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Two-photon collisional redistribution of radiation
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We study collisional redistribution in the presence of two weakly exciting laser fields, including
the effects due to degeneracy of the radiator states. A general expression for the total redistributed
intensity is derived valid for arbitrary detunings and polarizations of the exciting laser fields. In
particular, this expression contains all single- and sequential-collisional contributions, which are
equally important under certain circumstances. We also point out the similarities and differences
between the redistributed intensity as calculated in this paper and collisionally aided radiative excita-
tion cross sections, which have been studied previously.

I. INTRODUCTION

Scattering of light by atoms undergoing collisions with
a dilute foreign gas is an important tool for studying in-
teratomic interactions. ' In the binary-collision regime,
where the duration of a strong collision r, is much small-
er than the time interval between different collisions, the
spectrum of the low-intensity scattered light from an
atomic transition in a two-level system is centered around
two different frequencies: (a) Rayleigh peak, centered at
the frequency of the laser field, coL, which is scattered; (b)
redistributed peak, centered around the atomic transition
frequency ~o. The redistributed peak, which vanishes in
the absence of collisions when the lower state is a ground
state, contains information about the interatomic interac-
tion between the laser excited atom and a perturber atom
from the dilute foreign gas. We can distinguish between
two limiting cases. In the first case,

~

coL —coo~ r, &&1
(impact limit), the redistributed peak contains global in-
formation about the collision processes in the form of S-
matrix elements, which determine the frequency-
independent collision rates. This is due to the fact that
the collision between the atom and a perturber occurs in-
stantaneously in comparison with the time scale charac-
terizing the laser excitation process of the atom. Each
collision is therefore completed. The other limit is real-
ized in the far wing, where

~

coL —coo
~

r, &&1 (quasistatic
limit). Now the time scale of the excitation of the atom
by the laser field is much smaller than the duration of a
collision and the redistributed intensity contains detailed
information about the collisional process.

For a nondegenerate two-level system we can distin-
guish between two limiting cases in the quasistatic re-
gion. In the first case,

~
coL —coo

~

&&kT/A', the perturber
motion is unaffected by the presence of the laser excited
atom. In a classical path treatment the perturber may be
described by a straight-line trajectory and the total redis-
tributed intensity is proportional to the dressed state exci-
tation rate. These rates have been calculated in the con-
text of collisionally aided radiative excitation (CARE) by
Yeh and Herman or Light and Szoke. However, in the

other limiting case,
~

coL —coo
~

)kT/A, the perturber
motion is affected by the presence of the radiatively excit-
ed atom and field-dependent contributions to the collision
operator (correlated events) significantly influence the
redistributed intensity, as has been shown by Burnett
et al. They lead to factors like exp[ —R(coL coo)/kT—].
In this situation, the simple CARE cross section and the
corresponding rate as calculated by Yeh and Berman
may no longer give an adequate description of redistribu-
tion.

Considering the more realistic case of degenerate atom-
ic levels the field-dependent corrections to the collision
operator (correlation effects) even become important as
soon as we go outside the impact region as has been
shown by Burnett and Cooper. This is due to the fact
that the orientation or alignment of atom and perturber
are more strongly correlated than their translational
states. These types of correlations determine, for exam-
ple, the degree of polarization of the redistributed intensi-
ty. These effects can be sometimes simply modeled
within a simple reorientation model. '

The study of CARE cross sections has been generalized
to two-photon excitation in weak fields by Yeh and Her-
man. ' In particular, they investigated a nondegenerate
three-level atom undergoing collisions with a perturber
and calculated the two-photon excitation cross section for
various dynamical cases. The perturber was assumed to
move on a straight-line trajectory. In a light scattering
experiment, where two laser fields excite an atom in the
presence of collisions and the fluorescence radiation from
the final to the intermediate atomic state is observed, the
two-photon excitation cross section is proportional to the
total scattered intensity including Rayleigh scattering and
redistribution in the one-perturber limit.

In this paper, we study such a two-photon light scatter-
ing experiment and focus our attention on the calculation
of the redistributed intensity associated with the transition
of the excited atom from its final state to the intermediate
state. In particular, we shall consider a realistic atom and
consider a J=0~J= 1~J=0 type two-photon excita-
tion (e.g;, in an alkaline-earth atom) in the presence of col-
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lisions including all effects due to the degeneracy of the
intermediate state. Our treatment therefore contains
correlation effects due to reorientation of the atom-
perturber system, which manifest themselves in the depen-
dence of the redistributed intensity on the polarizations of
the exciting laser fields and which cannot adequately be
described within a nondegenerate three-level system. Us-
ing the methods of Burnett et al. ' we derive a general
expression for the redistributed intensity valid for arbi-
trary detunings of the laser fields from their atomic tran-
sition frequencies in comparison with the collision time

In our treatment we also include contributions to the
redistributed intensity due not just to a single collision but
also subsequent collisions. Our general expressions are
not limited to detunings less than kT/A and are therefore,
in principle, able to describe situations where the classical
path straight-line trajectory approximation breaks down.
However, we shall restrict our discussion to weak laser
fields in the sense that the ground state of the atom
remains undepleted and the one-photon Rabi frequencies
are much smaller than the inverse duration of a collision.

