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1. Introduction 

The description of the behavior and motion of Rydberg electrons excited by laser 

radiation is an essential element in our understanding of multiphoton processes in 

atoms and molecules [1,2]. Here we consider two aspects of this problem: (i) We 

discuss generation of Rydberg wave packets by short laser pulses; and their detec­

tion in a two-photon experiment with time-delayed pulses [3,4], (ii) We develop a 

theory of excitation of (autoionizing) Rydberg states which from the outset in­

cludes the laser-induced mixing between all bound and continuum states of a Ryd­

berg series [5]. 
When a short laser pulse of duration l excites electrons from a low-lying 

atomic level to Rydberg states, wave packets are formed because (i) photon absorp­

tion from the initial state to the Rydberg series is localized in space in a 

volume of the size of the initial state, which is small compared with the spatial 

extent of Rydberg states; and (ii) provided the laser pulse is so short that 

its spectral width simultaneously excites many Rydberg levels around some mean 

energy En < 0: 

1 1 dE I -!'ill» - (E- - E-) "'--2n n+l n 2n dn 
n 

0) 

Here En are Rydberg energies for the principal quantum number nand TE_ is the 

classical orbit time corresponding to a particle of energy E- moving non a Kepler 
n 

orbit. According to Equ. (l) ~vave packets are excited when the pulse duration is 

short compared with the classical orbit time. In this sense Rydberg wave packets 

can be interpreted as quantum beats between n-states. In Sec. 2 we give a brief 

summary of a recently developed semiclassical formalism to describe generation and 

detection of Rydberg wave packets [3]. In particular, we present a semiclassical 

analysis of a two-photon process with two time-delayed laser pulses: a first short 

pulse excites a wave packet whose motion is probed by a second pulse. This 

provides us with a time and space-sensitive measurement since absorption or in­

duced emission of a probe laser photon can only occur near the inner turning point 

of the classical Kepler orbit where acceleration of the electron is largest [6]. 

Thus the two-photon transition probability will show. peaks, whenever the time 
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delay between the laser pulses in a multiple of a classical orbit time (as long as 

the wave packet has a well-defined structure). 

Our foregoing discussion has emphasized that absorption (emission) of laser 
photons occurs in a finite interaction volume, much smaller than the size of Ryd­

berg orbitals and almost independent of energy. This physical picture is reflected 

in the fact that the oscillator strength distribution from Rydberg states tu other 

bound or free orbits is a smooth function of energy across the Rydberg threshold. 

L~e can make this a basis of a theory of near-threshold behavior of Rydberg states in 

laser fields. The idea is to solve the problem of interaction of laser radiation 

with the Rydberg electron above threshold and then to extrapolate this information 

to the bound Rydberg series [5J using the properties of Coulomb functions [7J. The 

essential feature of this theory is that it considers the interaction with a Ryd­

berg series as a whole (as opposed to treating the interaction with each Rydberg 

level separately). Thus from the outset laser-induced mixing between all bound and 

continuum states of one series is included. Sec. 3 briefly summarizes results 

obtained for strong field excitation of autoionizing resonances [5J. 

2. Generation and Detection of Rydberg Wave Packets by Short Laser Pulses 

~Je consider an atom wi th a single valence electron which is excited by a short 

pulse at time t from an initial state Ii> (energy E.) to Rydberg states. The 
a 1 

electric field has an amplitude e (t), mean frequency wand pulse duration, . In 
a a a 

perturbation theory we find for the electron wave function at a time t > ta + 'a 

after the pulse 

IIIJ(t» with (2) 

0) 
n,l,ml 

Here Inlml > are eigenstates of the atomic Hamiltonian HA for the energy Enl ; I and 

ml are angular 
(a) ( 

0in = Enl -

momentum quantum numbers. The dipole operator is denoted by ~, 

Ei - hwa)/./'i are detunings. The spectral density of the pulse is de-

fined by 

(4) 

If the laser pulse e (t) is short in the sense of Equ. 0), IIIJ(i)(t» describes a 
a a 

Rydberg wave packet; at least as far as the radial motion is concerned: due to 

dipole selection rules only few angular momenta contribute in the sum 0), so 

there is no further localization in the angular variables. Since the spectral 

density l is concentrated in an energy band -fi/, :s E - E. + fiw < fiIT with the a a 1 a~ a 
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maximum centered around En = Ei + nwa , only Rydberg states in this energy interval 

will contribute in Equ. (3). 

