the weight of the interaction into different
regions of space: close to the atomic core it is preferable to work with the
dipole interaction Hamiltonian HIL(t), which there becomes a perturbation (in

the sense that HlL -0 for r = |)-()| - 0). On the other hand HlA(t) goes to

zero asymptotically as it behaves for large r like the potential of an
oscillating dipole; thus this form is the most convenient when dealing with
electrons in extended Rydberg orbitals or in the continuum.

In the present exploratory work the calculations will be restricted to
hydrogen and we shall use the Hamiltonian HlA(t) in whole space. For complex

atoms or molecules it would be preferable to solve the Schrodinger equation
using the length form HlL(t) in an inner region, and the acceleration form in

an outer region, with the wave functions in both regions connected by a
time—-dependent unitary transformation. This procedure is reminiscent of (but
not identical to) the frame-transformation technique [4] in MQDT and has - in
the special case of calculating dipole matrix element — been used by Peach [9]
and Seaton [10].

The physical picture emerging from this discussion is the following. The
electronic motion is governed by different forces in different regions of
configuration space: close to the core the atomic forces dominate; in the
asymptotic domain the electron vibrates rapidly in the time-dependent optical
laser field while the weak atomic force is responsible for a slow mean motion
of the electron in the asymptotic Coulomb potential. Transition from Rydberg
states to different bound or free orbits by absorption or induced emission of
laser photons occur in the transition zone between the two regions.

2.2 Close—Coupling Equations and Radiative Reaction Matrix

We proceed in our discussion by studying the electron wave function in
the presence of a laser field. To be specific, we study the simplest possible
system, namely a Rydberg electron in a hydrogen atom under the influence of

circularly polarized light f(O,t) = g2e Whe.c. (E’: ~(gl+i—e)2)/\/ 2). The

potential V(Q+3(t)) is now a Coulomb potential which is moving with angular
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frequency w on a circle in the xy-plane of our coordinate system. We have
g(t) = ao(glcos(wt+6)+gzsin((ut+6)) with the radius aO(ZO) and phase & defined
-i6

by \fz_es/mw2 = 0.

0 In this case the Floquet-Ansatz

iN(wt+8)-iEt/h

§,G =) ) FEN )y, (0.9) & (2.3)

=—® fm

with F(N)(r) a radial wave function and E a quasi-energy, reduces the

time-dependent Schrodinger equation (2.2) to a system of time independent
close-coupling equations (see also Ref. [5,6]).

{E+Nﬁ<.; .y - (P &), - veéozm(ao.r)} FN () -

DR A NRICE) F )y = o.
N'2’'m’

(2.4)

Here the potential terms Ve NeNm)(a ,r) are defined as the Fourier

coefficients of matrix elements of the potential V(;:)+3(t)) between spherical
harmonics. Using the multipole expansion we find

ve'ElNel;q )(ao.r)z
2 Lo
= ) <em|ck_N_N,|e'm'>(—1) ck _vn)(72:0) st (2.5)
k=|N-N" |

Here we have defined re= min(ao,r), ry= mx(ao,r). The parameter o, plays the

role of an intensity parameter in our problem. When the close-coupling
equations (2.4) are rewritten in atomic units, the dimensionless parameter
which determines the coupling between the channels in Equ. (2.4) is

=2 (2ﬁy/hw) (I/Io)l/2 with a, the Bohr radius, %y the Rydberg

ag = F/ag =
. . 2 _
constant, I = 2ce°|£0| the light intensity and I0 = 2ce°8a.u. =
1.4;-1017 W/cm2 the atomic unit light intensity. In the close—coupling
equations (2.4) each channel is identified by the parameters {N,2,m} with N
the Floquet (photon-) index and &,m angular momentum quantum numbers of the
electron. The prime on the sum in Equ.(2.4) indicates that diagonal terms
should be left out in performing the sum.
The potential terms in Equ. (2.5) have the following properties. First of

0)