The paper is organized as follows. In Sec. II we present
the problem under consideration together with a discus-
sion of all approximations used for further treatment. We
focus in particular on the reduced density matrix of the
radiator and represent finally the stationary solutions.
They are the input needed for the calculation of the redis-
tributed intensity, which is the main object of Sec. III.
There we outline the calculation of the two-photon excita-
tion spectrum in general terms and finally give a general
expression for the redistributed intensity, which is the pri-
mary goal of this paper. The discussion of different
dynamical cases, which are all included in this formula-
tion, is given in Sec. IV. Sections II—IV focus on the
physics involved in the two-photon laser excitation in the
presence of collisions. Technical details of our calculation
together with the definition of the collisional correlation
terms and estimates of their orders of magnitude are given
in Appendixes A—F. Appendix G deals with the connec-
tion between the total redistributed intensity we calculated
in Sec. III and dressed-state CARE cross sections.

ATOM
{RADlATOR}

'E{t) TWO LASER
,
FlELDS

VACUUM MODES

N . PERTURBERS

FIG. 1. Schematic representation of the dynamical system.
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where ej., j=1,2 are the polarization vectors of two (con-
tinuous wave) coherent laser pulses of frequencies co~ and
co2. In particular, we study an excitation process schemat-
ically shown in Fig. 2. The first laser (co&,e&) excites the
radiator (e.g., an alkaline-earth atom) from its ground
state

I g & with energy Ez, and total angular momentum
J=0 to a manifold of degenerate states I I

e; & I, i =1,2, 3
with energies E, and J=1. The subscript i thereby indi-
cates the different magnetic quantum numbers mq. The
second laser (co2, e2) induces a transition to the final state

I f & with energy Ef, which for simplicity, is assumed to
be nondegenerate (J=0). In addition, the atom may be
excited to

I f & directly from Ig&. As long as the detun-
ings of both lasers from their atomic transition frequen-
cies are much smaller than the corresponding detunings
associated with all other atomic states, the dynamics of
the radiator due to the electromagnetic field may be
described by an effective Hamiltonian H,ff for the degen-
erate three-level system

I g &, I I
e; & I, I f&. Treating the

interaction of the atom with the laser fields in the dipole
approximation we find

II. THE DENSITY-MATRIX EQUATIONS

%e study a system as schematically shown in Fig. 1. A
neutral atom (radiator) is excited (for convenience) by a
classical electromagnetic field consisting of two laser
fields. The coupling of the atom to the other modes of
the electromagnetic field, which do not carry photons,
causes spontaneous decay and level shifts, which may be
absorbed in redefined atomic energies. The radiator is
surrounded by X neutral perturbers, which collide with
the radiator. These perturbers, often noble-"gas atoms, are
supposed to have such high exc:itation energies in compar-
ison with the radiator, that they can neither be directly ex-
cited by a collision process nor by photon excitation and
their internal structure may therefore be neglected.

Let us first of all consider the interaction of the radia-
tor with the classical electromagnetic field

2

E(t)= g eJS'Je ' +c.c. ,
j=1

3—
2

XII.,&le &«I
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FIG. 2. Atomic configuration.
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6) ——(Eg+kco) E—, )/A,

b,2 ——(E, +fx02 Ef—)/I,
are the detunings from resonance and

(2b)

(2c)

are the Rabi frequencies for the transitions ~g) —+
~
e;)

and
~
e;)~

~ f ), and

f
e;)= [e;)e

(2d)

If &
=

I f&e

are rotating atomic states. In this effective Hamiltonian
the influence of the two laser fields on the atomic dynam-
ics has been taken into account in lowest-order perturba-
tion theory in the laser fields (rotating-wave approxima-
tion). Quadratic Stark shifts due to the laser fields and
the direct coupling between the ground state

~ g ) and the
final state

~ f ) via all other (nonresonant) intermediate
states have therefore been neglected as they are of second
order in the fields and would give negligibly small contri-
butions under the conditions in which we are interested.
We further neglected ionization assuming that the contin-
uum cannot be directly reached from

~ f ) by absorption
of a photon (co~, e~) or (~2,e2).

The coupling of the radiator with the vacuum modes of
the electromagnetic field may be treated within the Mar-
kov approximation giving rise to constant spontaneous de-

cay rates. This requires that all times characterizing the
evolution of the atom —laser-fields —perturber system are
much larger than the correlation time wz associated with
the vacuum modes. As ~z is typically the time for a pho-
ton to cross the atom and is of the order of 10 ' s, this is
not a severe restriction. For the density operator p(t) of
the combined system consisting of the radiator (interact-
ing with both laser fields, which are turned on simultane-
ously at t =0) and N perturbers the equation of motion is
then given by

crate three-level system under consideration, the relevant
tetradic matrix elements of I are given in Appendix B
[Eqs. (84)]. The turn-on time for the field is unimportant
since we will only be interested in the long-time solution
of Eq. (3). In Eq. (3) the motion of the radiator has been
neglected (i.e., we do not use the hydrodynamic derivative
tl/dt ~8/Bt +v 7}.

We want to derive an equation of motion for the
reduced density operator of the radiator cr(t)
=Tr~,„„,~„Ip(t)I, which allows us to calculate all one-
time averages of radiator observables. However, we are
not allowed to eliminate the perturbers within the Markov
(impact) approximation as we are interested in situations
with arbitrary relative time scales between radiator and
perturbers. In order to reduce the complicated (N+ 1)-
body problem of Eq. (3) we shall make the binary-
collision approximation (BCA). Thereby we assume that
strong collisions, which may not be treated by perturba-
tion theory and are characterized by the (strong) collision
time r, ( = 10 ' s for a typical van der Waals broadening
collision), are well separated in time. " This implies that

1
c ((

Xc
(4)

where y, is a collisional dephasing or decay rate in the
impact limig, whose inverse characterizes the time be-
tween different collisions. Within this approximation, the
solution of the (N+1)-body problem is reduced to the
solution of a two-body problem: the. collision of the radi-
ator in the presence of the laser fields with a single per-
turber. We stress, however, that sequences of such binary
collisions are fully accounted for in our formulation.

