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%'e discuss the generation and detection of wave packets of Rydberg states by exciting electrons

from a low-lying atomic state with a short pulse to a Rydberg series. To observe the motion of the
wave packet, we analyze a time-delayed two-photon experiment, where the first laser pulse generates

a wave packet, which is then probed by a second short pulse. The two-photon transition probability

shows peaks when the time delay between the pulses is a multiple of the classical orbit time. A
semiclassical formalism is developed to describe the motion of the wave packet and to analyze the
time-delayed two-photon process.

I. INTRODUCTION

%'ave packets, i.e., quantum-mechanical states well lo-
calized in space, play a fundamental role in our concepts
and understanding of quantum mechanics. They refiect
the time evolution of a (localized) coherent superposition
of a system, and thus provide the bridge between quantum
mechanics and the classical concept of the trajectory (or-
bit) of a particle. '

Observation of wave packets and the study of their
motion in quantum-mechanical systems depends on the
possibility of generating localized superpositions of eigen-
states in a controlled way and the ability to detect the dis-
tribution of the wave packet at a later time by a spatially
sensitive probe. An experimentally realistic system is
electrons in Rydberg states where wave packets corre-
sponding to a coherent superposition of many n states
(with n the principal quantum number} can be generated
by exciting the electrons from a low-lying atomic state
with a short laser pulse. Wave packets are formed in this
case because (i) the photon absorption from the ground
state to the Rydberg states is localized in space in a
volume of the size of the ground-state orbital which is
small compared with the spatial extent of Rydberg states
(whose orbitals for small angular momenta are propor-
tional to n ao with tto the Bohr radius}, and (ii) the laser
pulse duration r is short so that its broad bandwidth trt/r
simultaneously excites many Rydberg states around some
mean principal quantum number n:

with F.„ the Rydberg energies and TF the classical orbit.

time corresponding to the mean excited energy E-„.' Ac-
cording to Eq. (1) wave packets are excited when the pulse
duration is short compared to the classical orbit time. In
this sense Rydberg wave packets can be interpreted as
quantum beats between different n states. Although this
concept of generating Rydberg wave packets has been
known, at least qualitatively, for many years, a first
quantitative discussion has only recently been given by
Parker and Stroud. They give an essentially numerical

analysis of the spontaneous emission of an atoin excited
by a short pulse.

In the present paper we give a discussion of the con-
trolled generation, motion, and detection of Rydberg wave
packets with short laser pulses using a semiclassical for-
malism. ' In particular, we give a detailed analysis of
a two-photon process with two time-delayed laser pulses
where the first pulse generates the Rydberg wave packet
whose motion is probed by a second short pulse. This
detection scheme provides us with a time- and space-
sensitive probe since the absorption of a probe laser pho-
ton can only occur near the inner turning point of the
classical Kepler orbit, where the acceleration of the elec-
tron is largest. The probability of the two-photon transi-
tion as a function of the time delay Is.t between both laser
pulses will show peaks whenever Ist is a multiple of the
classical orbit time TE . Finally, we believe that our

analysis is also interesting from the point of view of mul-
tiphoton absorption in short laser pulses.

The paper is organized as follows. In Sec. II we discuss
the generation of Rydberg wave packets by short laser
pulses using perturbation theory and give a simple semi-
classical analysis of the motion of the wave packet. Sec-
tion III discusses the detection of the motion of Rydberg
wave packets in a time-delayed two-photon process.

II. LASER EXCITATION OF RYDBERG
%AVE PACKETS

%e consider an atom with a single valence electron.
This electron is excited from an initial state

~

i ) with en-

ergy E; to a series of Rydberg states by a short laser pulse
of duration r, and mean frequency co, . The center of the
pulse reaches the atom at time t, . The electric field at the
position of the atom x=O can be written in the form

E(x=o,t)=8', (t) ee'+c.c. (2)

with e, a polarization vector and 8', (t) a slowly varying
complex amplitude which we assume to be a Gaussian,