; (
all, the potential Vem.e'm
a Coulomb potential; asymptotically, degenerate channels with different € and

goes asymptotically like 6ee.l/r. i.e. behaves like

2’ are at most coupled by an 11(2)/r3 potential. Equs.(2.4) and (2.5) identify
the thresholds of our system as -Nhow. The asymptotically dominant

inter-channel potential goes like ao/r2. It is essential that the interaction
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terms which asymptotically behave as l/r2 couple only channels differing by
one photon energy hw, i.e. channels with different thresholds (this asymptotic
structure of the potential terms is in complete analogy to what one finds in
close—coupling equations for low energy electron scattering from ions).
Indeed, the asymptotic oscillations of the Coulomb functions in non-degenerate
channels tend to interfere destructively, thus limiting the effective range of
the coupling to a finite region. A crude estimate shows that for energies near

threshold we have r, ® w_2/3 (in atomic units). Furthermore, the size of the

interaction zone also grows with the oscillation radius EO‘ For the range of

EO and @ values below, we have ;0 < r,. so that the frequency is the
dominating factor to determine the boundary of the reaction zone.
The possibility of truncating the set of close-coupling equations (2.4)

is mainly a question of light intensity for a given laser frequency. For
EO << 1 the coupling is weak and we expect the results of perturbation theory
(with respect to the field intensity) to emerge in this limit. On the other
hand for EO 2 1 the inter-channel coupling becomes strong and one expects that

the size of the truncated system should be increased until convergence is
found for the given light intensity.

For a given energy E and Ntot channels included in the calculation, there
are Ntot real independent solutions of the close-coupling system which may be

written for r)rc as
Fij(r) = si(r) Gij + ci(r)'?ﬁij (r)rc). (2.6)

where j = {Nj,ej.mj} denotes the index of the solution and i the channel
components. s, = s(ei,ei.r) and ¢y = c(ei,ei.r) are energy normalized regular
and irregular Coulomb wave functions for the energy € = E + Niﬁm [3]. ¢ is a

radiative reaction matrix which varies slowly with the asymptotic electron
energy since it is built at short range [4].

The physical interpretation of the smooth %-matrix depends on the energy
range considered. If all channels are open (ei > 0 for all i), % is the usual

reaction matrix describing laser induced transitions between alternative
fragmentation channels (e.g., for inverse Bremsstrahlung). If only N0 channels

are open, the Nc =N o= NO closed channels (ei<0) must be eliminated from

to
the asymptotic wave function (r = ®) since the corresponding Coulomb functions
S5 and <y have exponentially diverging components. This elimination leads to
the MQDT expression of the effective reaction matrix R (dimensions No b4 No)'
restricted to the open channel space [3],

R=% -% [tanmo +%& ] ! &
oc Cc cC

. o (2.7)

with the subscripts o and c referring to a partioning of % with respect to
open and closed channels; (ta.mruc)i‘:l = tanmo, 6ij is an Nc b4 Nc diagonal

matrix with vy effective quantum numbers defined by € = —Eky/u?. Contrarily to
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% the matrix R varies rapidly with the energy (via the energy variables vi) in

the vicinity of the Rydberg resonances in the closed channels. These
resonances have a finite width due to the decay (ionization) of the Rydberg
electron into the continuum (see also Ref. [6]).

2.3 Solution of the radiative close-coupling equations for hydrogen in
circularly polarized laser light

To illustrate the method we have studied photoionization of ns Rydberg
states of hydrogen by circularly polarized light as a function of light
intensity. The discussion will be centered on the cases where single

/(B’f'3)\ / CH/?/C/iAI:iLS

. /(2.d,2)\\ /(2.9.2)\
0 / = \—/ \1
(05,00, ) /(cT.Ti)»~ . /(o.q,O)\‘ Cf%;gs
& - i