For convenience we can define a projection operator
H. . . =p~Trz„,„,&„,I . . I. p~ is thereby the equilibri-
um (but not necessarily thermal equilibrium) density
operator of the N (noninteracting) perturbers in the ab-
sence of the radiator atom with the normalization
Tr„,„„„b„,Ip& I

= 1. Hp(t) then represents the "factor-
ized" part of the full density operator of the radiator-
perturber system. Starting from Eq. (3), we can derive
with the help of the methods described by Burnett et al.
the equation of motion for the reduced density operator
o(t) =Tr~,„„,„„,Ip(t) I, which is given by

with

p(t) =(L,ff+Lp + V++I )p(t), t &0 (3)

dt
o(t) =[L,fr+ I +N Tl p(pp V~ )]o(t)

1L.tt "= .~[H.tt, . . . l

N

g [pJ/2M, ' ],
j=1

1 N

Viv =,.~ g [VR(J»
j=1

pj is the kinetic momentum operator of the jth perturber
and M its mass. VR(j) is the interaction potential be-
tween the radiator and the jth perturber. I is the (time-
independent) spontaneous decay damping operator and
acts only within the radiator subspace. For our degen-

+ I, dt'M(t t')o(t') . —

M(r) =N TrpI V)G)(r) V)pp j, (6a)

where the two-body (tetradic) time-development operator
G

& (r) fulfills the equation of motion

This equation is valid as long as t &&~„because effects
due to initial correlations of the radiator-perturber system
[i.e., (1—H)p(t =0)&0], which decay on a time scale of
order z„may then be neglected. Within the BCA the
memory kernel M(r) is given by
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Gl(r) =(L,rr+Lp+ Vl+I )Gl(r), w& 0
d7.

Gi(v =0)=1 .
(6b)

Lp and Vl represent now the free motion and the interac-
tion potential for one perturber. The X perturbers have
been assumed to be statistically independent and each one
may be described by a density operator pp. Trz is now
the trace over the states of one perturber. In the follow-
ing, we shall neglect inelastic collisions. Vl therefore
represents an effective interaction which couples only de-
generate radiator states and is brought about by virtual
transitions to all other (radiator) states. In addition, we
shall assume a spherically symmetric collisional environ-
ment for the radiator, which will, by use of rotational in-
variance properties, simplify our analysis considerably.
Further, we shaH for simplicity assume that the ground
state of the radiator is not affected by collisions, i.e.,

v, lgg»=o.

I
0, g I

r„
I 0/, I r, (& 1,

I IIeg I
(&max[

I
~l

I

all damping ratesj,

I nf, I
&(maxt

I
b,z I, all dampiilg rates] .

(8a)

(8b)

(8c)

The first condition [Eq. (8a)] allows us to calculate the
full time-evolution operator Gl(w) in perturbation theory
in the laser fields [see Appendix A, Eq. (A3a)j. The
memory kernel M(i. ) is now expressible in terms of the
(zero-order) time-evolution operator for the collision be-
tween radiator and perturber [see Eq. (A3b)]

This can only be valid as long as small separations be-
tween radiator and perturber, where they certainly start to
repel each other and invalidate Eq. (7), do not significant-
ly influence the collisional quantities of interest, i.e., the
excited state should be much more polarizable.

As far as the laser intensities are concerned, we shall in
this paper restrict our study to the case of weak fields, i.e.,

+ OO

Go(~) = lim dx e
2lr ~ 0 —~ x i(L~—+Lp+ V(+I )+ie

or (d/d~)Gp('7) =(Lg +Lp+ V( + I )Go(~) and it is no longer necessary to calculate the collisional dynamics in the pres-
ence of the laser fields. Note that Go(1 ) contains the effects due to spontaneous decay represented by I". As r, is of the
order of 10 ' s, Eq. (8a) is not a very severe restriction for laser intensities often used in multiphoton experiments. The
second and third conditions, Eqs. (8b), and (8c), allow us to calculate the density operator, Eq. (5), also perturbatively in
the laser fields. But we shall allow for arbitrary values of b. l, b,2, and b, , +hz in comparison with I/r, . It is the case
where the detunings b. l, b,z, or b, i+ 6,2 become larger than 1/~„which is of most interest in our study. Under these con-
ditions, the characteristic time scale of the radiator evolution in the laser fields becomes shorter than the collision time ~,
and we become able to investigate details of the intracollisional evolution process.

Under the conditions stated above, Eqs. (4), (7), and (8), we find for the stationary ( t~ oo ) reduced density-matrix ele-
ments of the radiator the expressions

(eg")'& '&J. ll( lljg &&i
1

3
ag(eg) =-

~i+'[y /2+y g(~l)]

1
E( e) y (

( l)—e (1)
( 1) i[~]i/2

1 1 0
g), gp

2
I

& '&J~ll(ulled~ & I I +i I 1+C(K, eeeg, z =0)
X Im

Pe+7 ~(+i [y./2+y. g(~»j

1+C geg, z =0+i+~2+i [(yf/2+ [ fg(~(+~2) j &i+i[y, /2+y, g(~l)]

1 1o~(f e)= g e "g, ( —1)~(e'
g, )*(eq,")"( —1) '

(10)