8', (t)=S", 'exp[ —4(ln2)(1+its, )(t t, ) /r, ] . (3)—
describes a phase change during the pulse. ~, is the
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&(exp
(1 icp—, )(bco) r,
16(ln2)(1+(p, )

For weak fields, neglecting saturation effects, we find in
lowest-order perturbation theory and in the rotating-wave
approximation (RWA) for the electron wave function

~
1((t))= [ i &e

' ' + ( y,'"(t) & (5)

g

~
PI"(t))=—f dt'e " p.e, S', (t') ~i )

-i(E +Ace )t'/A
t Cl

(6)

full width at half maximum of the pulse duration of the
electric field. The Fourier transform of 8', (t) is defined
as

8'(waco) = f dt (((', (t)e

2

=g (O)
lT Tg

4(ln2)(1+i cp, )

Here Hz is the atomic Hamiltonian;
~ nlmt ) are Rydberg

states with energy E„~, I and ml are angular quantum
numbers and a„'t';(t) are Rydberg amplitudes. We ig-

nore the fine structure of the atom. For times t & t, +r,
after the laser pulse has passed the atom these amplitudes
are given by

i5'
a„'t~;(ao)= —(nlmi ~It, e, ~.i )5', (5I„")e (7)

CO + 00

Pl = 7t ne
n =n0 Nl = —oo

where 8', (5I„")the spectral density (4) evaluated at the de-
tuning 5;'„"=(E„t E; f—ico, )—/fi If. the laser pulse is
short, the second term in Eq. (5) describes a wave packet.
corresponding to a coherent superposition of Rydberg
states. Note, however, that this is a wave packet only as
far as the radial motion is concerned. Since only few an-
gular momenta 1 contribute to the sum in Eq. (6) accord-
ing to dipole selection rules, there is no localization in the
angular variables 8 and ((). To discuss the structure of the
radial wave packet we rewrite the sum over n states in Eq.
(6) with the help of the Poisson-sum formula

For t ~ t+~, we thereby obtain

(x i QI"(t)) = g — f dEREt(r)Fi '(8,$)e '
Iieet, ; e, S', (5';E')

+ co

+ g e 'J dER (r))''(8$) e ' "~ N'(5") '' "
PEIm, , i

Nl =—co 0

(re+0)

(9)

where E =—9F/v/t, vt ——n —at with at the quantum de-
fect, which depends on abut is approximately independent
of n Rzt(r) ar.e radial wave functions normalized on the
energy scale. For E &0 these energy-normalized wave
functions are related to the usual unit-normalized bound-
state functions R„t(r) by

RF.«r) = dE . dE 2A'
R t(r) with =

3 . (10)
C$7l &i'

In Eq. (9) pzt, ; denotes the matrix element from the ini-

tial state
~
i ) to the energy-normalized excited state with

energy E. It is known that these matrix elements are
slowly varying functions of the energy E across the Ryd-
berg threshold ' and thus —consistent with the R%A—
can be approximated by constants in the integrals of Eq.
(9).

Furthermore, the spectral density of the exciting pulse
is concentrated in an energy band E; +fico, A/r, —
&E&E;+Aco, +file, with the maximum centered at a
mean energy E~ =E; +irtco, . If we are interested in the ra-

' 1/2

p(r) = 2p[E —V(r)]- Pi'(7+1/2)'
f 2

(1 lb)

with p(r&)=p(rz)=0. V(r) is a model potential for the
alkali-metal atom, which asymptotically goes like a
Coulomb potential and p is the reduced electron mass.

By evaluating the integrals of Eq. (9) in the stationary-
phase approximation we find that the center of the wave
packet r(t) follows the classical trajectory of a particle
moving in the potential V(r). Such a stationary-phase

dial motion for values of r between (and not too close to)
the classical turning points r, & r & r2 we can approximate
the radial wave function Rzi(r) by its WKB form'

cos I/iii f dr'p (r') n/4— .
REt(r) =-

r (Stao)' v ir [p(r)ao/A]'

(1 la)

The radial electron momentum is thereby given by
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FIG, 1. Radial Rydberg ~ave packet as a function of r (in

units of the Bohr radius ao) at times ht =t —t, =
9 TF. 9 TE

9 TE, . The laser pulse of duration 8 psec (g, =0) excites a hy-

drogen s state to the Rydberg p series around n =8STE ——94

psec. The wave packet is calculated using a %KB solution for
the Coulomb functions (Ref. 1).