Fig. 1: Absorption and stimulated emission processes for an s electron in
circularly polarized light. Only the processes involving up to five partial
waves are indicated. Stimulated emission to the strongly closed channels
(dotted arrows) is not included in the present work.
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Fig. 2: Convergence of the radiative reaction matrix for a weak field
one-photon transition ( proportional to a radial integral in the acceleration
form) & - &+1 as a function of the size of the reaction zone r.
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photoionization is energetically possible ( n > (?Ry./hw)l/z) so that an
increasing light intensity will cause absorption of additional photons in the
continuum (above threshold ionization). In its simplest form the system of
close-coupling equations must include a single closed channel with an s
electron and a number of open channels with higher £-values (Fig. 1). At high
intensities additional closed channels reached by stimulated emission must be
introduced, as indicated in Fig. 1. In the present calculations we have
included up to twenty-five channels with &-values up to & =8, and Floquet
indices 0 < N < 8. The corresponding close-coupling system (2.4) is solved by
propagating the solution typically out to T ~ 30 - 50 au. The calculations

have been performed slightly above threshold (E = 0.01 %g). In this
preliminary study we have not included strongly closed channels corresponding
to laser induced transitions down to low-lying bound states (dotted arrows in
Fig. 1; N < 0).

To demonstrate the finite range character of the interaction we have
plotted in Fig. 2 for a weak laser intensity the reaction matrix element,
which is accumulated in an interaction region of radius r, for a one-photon
transition (i.e., essentially an accumulated radial integral) for € = 0,

By g 0.3 %y and e, = 0,1,2 (ej = Ei + 1). Note that in the present example
the matrix elements have essentially converged in a region r £ 15 ag-

The total and partial ionization probabilities of the 6s states are
plotted in Fig. 3 as a function of the laser intensity for the frequency o
= 0.35 Rydberg. These results were obtained by calculating the reaction matrix
% for an energy E = 0.01 %y and extrapolating % to the bound region to extract
the ionization widths of the Rydberg states. The straight lines in Fig. 2
correspond (in logarithmic coordinates) to perturbative results obtained in

lowest order of perturbation theory for each partial rate 'v(k) (proportional
to Ik). The close-coupling values hardly depart form the perturbative ones
below 1013 W/cmz. A quantitative comparison with accurate perturbation
calculations (a_o = 0.1) of above threshold two-photon ionization [11,12] is
given in Table 1 for some ns levels. We have varied the radius T, of the

interaction zone (matching point to Coulomb functions) in order to demonstrate
once again the finite range character of the radiative interaction. Note that
the three n-values for which comparison with previous perturbation results is
possible at o = 0.2531 % are obtained from a single close-coupling

_3 .
calculation and multiplication by a scaling factor n ~. The agreement is very
satisfactory for the higher n-values (n=5,6) and as expected becomes worse
with decreasing n.

Above 1013 W/cm2 (EO > 0.5) the partial rates for the lowest order

processes saturate (curves 7(1) and '7(2) on Fig. 3). The total rate is
slightly larger than the linear first order perturbation theory result (golden
rule result; uppermost straight line on Fig. 3) in the intensity range below

5-1013 W/crn2 and then becomes smaller. An important point to be noted is that

the total ionization probability per unit time remains very close to the
golden rule result up to intensities for which the partial rates already
differ notably from their lowest order perturbation values.
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Fig. 3: Ionization rate of hydrogen 6s state by circularly polarized light

(w0 = 0.35 %¢). ~ denotes the total ionization rate and 7(k) the partial rate
for k-photon ionization.
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Fig. 4: Ground state probability as a function of time (in units of TE) for

= 10_6(a.u.) and (a) € = —2-10_4 (a.u.), (b) € = —1.25-10_5(3..\1.) (a = 0).
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3. Near threshold exciation of Rydberg series from a low-lying bound state [8]

The purpose of this section is to discuss the problem of near threshold
excitation of Rydberg series from one of the low-lying atomic states by an
intense laser field. In particular the list of questions to be addressed
includes the time-evolution, intensity and frequency dependence of transition
probabilities close to threshold when both an infinite number of Rydberg
levels and continuum states participate in the laser induced dynamics [13,14].

Usually, laser excitation of atoms and molecules is described within
models where the Schrodinger equation is solved in a finite basis of
(resonant) atomic states in the rotating wave approximation (in the simplest
case a two-level system), while the coupling to non-resonant levels is treated
in perturbation theory. Diagonalizing the Hamiltonian of the atom in this
finite basis then leads to a set of dressed atomic states. The time dependence
of the transition probabilities in a monochromatic coherent field exhibits the
familiar Rabi oscillations. Obviously, the validity of this approach is
confined to an energy region far below threshold as long as the Rabi
frequency, which characterizes the laser induced coupling, is much smaller
than the energy separation between adjacent excited states [16]. On the other
hand, transitions from bound states to the flat electron continuum are usually
formulated within a pole (or Markov) approximation [15], which describes the
(exponential) decay of a discrete state into a continuum with a rate given by
Fermi’s golden rule and thus serves to define an ionization cross section.
zEgain ]this approximation becomes invalid when a threshold is approached
13,14].