1 1 Ki
1

Q ql Ql q3 92 Ql 62+i[(y, +y/)/2+yg, (b2)j

1+C(K(,feee, z =0) 1+C(K(, eeeg, z =0)
X Im

y, +y" ~l+i[y /2+3 g(~l) j
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+ 1+C(fefg, z =0) 1+C(fgeg, z =0)
~1 +~2+1[7f/2+3 fg(~1+~2)l ~1+& [1e/2+) eg(~t) J

Dl(Kl, feeg, z =0)+D2(K1, feeg, z =0) D3(K„fege, z =0)—l +l~1+1[1',/2+) .g(~l)] ~1 i—[1'./2+)'. g(~l)l

&o(ff)=
g), g2, g3, g4

1 1 Kl 1 1 Kl
&&1&j.llvlljg&&ll'[Kl) q, q, g, q, q, g,

1XIm.
52+ [(7 +7f )/2+ Vf, ( 2)]

1+C(Kl,feee, z =0) 1+C(K1,eeeg, z =0)
X Im

y, +y" ~1+ [1'./2+7. (~1)l

+ 1+C(fefg, z =0) 1+C(fgeg, z =0)
61+b 2+i [yf /2+ yfg (51+b2) ] b 1 +i [y, /2+ y,g ( b 1 ) ]

Dl(K1, feeg, z =0)+D2(K1, feeg, z =0) Ds(K1, fege, z =0)
l +i

~1+& [)'./2+X.g(~1)] ~1 i[1'./2—+)'.g(~»l
I

with

o(2(lm)=((jjlKQ l
o(t~ac))), i, m =g, e,f .

The bars above the angular momentum labels indicate the
rotating states of Eq. (2d). The details of the derivation
are outlined in the Appendixes A—C. (jf l lp l lj, ) and
(j, l lp l ljg ) are reduced dipole matrix elements [see Eq.
(86)). y, and yf are the spontaneous decay rates of the
populations of the radiator manifolds I l

e; ) J and
l f )

(see Appendix 8). y,g(61), yf, (b2), and yfg(31+62) are
collisional dephasing (destruction of optical coherence)
rates of the radiator coherences indicated by the sub-
scripts. y is a collision rate acting within the excited-
state manifold t l

e; ) I and is not dependent on any detun-
ing. The first-order field corrections of the collisional in-
fluence of the perturbers on the radiator are described by
C(K„feee, z =0), C(K1, eeeg, z =0), C (fefg, z =0) and
C(fgeg, z =0). The arguments thereby indicate the
tetradic elements which they couple. D, (Kl,feeg, z =0),
D2(Kl, feeg, z =0), and D3(Kl,fege, z =0) represent the
second-order field corrections to the memory kernel
M(r). All these collisional quantities are defined in Ap-
pendix C.

III. REDISTRIBUTED RADIATION

In this section, we study the spectrum of the spontane-
ously emitted radiation corresponding to the transition

l
f)~

l
e;) of the radiator For we. ak laser fields, this

spectrum will consist of three lines (see Fig. 3): A line cen-
tered at frequency (a) co=Eg/A+col+u12 E, /A' due t—o
two-photon Raman scattering from the ground state, a
line centered at (b) co =u12 due to "collisional-induced Ray-
leigh" scattering from a collisional component of the
excited-state population, and a "redistributed" line at fre-
quency (c) co=(Ef E, )IR. Peaks (b) an—d (c) can only
occur in the presence of collisions. The widths of these
lines are determined by the spontaneous decay and col-
lisional damping rates. The quantity in which we are par-
ticularly interested is the total redistributed intensity,
which is obtained by integrating the redistributed peak (c)
over a frequency range much larger than the width of this
peak. The other peaks in this paper will be assumed to be
well separated from peak (c).

Again, as in Sec. II, we consider the radiator atom,

~a ~a+&
~

(b) (0)
FIG. 3. General structure of the (weak-field) spectrum corre-

sponding to the spontaneous decay
l f )~

l
e; ).
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which is excited by the two laser fields (to~, e~) and (coq, ez)
and interacts with N perturbers and the vacuum modes of
the electromagnetic field (see Figs. 1 and 2). The station-
ary (time-independent) spectrum of the spontaneously
emitted radiation corresponding to the transition

I f )~[
I
e; ) } of the radiator I(to, e) is given by '

I (to, e) ~ 2Re f dr e'"'C(r) (1 la)
0

with

co and e are the frequency and polarization of the spon-
taneously emitted photon and d, d+ are the correspond-
ing dipole transition operators. U(r) is the (tetradic)
time-development operator of the whole system. Treating
the spontaneous decay again, as in Sec. II, in the Markov
approximation, U(r) obeys the equation of motion

d U(r)=(L,tt+Lp + V~+I )U(r), r)0 .

d~
C(r) =Try [d 6 (r)},
6 (r) =Trp„,„,b,„,[ U(r)[p(t ~ oo )d+] }

=g &e Ip'e'*If) Ie &&f I

3
d+=(d )t= g &e,

I p e*
I

f)*
I f)&e;

I

.

(1 lb)

(1 lc)

(1 ld)

with U(v=0) =1. Trz indicates the trace over all radia-
tor states, i.e., [ I f ), I

e;) } due to the dipole transition
operators of Eq. (11d). p(t) is the density operator of the
whole system [see Eq. (3)].