Tg ——m ( E/9P)— (13)

The index m in Eq. (12b) characterizes the mth return of
the wave packet to a particular point r.

The number of Rydberg states contributing to the wave
packet can be estimated from

V

dt's
An ~ 2%—=TF /1 i && 1,

dE E=F
(14)

evaluation is expected to represent (x
~

g;'"(t) ) adequately
as long as condition (1) is fulfilled and t t, »r, .—In
particular, if the spectral density of the exciting laser
pulse is concentrated in the continuum (i.e., E;+%co,

fi/r, &0—) the dominant contribution to Eq. (9) comes
from the points of stationary phase in the m =0 integral,
where

r(t) p r'=t —t, E g0 (12a)p(r')

Equation (12a) is the classical equation of motion of a
particle of energy E & 0, which escapes to infinity. If the
laser pulse excites bound Rydberg states ( E; +fur,

fi/r, gO), —then the terms with m&0 describe the
periodic motion of a bound electron. The stationary
phase condition now becomes

r(t) p+,dr'=t (r, +mTF), m—=0, 1,2, . . . .
p(r')

(12b)
The orbiting time, which corresponds to a bound orbit of
energy E, is thereby given by'

FIG. 2. Radial Rydberg wave packet for ht = —,TE and

(1+ 9 )TE . For the other parameters see Fig. 1.

and is seen to be of the order of the ratio between the clas-
sical orbit time and the pulse length of the laser. Figures
1 and 2 show the motion of the radial wave packet when a
Gaussian laser pulse with r, =8 psec (y, =O) excites a
Rydberg wave packet with n =85 and a classical orbit
time TF ——94 psec. In Fig. 1 we plot the wave packet for

times t —t, =—ht =
9 TF, —,TE, —, TF . Note that the

contraction of the wave packet is due to the slowing down
of the electron motion near the outer classical turning
point. Figure 2 compares the wave packet at time
&t = , 2'F. and (I—+2/9)TE (i.e., one classical orbit time
later). As is apparent from Fig 2, the wave packet spreads
with increasing time. Using a phase change during the
pulse (y, &0) it is possible to influence the relative phases
of the Rydberg amplitudes (7) and to create a wave pack-
et, which contracts during the first few classical orbit
times until it decays (see also Sec. III).

III. DETECTION OF THE %AVE PACKET
BY TIME-DELAYED T%'0-PHOTON PROCESSES

To detect the motion of the wave packet we suggest a
time-delayed two-photon absorption-emission technique:
a first pulse 8', (t) excites the Rydberg wave packet at
time t„which is probed at a later time tb & t, +~ by a
second short pulse 8'b(t) of duration rb and mean fre-
quency cob. The simplest version of such a two-photon
detection scheme is a Raman process where the second
pulse deexcites the Rydberg electron by induced emission
to a (low-lying) bound state

~ f ) with energy Ef. Using
perturbation theory, the probability of finding the electron
in state

~ f ) at the time t & tl, +xi„after the probe pulse
has passed the atom, is

(15)

We can rewrite Eq. (1.5) in the form
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t

Pt;(t) =I dtx, J d'xt I dt, I dttS(x„t, ;xt tt)tlt' (xt tt )[dt;'"(xt tt)]' (16a)

with the sensitivity function of our detection process

~(x( t)'»2 tz)=&x(IIb eb lf&&f lp eb lxz&e ' ' ' ' &b(t()@'b(tz) . (16b)

A»s apparent «om Eq. (16b), S( x,(t (, xz, t 2) is only sig-
nificant in the regions

I x(
I I xz I «o and

I t( —tb
I

I tz —tb
I «b and is therefore well localized in time and

space as long as all distances (times) of interest are much
larger than the Bohr radius (pulse duration).