In the present section we give a brief outline of a theory of near
threshold excitation starting from the observation that this problem can be
formulated in QDT as the decay of bound channels (the low-lying atomic states)
to a set of free channels (Rydberg or continuum states). The new aspect in
comparison with the standard QDT formulation is the necessity to study the
full time dependence of the transition probabilities.

For simplicity we confine ourselfes to the model case of a single bound
state and a single Rydberg series. Generalization to more channels is
straightforward [8]. For the wave function |¥(t)> of the atomic electron which
is excited from the ground state |g> with energy eg to Rydberg states with

energies € and continuum states we make the ansatz
[e(t)> = |g> ag(t) + |F(t)>, where ag(t) is the ground state amplitude and
|F(t)> is the wave function of the Rydberg and continuum states. We assume
that the electric field of the laser with frequency ® 1is turned on
instantaneously at t = O and for t > O has constant amplitude &. Taking the

Laplace transform of the Schrodinger equation we find the following system of
close coupling equations (we use atomic units)

(z = eg)ag(z) + (g|d* s*l F(z+w) > =i

(3.1)
(z+o-H) |F(z+w)> + 4 &|g> ag(z) =0

with z the Laplace transform variable, I-IA the atomic Hamiltonian and d the

dipole operator. Using QDT the solution for ag(z) is (see for example Ref [3])

ag(z) =i[z- By~ 3 (z+w) ]_1. (3.2)

with
Sw - iv/2 (e>0) @
3(e) ={ (z=e+in, 70 ) (3.3)
b0 + /2 cotm(v+a) (e<0)
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a self-energy of the ground state. Here «,50 and v are slowly varying QDT
parameters: a is a quantum defect of the Rydberg series, 6w is a quadratic
Starkshift of the ground state and ~ is the ionization rate of |[g> in
agreement with Fermi’s Golden rule (both are proportional to the light
intensity). The rapid energy dependence of 3(e) below threshold (e<0) is

reflected in the variation with v = (-—2&)_1/2. Note that the poles of ag(z)

(the quasi energies en) are determined by €, = -1/72 (n - a - y.(en))_2 with the

intensity dependent quantum defect p(e) = -1/w arctan(v/2 (e - Z)_l) in
analogy to the perturbation of a Rydberg series by a single interloper.

We now turn to study the time evolution of the ground state amplitude.
Inverting the Laplace transform by contour integration and using the theorem
of residues we find the ground state amplitude in the dressed state
representation

2 e—i(en—m)t 1/ '!"‘—3 _ v/2

(v) =
E x T (- 7+ (v/2)%(1 +

Y m n

(3.4)

1t/2

+i/2m e‘i(e“")t{ e "2 [ E(-iEt-vt/2) - 21w ST(E) ] - &"Y2 E (-iEtat/2) }

El(x) is the exponential integral and ST a unit step function. Equ.(3.4) shows

that all quasi-energies in an energy interval of width 'r(1+127; v_3)1/2 around

the mean excited energy e are excited and are coupled back to the ground
state. We can, therefore, distinguish between two different dynamical regimes,
namely the (i) two-level limit characterized by v << v e (or a weak

intensity limit) and (ii) excitation close to threshold (or a strong field

limit) where v >> v —3, which is equivalent to TE- = 2w (—2;)_3/2 >> 2w/~ with

T the classical orbit time of the Coulomb problem associated with energy e

€
[16]. In the time domain this last inequality expresses the fact that the
depletion time of the ground state corresponding to the ’ionization rate’ ~ as
induced by the strong laser field is shorter than the classical orbit time for
the electron excited into the Rydberg series.