Using the projection-operator technique outlined in
Burnett et al. we find within the BCA the equation of
motion

6(T)= [L ff+ I +XTrp(pp V] )]G (r)
d

G7"

7 t
+I dt'M(r t')G(t')+X—Trp ppV&Gi(r) lim I dt'6&(t t')V~o(t'—)d+

0 (12a)

with the memory kernel M(r t') and —time-evolution operator 6, (t t') of Eqs—. (6). This equation has to be solved
with the initial condition

G(&=0)=o(t~ oo)d+ (12b)

as may be seen from Eq. (11c) under the assumption that the dipole transition operator acts only within the radiator sub-
space. The last term in Eq (12a). represents the contribution to the spectrum, which is caused by spontaneous emission
during a collision between radiator and perturber and corresponds to the D terms calculated by Burnett and Cooper. In
addition to the Markov approximation for the spontaneous decay and the BCA [see Eq. (4)] for our further treatment we
shall make the same assumptions as in Sec II: neglect of inelastic collisions, spherically symmetric collisional environ-
ment of the radiator, no ground-state interaction, and weak fields as characterized by Eqs. (8).

From Eq. (1 la) we find the spectrum

I(co,e)~2Re I dre ' g &e; ld
I f)&f I

6(r) le;)
i=1

= ~-, &Re[ed&jf lit llj. &*«jfj.lqI6(z=~ —~z)&&].
2

In the last line, e has thereby been decomposed into spher-
ical components e=g e~e~ (see Appendix B) and rela-
tion (B6) has been used. The bars associated with the an-
gular momentum labels again indicate the rotating states
of Eq. (2d);

6(z)= J dre"'6(r)

is the Laplace transform of the correlation function 6 (r)
and obeys the equation [see Eq. (12a)]

J(z)=ia(t~ oo )d+

+XTrp [pp V& 6~(z)6 ~ (z =0)V~ io (t~ oo )d+ },
(14c)

where G~(z) is defined in Appendix A. This equation
determines the tetradic elements

«jfj, iq I
G(z=co —co2))),

with

[ z i [L,tt+1 +M(z)] }G—(z) =J(z) (14b) which are needed for the evaluation of the spectrum of
the emitted light.

Our primary interest will be the evaluation of the spec-
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1~1+~2I 1~21»V. Vf Y. .

Under these conditions, we may define
~2—~2+ "I

I„d(e)= f dcoI(co, e),

(15)

(16a)

where the range of integration is determined by g with

Ve Vf Ye «9« 1~2 I I ~1+~2I (16b)

If condition (15) is violated, redistribution of radiation,
Rayleigh and Raman scattering become indistinguishable

trum around the redistributed peak (z=co —co2- —h2).
Using the methods of Appendixes 0 and F for estimating
the orders of magnitude of the collisional quantities
M1(r), M2(r), and the last term in Eq. (14c), it turns out
that these contributions are at most of order V, r, in com-
parison with unity and are therefore negligible in the
BCA.

The total redistributed intensity I„d(e) is well defined
as long as the peak in the spectrum centered around
Et' A)2 —A2 is well separated from the Rayleigh and Ra-
man peaks, which requires

and start to interfere with one another. The integrations
are, however, quite straightforward if we wish to put to-
gether both Rayleigh and redistributed components. In
fact, if all three peaks overlap, because

~
b1+b ~ ~, ~

Ap
~

& maxI V„Vf,Y, I, in the weak-field lim-
it the above-defined quantity will become equal to the to-
tal scattered intensity [as may be seen from Eq. (14b)]

I,.d(e)~ J d~I(~, e)~
3 1&&fill llje& I'~o(ff) (»)

and the concept of a redistributed component becomes
physically meaningless. However, we shall not at this
stage pursue these cases and shall restrict further discus-
sion on situations where condition (15) is fulfilled. From
Eqs. (13), (14b), (14c), (10), and Appendix 8 together with
the relation

dx . —+ —im as a/g —+0—'9 X+LA

we find after a tedious but straightforward calculation for
the redistributed intensity

I,.d(e)
3 J &Jfll1 llj. & I'91&jflli flj, &@'2I'

I &j, lli lljg&&1I'~,

1 1 K 1 1 K

&I &2 &3 &4
Ic:,Q

1 1
X

b2 —i [(Y,+Vf)/2+Vf, (hz)] b2

1+C*(K,feee, z =0) Ye+2V g(b, 1)—2611mC(K, eeeg, z =0)
'Ve+'V &1+[Y,/2+ V„(&1)]'

+ 1+C*(fefg, z =0) 1+C*(fgeg, z =0)
~1 l [Ye/2+—Yeg(~1)] ~1+~2 1 [Vf/2+3 fg(~1+~2)]

iD1(K feeg, z =0)+iD2(K feeg, z =0) iD3 (K fege, z =0)
~1 1 [V./2+—Y.g(~1)] . ~1+i[V./2+V. g(~1)]

+ Im
2 1.

Vf 2+i [(V, +Vf ) /2+'Yfe(52) ]

l. +C(K, feee, z =0) Ve+2Veg(b1) —2b11mC(K, eeeg, z =0)
'Ve+ T ~1+[Y,/2+ Y.g (~1)]'

+ 1+C(fefg, z =0) 1+C(fgeg, z =0)
61+1[Ve /2+7 g(6e1)] 61+52 1+[1f /2+Vfg(61+62)]

iD1(K, feeg, z =0)+iD2(K, feeg, z =0) iD3(K, fege, z =0)
~1 +1 [V, /2+ V.g(~1 )]

+
~1—l f Y./2+V.g(~1)]