In other words, the spatial localization of the induced-
photon-emission process near the inner turning point of
the classical orbit provides a space- and time-sensitive

probe of the wave packet. As we already noted in Sec. II
this is refiected in the approximate energy independence
of the dipole matrix elements p@/ (ibx;) between

I f)
(

I
i) ) and the energy-normalized Rydberg-state wave

functions
I
E). ' This picture of the time-delayed two-

photon Raman process as a spatial- and time-sensitive
probe of the Rydberg wave packet can be brought out
more clearly if we write Eq. (15) in the form (for simplici-

ty we suppress in the following the angular momentum

quantum numbers)

0
I(tb, t, ) = g e' f dE 8' b(5/E') 8', (5;'E')

m+0,

-lsfE'tb+l5 F.

)& exp(2n im /v' EISF—),
(19)

where in agreement with our discussion of Eqs. (12) we
will identify the m =1,2, . . . term with the contribution
due to the first, second return of the wave packet

I g,'"(t)) to its inner turning point. We have left out the
term with m =0 in Eq. (19) (including the continuum
contribution) assuming t, tb & T—x »r„rb [see the dis-

cussion following Eq. (9)]. Evaluating the integral in Eq.
(19) by a stationary-phase approximation we obtain

' 1/2

P/;(t)= ), [a„' '/(00)]'a„"';(00)

=
I & 1('/( (t)

I P,'"(t) & I

' . (17)

I(«)= g e""4)
dzp

g(ttt)

tn

X@' '(&f ' )@',(&'." ) (20a)

with the phase

iti(E) = (E;+fico,—E)t, If&+(Ef—+%cob E)tbIh-
+2mm [a+(—E/9P) 'f ],

and the points of stationae phase E™determined by

(20b)

(tb ta)—+mTE( )=—0
E(t)t) S

S

(m =1,2, . . . ) . (20c)

The second derivative of the phase is given by

,'rtm ( —E,' '/A') —8' &0.
dE E=E(~}

(20d)

Equation (20a) is expected to be a good approximation to
Eq. (18) as long as tb t, »r„rb and condition —(1) is ful-
filled.

For a given time delay bt =tb t, [Eq. (20c)] deter-—
mines the stationary energies E,' '= A'(mMI&ht) f-
with m =1,2, . . . . The dominant contribution to the
sum in Eq. (20a) comes from stationary energies with

Es Et' +~a Ef+~b EH which implies that
ht =mTF, i.e., the time delay between the exciting and

probing laser is a multiple of the mean classical orbit

2%~ —l'5(b)r +in")lI(t t ) y g a(6(b))g (6(a)) t fnib+tsin ia

n =no +(n)

(X) —iS(b&l +lb'."l
dEg «(6(b) )g (8(a)) fE b+ iE tt

0

(18)

Using the Poisson-sum formula (8) we find

Here
I QI '(t)) is a wave packet [compare Eq. (6)] which

is created if we excite Rydberg states from state
I f ) with

a laser pulse I'b(t). In Eq. (17}we assume that t & tb+rb
and tb —rb & t, +r, . As the wave function

I p/ '(t) ) is lo-
calized near the nucleus, the overlap I &QI (t)

I P (t)) I

will be large when the time delay tb —t, between the
pulses is a multiple of the classical orbit time TF . The

population of state
I f ), P/; as a function of tb t, will—

thus display peaks at tb —t, =mTE where m =1,2, . . .

corresponds to the first, second, etc. return of the wave
packet I(t(t';"(t}) to the inner turning point; at least for
times where the wave packet

I g,'"(t) ) has a spread which
is small compared with the dimension of the classical or-
bit. Note that for rb » TE Eq. (17) is proportional to the

populations of the Rydberg states.
According to Eq. (17), the transition probability Pf is'

proportional to the square of the modulus of
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'0 2

FIG. 4. Same as Fig. 3 with ~, =7q ——10 psec.

approximation for short times which is not unexpected
since Tz /i;=9 5is n.ot a large parameter.