We now turn to a discussion of the motion of the wave packet (3). This serves 

as a guideline for our interpretation of two-photon processes with time-delayed 

pulses. We expect that the radial center of the wave packet (to the extent it is 

well defined) follows a classical Kepler orbit. The propagator which governs the 

time evolution in Equ. (3) for t ~ t' is 

gEl (r, r' ) 

rr' 

1 
21Ti 

~ dE e-iE(t-t') x 

(5) 

where gEl(r,r') is a radial Green's function of the atom with outgoing wave 

boundary conditions. The key to a semiclassical analysis and physical interpreta­

tion is to rewrite this Green's function in the form [8J 

(s)( ') gEl r,r (E > 0) (6a) 

(s)( ') 2 . S(E,l,r)S(E,l,r') 
gEl r,r - 1Tl -21TiCv+ex) -21T6 

e -e 
(E < 0, 6 -T 0) (6b) 

The Green's function for an energy E above threshold (E > 0) has been denoted by 

g~~)(r,r') where the superscript indicates that it is a smooth Green's function, 

i. e. free of singularities in E. The explicit mathematical form is not relevant 

f t th · . t 0 f ( s ) ( '). t h· 1 G 'f t . b or us a lS pOln. course, gEl r,r lS no a p YSlca reen s unc lon e-

low threshold since it diverges for r 2 < r -T 00 wi th r 2 the outer turning point of 

the Kepler orbit for the energy E < O. This asymptotic divergence is compensated 

by the second term in Equ. (6b) where S(E,l,r) is the regular solution of the 

radial Schriidinger equation (normalized on the energy scale). S(E,l,rl diverges 

exponentially for E < 0 except at the bound state energies E = _Ry/v2 with v n n n 
= n - ex (n = integer, ex = quantum defect) [7J. As expected the second term in Equ. 

(6b) has poles at these bound state energies. It is the resonant part of the 

Green's function. 

Let us assume that the laser pulse excites a superposition of bound Rydberg 

states. The propagation of I~(a)(t» is then described by 
l 

gEl (r,r') = g~~) (r,r') - 21Ti L e21TiCv +a)m S(E,l,rlS(E,l,r') 

m=l 

(7) 

where we have expanded the resonance denominator in Equ. (6b). Substituting Equ. 

(7) into (5) and (3), and evaluating the resulting integral over the energy (5) in 

a stationary phase approximation leads to the following interpretation: 
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(i) For times t - ta < TEn /2 only the first term in Equ. (7) contributes. It 

describes a radial wave packet moving on a Kepler orbit 

r(t) 

~ ibr dr'= t - ta (t - ta > 0) (B) 

with p(r) the radial momentum of the electron, \! the electron mass and rl the 

inner turning point. We emphasize that - although we have a bound wave packet -
. t t·· d b t· t (s) ( , ) Th·· t . 1. S mo 1.on 1.S governe y a can 1.nuum propaga or gEl r,r. 1.S 1.S no surpr1.-

sing because for t - t < TE /2 does not "know" that its radial motion is bounded) 
a fi 

as it did not have time to "see" the potential barrier near the outer turning 

point r 2• In a two-photon experiment with short pulses (no time delay) and Rydberg 

levels as intermediate states this corresponds to the absence of intermediate 

state resonances (direct process). 

(ii) For times t t > TE_/2 the wave packet is reflected from the outer 
a n 

potential barrier. This periodic motion on a Kepler orbit is described by the 

second term in Equ. (7) 

r(t) 

± ~ 
r l 

with 

--..I!:....­
p(r' ) dr' = t - ta - m • TE_ 

n 

TE = ~ (_E/Ry)-3/2 = ~ v3 

(m = 1,2, .•. ) (9) 

(10) 

According to Equ. (9) the m = 1,2, ••• terms in Equ. (7) correspond to the first, 

second return of the wave packet to its inner turning point. It is possible to ob­

serve this periodic motion in a two-photon process with time-delayed pulses: a 

first pulse at ta excites the wave packet which is probed at a later time tb by a 

second short pulse. As we remarked earlier the transition probability Pf+i will 

show peaks at t; t = tb - ta = mTE_ (m = 1,2, ••• ) since absorption of the probe 
n 

photon occurs near the inner turning point of the Kepler orbit. We emphasize the 

close connection between a resonant two-photon process and the observation of wave 

packets in a time-delayed pulse experiment (indirect or two-step process). 

In Fig. 1 the radial function of r (in units of the Bohr radius) is shown at 

time t -t = = 1/9, 2/9 and 3/9 x TE for a Gaussian laser pulse (duration 8 psec) 
a _ fi 

exciting hydrogen p states around n = 85 (TE_ = 94 psec). Fig. 2 is a plot of a 
n 

two-photon Raman transition probability as a function of the time delay t - ta 
between the two pulses measured in units of a classical orbit time (n = B5; T = 

a 
Tb= 5 psec). The dashed line is the semiclassical (stationary phase) approximation 

which compares well with a calculation based on an explicit summation over 

n-states (solid line). A sweeping of the laser frequency during the pulse can 

lead to an initial contraction of the wave packet (Fig. 3). Finally, Fig. 4 shows 
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Radial motion of the wave 

packet 

0 2 4 
Fig. 3: AVT 

Same as Fig. 2 but with a 

6 

change of the laser frequen-

cy during the pulse 

8 

Fig. 2: AtlT 

Raman transition probability 

as a function of the time de­

lay between the two pulses 

in units of the classical 

orbit time (dashed line = 
semiclassical approximation) 

Fig. 4: AVT 
Constructive (solid line) 

and destructive interference 

(dashed line) between wave 

packets in a Raman experiment. 

interference between two wave packets: the first one is excited at t a , the 

second one by a short pulse at time t I = t + TE (ii = 85). It is possible to 
a a ii 

probe this interference by a third time~delayed pulse at tb = tal + TE_; depending 

on the relative phase between the first and second pulse the two ~ave packets 

interfere constructively (solid line) or destructively (dashed line). 