1 1+C*(fgeg, z =0) 1+
~1 1 [Ye/2+1 eg(~1)1 ~1+~2 1 [ Vf /2+Yfg(~1+~2)1 ~1+~2
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This complicated expression is the main result of our pa-
per and will be discussed and simplified in Sec. IV. As a
general feature we observe that the redistributed intensity
is independent of the polarization of the emitted photon e,
which is due to two facts: The J=0 symmetry of the
state

I f ) and the negligible contribution of spontaneous
emission during a collision [represented by the second
term of Eq. (14c)] to the. redistributed intensity. If we had
studied the spectrum of the spontaneously emitted radia-
tion corresponding, to the transition from

I f ) to a dif-
ferent unexcited state manifold I I

e ) I with energy E, ,
the redistributed peak would have been centered around
frequency to = (Ef E, )/—fi. Equation (18) would still
describe the total redistributed intensity under the condi-
tions of Eq. (15) provided we made the replacement
(2~/3)

I &jfllPlli. & I

' (2~/»
I &Jf lie III'& I

'.

IV. DISCUSSION

The expression for the redistributed intensity [Eq. (18)]
is valid for arbitrary relative values of 4~, 42, A~+ A2, and
the inverse collision duration ~, as long as a redistributed
intensity is well defined and condition (15) is fulfilled so
that Rayleigh, Raman, and redistributed components are
well separated. To get some insight into the different
dynamical situations Eq. (18) describes, we shall now
study three limiting cases.

A.
I

t), q I
r, » 1,

I
Iz

I
r, « 1

Using the estimates of Appendix D for the collisional
quantities and assuming y, ~, &&1, we see that the redis-
tributed intensity of Eq. (18) reduces to

d«)"
3 I & Jf I le I lj. & I

' —'
I &if I lv I li. & ~z I

'
I &i. Ilail ljg &@'i

I

'
e g ~4

1 1 E 1 1 E

q&, q2, q3, q4,
K, Q

+2yf (6z) 2y,z(b &) —y —2b, &lmC(K, eeeg, z =0)
y +2 (y, +y )~i

(19)

Thereby we have rationalized the denominators in Eq. (18)
using

1 1 . y+l + ~ ~ ~

5+i@ b,
(20)

l,z(h~) =2y,~(b, ~) —26~1mC(K, eeeg, z =0), (21)

which describes quasistatic absorption of the laser photon
(to&, et) at the internuclear distance Rs followed by the
propagation of the radiator- (in the excited-state manifold

I I
e;) I) perturber system to the end of the co/lision In.

and neglecting higher orders in (y/
I

b,
I

) according to
condition (15).

Due to the short time of interest associated with the ab-
sorption of the first laser photon (co~,e~), i.e.,
1/

I
A~

I
&&r„ the redistributed intensity contains detailed

information about the radiator-perturber collision through
y,e(b, ~) and ImC(K, eeeg, z =0). As the laser photon
(to~, e~) is absorbed instantaneously due to the Franck-
Condon principle (at internuclear separations Rz between
radiator and perturber, at which a stationary phase point
occurs and where the interatomic potential can make up
the energy difference fih~), y,s(b, &) is determined by the
behavior of the interatomic potential around Rs (see dis-
cussion in Appendix E). ImC(K, eeeg, z =0) describes the
influence of the first-order field correction of the collision
operator on the redistributed intensity. Burnett and Coop-
er defined

I

the case of a degenerate excited-state manifold I I
e; ) J,

this completion of the collision is associated with a
reorientation of the radiator-perturber complex and
ImC(K, eeeg, z =0) is of crucial importance. In particu-
lar, in the antistatic wing of 6&, where [Eq. (F3)]

2b &ImC(K, eeeg, z =0)~—y

y,g(b, ))~0,
the redistributed intensity therefore goes to zero. without
the term ImC(K, eeeg, z =0), I„d(e) would become nega-
tive in this limit. For a nondegenerate excited state,
ImC(eeeg, z =0)=0, which reflects the fact that no
reorientation occurs and m J-state mixing during the com-
pletion of the collision after the absorption is therefore
unimportant.

As the time of interest associated with the absorption of
the second photon (coz, ez) is quite large in the sense
1/

I
b,z I

»r, (i.e., we are in the impact limit), no detailed
information (beyond that contained in completed collision
S-matrix elements) about the internuclear difference po-
tential between the manifolds I I f )] and I I e;)] enters
the redistributed intensity. yf, (b,z) is (to order

I
b.z I

~, )

independent of 52 under this condition and contains only
global information about the internuclear difference po-
tential in the form of S-matrix elements. '

Equation (19) may be interpreted as the result of a
two-step process. First,
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1 1 K
(

(I) )e (I)( 1)iz[K]1/2
e3 e2 Q

8'F

Xe+'Y
(19")

(19')

is the rate of creating a multipole component K of the ex-
cited state due to the absorption of a photon (co(,e().
[Emission from this excited state should give rise to a
redistributed photon of frequency co = (E, E~ ) /A'—.]
Then, in the second step,

y, +2y/, (b,z)8F——8'
y, +yy+2yy, (&2)

(19"')

is the rate for creating this redistributed photon with the
total transition rate 8' from the K-multipole of I I e; ) I to

I f ) given by

is the probability of creating a redistributed photon of fre-
quency co=(E/ E,—)/)iiby absorption of a laser photon
(co2, e2) before the multipole is destroyed by spontaneous
decay or subsequent collisions;

1 1 K 11, y, +y/+2 y~, (b&)

Note that in Eq. (19"') the rate of creating a Rayleigh
scattered photon at frequency co=co2 has been subtracted
from the total transition rate 8' [see condition (15)]. If