The possibility of infiuencing the widths and heights of
the peaks in the signal Pf; as a function of b, t by a
change of the laser phase during the pulse (i; =rb —12.5
psec, y, = —yb

—1) is shown in Fig. 5. Note that the
sharpest peak occurs for b,t=2T~ (n=85). Finally in

Fig. 6 we plot the time dependence of the transition prob-
ability for a time delay bt up to 35 classical orbit times
(n =85) and i; =~b =8 psec. As has been first discussed
by Parker and Stroud, , a revival of the wave packets can
be observed.

It is interesting to note that not only the matrix ele-
ments pE;(oaf ) from Rydberg states to low-lying bound
states are approximately constant as a function of E but
also matrix elements describing the ionization from the
Rydberg state to the continuum. ' This arises from the
fact that even for a bound-free transition the absorption
of a photon is localized in space near the inner turning
point of the classical orbit, as is well known from a semi-
classical theory of radial matrix elements. "' Thus the
ionization probability in a two-photon ionization experi-
ment with time-delayed pulses will show a structure simi-

time. The number of m values hm which contribute to
the sum in Etl. (20a) for a given b, t is determined by the
condition

~
E, + ' —E,' '~ =filr, This way we obtain

approximately b.m = —', [1/(
~ E„~r, /fi)]At /TF. . For

small time delays, i.e., b, t/T~ & —,
'

(
~ E„~r, /fi), we there-

fore expect well-isolated peaks for the transition probabili-
ty Pf; at the positions ht/Tz ——1,2, . . . . The shape of
these peaks is thereby determined by the Fourier
transform of the pulse envelopes. For large time delays,
i.e., b, t /TF. » —,

'
(

~ E~ ~
r, /fi), many m values contribute

to Eq. (20a), giving rise to a complicated dependence of
Pf; on bt.

In Fig. 3 we plot Pf; as a function of b, t = tb t, —for a
pulse duration ~, =v~ ——S psec. The time delay bt is mea-
sured in units of the classical orbit time TF ——94 psec

(n =85). The sohd curve was obtained by summing over
the n states using Eq. (18). The dashed line corresponds
to the semiclassical approximation Eq. (20). The first few
recurrences of the wave packet lead to isolated peaks at
time delays 8 t/TE ——1,2. In Eq. (20a) these peaks corre-

spond to contributions from m =1,2. With increasing
time delay the peaks broaden until they finally overlap
giving rise to a complicated interference pattern in the
time evolution. Equation (20a) is seen to be an excellent
approximation to the sum (18). For larger times Eq. (20a)
smoothly interpolates the rapid oscillations of Eq. (18).
This is due to the fact that the stationary phase approxi-
mation of Eq. (20a), which is valid for tb —t, »v„is, '

automatically averages out the rapid oscillations on the
time scales r„i.b, which are still contained in Eq. (18).

Figure 4 shows Pf; as a function of b, t for a laser-
pulse duration of i; =i.t, ——10 psec, the other parameters
being the same as in Fig. 3. The long laser pulse leads to
relatively narrow peaks which broaden very slowly when
compared with Fig. 3. Equation (20a) is seen to be a poor

FIG. 3. Two-photon Raman transition probability P~; (in
arbitrary units) for an s~p~s transition as a function of the
time delay ht between the two laser pulses measured in units of
the classical orbit time TE ——94 psec corresponding to n =85.
The laser pulse duration is v; =~b ——5 psec (y, =yb ——0). Both
lasers are tuned to exact resonance E;+Pm, =EI+Acoq. The
dashed line corresponds to Eq. (20), the solid line is a ca1culatiott
based on Eq. (18) summing from n =60 to 120.

FIG. 5. Same as Fig. 3 but the lasers are phase modulated
with y, = —q q ——1. The pulse durations are ~, =~q ——12.5 psec.
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20

FIG. 6. Same as Fi . 3 wit"'g. with ~, =rb ——8 psec. A revival of the
wave packet is observed (Ref. 4).
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