3. Strong Field Excitation of an Autoionizing Rydberg Series Near Threshold 

~Je consider excitation of an autoionizing Rydberg [9] series in a configuration 
where a first laser excites electron from the groundstate I g> with energy E to 

g 
one of the excited states Ie> (energy E ) by N-photon absorption which is coupled e 
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by a strong laser of frequency w2 to an autoionizing Rydberg series. For weak exci­

tation by the first the ionization is 

R = 1. rl 2 
2 eg 1m 

{ Eg +~~=Ee -E } with (11) 

E= <elD 1 Die> 
Eg +NUJ:t + Ulz-HA +iE:: 

(12) 

the resonant part of the complex selfenergy of Ie> HA is the atomic Hamiltonian, D 

the dipole operator describing interaction with the strong field. For E1 < Ee+w2' 

i.e. in the unstructure,d continuum (Fig. 5), 2: is a slowly varying function 

energy; in the autoionizing region 0 < El + 2 < E1. 2: contains the infinite series 

of Rydberg resonances. To extract this rapid energy dependence we relate the 

"above" and "below" threshold self-energy. We obtain 

.1 
2 2 

0W - ~ (flat continuum) bg lZY 
l+r 2 

2: 

ow - .1 (1+(~) (autoionization) (13) 
bg lZY X+l 

Here oWbg is a back ground shift in the flat continuum above the second threshold; 

Y is the ionization width state Ie> to the first· continuum. The detuning variable 

is defined as 

(14) 

with the effective quantum number v2 given by 

2 
Eg + N l1wl + l1w2 = E1 - Ry/v2 . (15) 

a is the unperturbed quantum defect of series 2 and r is a measure of the configu­

ration interaction between the two channels; the Fano parameter q is a measure of 

the interference between direct ionization of I e> to the first continuum and 

excitation to the autoionizing resonance followed by decay to the continuum. It is 

of central importance that the parameters y, q, a. and ow bg are essentially con­

stant along the Rydberg series and across the threshold. 

We emphasize the following features: 

(i) 2: and, therefore, R contain n-mixing by the second laser of the infinite 

number of Rydberg states in terms of a small set of parameters which vary 

slowly with energy. 

(ii) The two -level result (for a single autoionizing resonance) is obtained by 

expanding the detuning variable x around the Rydberg state n, 

(E N K.. 1<" E Ry/v 2(n)2) x + g + "WI +'~2 - 1 + / 1. r 
2 

(16) 
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R 

with r = 4r2/v~n)3 the autoionization width. This result is valid when r 
and the Rabi frequency for Ie> + In> (which scales proportional to 

(n)-3/2) 
~V 2 are both much smaller than the level separation of the Rydberg 

series. It is remarkable that the generalization from two-level theory to 

infinite Rydberg series can be obtained by the simple substitution rule 

(16) . 

(iii) ~ averaged over the resonance is continuous across threshold. 

In Figs. 6a and b the ionization R is plotted as a function of the detuning of 

the first (weak) 1 aser. At su fficiently low intensities and for well isolated 

autoionizing resonances the two-level approximation for excitation from I e> to the 

autoionizing state is valid. In this case a doublet splitting (AC-Starksplitting) 

of the ionization signal as a function of detuning of the first laser is observed 

ENERGY 

o 

Eg 

0. 
0..0.0.833 

Fig. 6: 
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Fig. 5: Atomic configuration 

Ig> 

R 

0. f.'..... A", 
0..0.0.840. 0..0.0.847 0.0.0.77 0..0.0.83 0..0.0.89 

E E 

Ionization rate R as a function of the detuning of the first (weak) laser 

(AC-Starksplitting of autoionizing resonances). E denotes the final state 

energy in Rydbergs. (a) The two-level approximation is valid. (b) AC­

Starksplitting of overlapping autoionizing resonances. 



( Fig. 6a). The asymmetry of the spectrum is a consequence of the interference 

between direct ionization to the continuum and the indirect (resonant) transition 

via the autoionizing resonance [9]. In Fig. 6b the ionization rate is plotted at 

high intensities and for overlapping autoionizing resonances. Laser-induced mixing 

of many n-states of the Rydberg series is observed. 
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