I 621 were less or of the order of [(y, +y/)/2]+ yf (A2),
Rayleigh scattering and redistribution around
co=(E/ E, )/A' would—become indistinguishable, because
peaks (b) and (c) in Fig. 3 would overlap. Under this con-
dition, the quantity defined in Eq. (16a) would still be
given by expression (19) provided we replaced the redistri-
bution rate 8'F of Eq. (19")by the total transition rate W
from I le;) I to

I
f). The redistributed intensity is then

proportional to o o(ff), because the contribution of the

Raman peak (a) is of higher order in y/ I hi
I
. Thus the

factor I [y, +2y/, (b,2)]/[y, +y/+2y/, (52)]I in Eq.
(19'") represents the branching ratio for redistributed radi-
ation, but with redistribution also occurring due to the de-
cay y, of the lower level. '

With the help of the estimates of Appendix D with

y, r, &&1 and relation (20), the redistributed intensity
reduces in this case to the- expression

d«)"
3 I &Jpll(MI fi. & I

'
9 I &i/I f(L('ll&' &&21'

I &J. f fr I le &&) I

'
~

1 1 E 1 1 E

Oj 92 V3 V4

K, Q

1 y, +2y,x(~()
y/ (y, +y ) I ~(+ [y, /2+ y,z(&) )]'I

2y~, ( b, 2) —y —2b zIm C (K, feee, z =0)
Q2

(22)

Now the laser photon (co2, e2) is absorbed instantaneously
at a certain internuclear separation, whereas the laser pho-
ton (co(,ei) is absorbed during a time much larger than the
duration of a collision. The redistributed intensity there-
fore contains detailed information about the internuclear
difference potential between the manifolds I I f) J and

t I
e; ) J through y/, (h2) and ImC(K, feee, z =0) but only

global information about the difference potential between
the states I I

e;) J and [ lg)] in the form of 5-matrix ele-
ments as y,~(h() is evaluated in the impact limit. y/, (4q)
is determined by the properties of the internuclear differ-
ence potential in the region of the internuclear separations
Rs, at which the absorption of the laser photon (co2, e2)

occurs. The quantity

I &, (b2) =2y&, (52) —2b21mC(K, feee, z =0) (23)

describes a collision with the radiator in the excited-state
manifold, which is interrupted by the absorption of the
laser photon (co2, e2) at the internuclear separation Rs.
In Appendix C we have pointed out that
C(K=O, feee, z =0)=0, which implies that this kind of
collisional quantity is unimportant in the case of a nonde-
generate excited-state manifold I I e;)]. In the case of a
degenerate excited-state manifold its importance may be
seen most drastically by considering an antistatic detuning
b,2. In this case, we have (see Appendix F)
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2621mC(K, feee, z =0)~—y

yf, (52)~0
and the redistributed'intensity goes to zero. Without the
collisional quantities ImC(K, feee, z =0), it would be-
come negative in this limit.

Equation (22) may also be interpreted in terms of a
two-step process. First,

1 1 K
(

(1) )e (1)
( 1)72[K)1/2

Q

3 „, I ~j. lit llj

(22')

is the rate of absorbing a photon (co),e() and creating
thereby an excited-state population with a multipole K.
Then,

(E)
(22lt)

Te+X
is the probability of absorbing a photon (co2, e2) from this
excited multipole and giving rise to a redistributed photon
of frequency co=(Ef E,—)/A' before the multipole is des-
troyed by spontaneous decay or subsequent collisions;

1 1 K
gr(K) y (

(2) )e (2)
( 1 )'14[K]1/2

g4 Q9) V4

IK(g )
K

&&
3 ~, I&jfll~lli, & 2I'

+2

(22"')

is the rate of creating this redistributed photon.

I ~1+~2 I ~.» 1

Rationalizing all denominators in Eq. (18) by using Eq.
(20), we find for the redistributed intensity the expression

d«)
3 I &Jflls III. & I'-'

I &Jflls IIJ. &&2 I'I &I'lls Iljg&~) 12
~

1 1 E 1 1 K

0& i2 V3 94
K, Q

l,g(~l) —yK I fK, (b, 2) yK-
Q2 Q2

l,g (~))+ I f, (&2)—y 2yf, (b,2) 2y, (5))
5)iI)2(b, )+62) b)b2(h)+62)

2yfg(b, )+b,2)

b. )52(b, )+b 2 )2

+ 2 ImC(fefg, z =0)+2 ImC(fgeg, z =0)
~)~2(~)+~2)

2ReD1(K, feeg, z =0) 2 ReD2(K, feeg, z =0)—2 ReD3(K, fege, z =0)

(24)

which reduces to Eqs. (19) and (22) in the corresponding limits.
According to our estimates for the collisional quantities in Appendix D we now have to keep the contributions of the

second-order collisional quantities. As the structure of Eq. (24) is quite complicated we may gain some additional insight
by also considering the calculation of the redistributed intensity in a dressed-state formulation. ' Using the results of
Appendix G the total redistributed intensity of Eq. (24) is proportional to the stationary dressed-state population in state

I
III), which is given by

1 dQ„
cr», »1(t oo)= 4m f —du u f(u)u f 2vr f db b

yf V 0 4~ li)
I ) ) III )

( II2) ( II3

I & III
I
X)," I cr;; ( t~ oo ) . (25)

't

This expression is valid for weak fields in the classical
path approximation with straight-line trajectories.
& III

I
X ) '," is thereby an optical collision (CARE)

8-matrix element between the dressed states li ) and
I
III). The redistributed intensity of Eq. (24) contains,

therefore, two different types of contributions.