Under the condition ~ > v = a direct evaluation of Equ.(3.4) is

inconvenient. Instead we prefer to represent the ground state amplitude in the
form of a multiple scattering expansion [17]

ag(t) _ e—i(Z—m)t SI2 (3.5)

0
de ¢! (&) t[i (e—€+h/2)-19D£-) ]e2i1rv[;‘(‘(6)e2i1ru}m—1[g)£—) i (e—g+i'v/2)-l:]

—00

N8

—

m=

with the complex photoionization amplitudes ﬂ)(;) = -i ei"a degg and the

2mi (atp(e))

‘laser-assisted electron-ion scattering matrix x(e) = e In view of

LR _3, e211rv ( which involves the classical action 2mv along a closed

Coulomb trajectory) is a rapidly oscillating function of energy. Therefore
Equ. (3.5) can be evaluated by stationary phase methods. This leads us to the
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follwing interpretation:
For short times t £ 1/7 Tg (i.e., for times much shorter than the

classical orbit time) the ground state amplitude decays exponentially with the
"jonization" rate v (like in a "true" ionization process above threshold).
The depletion of the ground state |g> on a time scale t = 1/7 <K Tg implies

the generation of a radial Rydberg wave packet [16]. The exponential decay law
for the ground state reflects the fact that during the formation of the wave
packet the electron does not "see" the outer turning point of the Coulomb
potential of the ionic core, and therefore for times t <X TE behaves like in

a true ionization process above threshold. For times t 2 T—E— the dominant

contribution in Equ.(3.5) stems from the term with m = 1 which describes the
first return of the wave packet to the inner turning point where it can be
deexcited back to the initial state |g> (stimulated recombination). Similar
arguments can be presented for times t =X m TZ (m=2,3...), so that the

ground state will show population pulsations with the period of the classical
orbit time.

In Figs. 4 we have plotted the ground state probability as a function of
time for different frequencies w and a fixed value of v. Fig.2a represents a
case where only a few quasi energies contribute to Equ.(3.4) giving rise to
slightly modified Rabi oscillations (i.e. the system behaves like a two-level
atom). As soon as the mean ionization time 1/v becomes smaller than the mean
classical orbit time TZ the time dependence of the ground state probability

reflects the dynamics of exciation and deexciation of the generated radial
wave packet. The broadening of the recombination peaks with increasing time
corresponds to the spreading of the excited wave packet.

Table 1: Two-photon ionization rates (1095—1) for ns Rydberg states of H in
circularly polarized light. For a given frequency the close coupling equations

are solved at an energy E = 0.01Ry with four channels (04N, 1£2), EO= 0.1 and
different values T, of the size of the reaction zone. In extrapolating to the

bound state region the energy matrix is ignored, i.e. the ionization rates for
all ns states are obtained from a single calculation above threshold.

L (Ry) I(w/cmz) n close-coupling calculations perturbation theory
L 30 a, L= 100 a, (a) (b)
0.2531 1.79 10** 6 0.285 0.282 0.285 0.286
3 2.28 227 2.39 2.40
V4 7.70 7.66 = 9.12
0.3375 5.67 10** 3 3.09 3.07 3.26 3.27
0.3645 7.72 10*! 5 0.721 0.717 0.732 0.734

(a) from Klarsf eld and Maquet (Ref. 11)
(b) from Aymar and Crance (Ref. 12)
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4. Summary

We have shown that QDT can be applied to formulate a theory of Rydberg
states in laser fields. The essential points we wish to emphasize are: (i) Our
theory gives a unified description of an entire Rydberg series and adjoining
continuum in a laser field; and more generally of radiative coupling between
several Rydberg series and continua in terms of a few energy independent
parameters. (ii) Strong field effects in continuum-continuum transitions are
taken into account from the outset, limited only by the number of channels
included and beyond the validity of (lowest) order perturbation theory. These
results are relevant also for low-energy scattering in laser fields and above
threshold ionization [1,2]. Furthermore the time dependence of transition
probabilities from low-lying atomic states to Rydberg states can be
calculated. (iii) Electron correlation effects (such as auto-ionization and
perturbation of Rydberg series) can be included in the theory and can be
treated on the same level as the radiative interactions [18].
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