(a) Sequential-collisional contributions: First, a
dressed-state population cr;;(t~ oo ) (i&I) is created by an
optical collision and a subsequent collision excites the ra-
diator perturber system from

I
i ) to

I
III). These types

of contributions are represented by the first term in Eq.
(24).
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(b) Single-collisional contribution: Within one single
collision, the radiator is excited from the ground state to
the dressed state

I
III) and gives rise to a redistributed

photon. This process is described by an S-matrix element
& III

I

X),' ' and corresponds to the terms in large
parentheses in the last three lines of Eq. (24). It is in-
teresting to note that

I &III
I
X),' '

I
describes absorp-

tion during a collision, propagation in the excited elec-
tronic state and further absorption [second term of Eq.
(G6)] as well as direct two-photon absorption [first term
in Eq. (G6)] plus interferences between both events.

The dressed-state formulation of the redistribution
problem has a possible advantage over the procedure we
used in this paper when both detunings are large, as long
as all radiator states are nondegenerate and the integration
over the directions of the perturber velocity is trivial, i.e.,f (dQ„/4m)= l. In this case, we simply have to evaluate
S-matrix elements, which is alot easier than the calcula-
tion of the nested integrals of Eq. (El). However, as soon
as radiator states are degenerate (which is unavoidable)
the averaging over the velocity directions of the perturber
has to be performed and this simplicity is lost.

Let us now study Eq. (24) in different limiting cases to
get some feeling for the relative importance of various
terms.

(1) All detunings antistatic. The times of interest for all
transitions in the radiator, i.e., I g )~ I I

e; ) I,
I I e;) I~ I f ), and

I g )~
I f ) are much shorter than the

collision time r„but in this case there does not exist any
stationary phase point associated with any of these transi-
tions. As outlined in Appendix F, this implies that the
dominant contribution to the collisional quantities comes
from weak collisions, which allows us to get some simple
relations between them. Inserting the expressions of Ap-

pendix F [Eqs. (F2) and (F3)] into Eq. (24) we find that

I„d(e)~0 .

The main feature we observe is that

(26)

ReD2(K, feeg„z =0) ReD—3(K, fege, z =0),
C(K, feee, z =0),
C(K, eeeg, z =0),

and

contribute equally to the redistributed intensity and lead
to the cancellations necessary to achieve this result.

(2) AI, 2()2 quasistatically and XI+52 antistatically de-
tuned. Again, all characteristic times associated with the
various transitions of the radiator are short in comparison
with the duration of a collision but the transitions

I g) —&I
I
e;) J and, I I

e;) I~
I f) now occur at a certain

internuclear separation, whereas the transition
I g )~ I f )

does not have a stationary phase point. In Appendix E we
briefly discuss the quasistatic picture of absorption at a
certain internuclear separation and also give an estimate
for Re(D2 D3) in the q—uasistatic limit in the case of a
nondegenerate intermediate state for simplicity. This esti-
mate together with Eq. (D9) and the discussion of Appen-
dix G shows that for an antistatic detuning of 6&+62,
ReD2 —ReD3 gives the dominant contribution to the total
redistributed intensity provided all detunings are suffi-
ciently large, i.e., I

b,r, I
&&I for a R radiator-

perturber interaction. For quasistatic detunings of b, I and
A2 we can therefore write

lred«)~ I &~/I

leaf

l~. & I
'7

I &~II I) I l~. & &2 I I &J. I ls I I&s & &I I

g) ~$2~$3.$4~
K, Q

1 1 E 1 1 E
(

(2) )s (
( I ) )e( I )24 (2) ( I )

( I )22 [K]
e4 eI Q e3 'V2 Q

2ReD2(K, feeg, z =0)—2ReD3(K, fege, z =0)
X( —1)

Vf
(27)

Xe ))'V (28)

which is the case for sufficiently low perturber densities.

as long as 6&+62 is antistatically detuned. This expres-
sion represents the picture of a single-collision quasi-
molecular two-step absorption The laser photon (co(,eI)
is absorbed at the internuclear separation R~, the

1

radiator- (in the excited-state manifold [ I
e; ) I ) perturber

system subsequently evolves until the internuclear separa-
tion As is reached, where the second laser photon (co2, e2)

2

is absorbed.
In Eq. (27) we have neglected the subsequent collision

contribution in comparison with the single-collisional con-
tribution. This is certainly no problem as long as

I

But in the opposite limit, where

1 ))Pe
C

(29)

roughly increases like (
I
6I

I r, )
~ . For sufficiently large

detunings
I
AI

I r, »1,
I 62 I r, »1 the subsequent-col-

lision contribution [first term in Eq. (24)] is therefore

this is no longer obvious. Using the estimate of Cooper'
we find that the ratio [I s(b, I)]/y varies as (

I
b, I I r, )'

for a van der Waals potential, whereas Eq. (E16) shows
that

2 ReD2(K, feeg, z =0)—2ReD3(K, fege, z =0)
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indeed negligible in comparison with the single-collision
quantities.

(3) All detunings quasistatic. If there is also a station-
ary phase point associated with 5&+52 a redistributed
photon of frequency co=(Fi E,—)/A' can also be generat-
ed by the direct absorption of both photons (co&,e&) and
(co2, ez) during a single collision [first term in Eq. (G6)].
In general the single-collision contribution to the redistri-
buted intensity contains now information about this direct
two-photon process, the two-step process of Eq. (27), and
interferences between the amplitudes of both these pro-
cesses. Qualitative insight into the relative importance of
the various contributions may be obtained by considering
the case of a nondegenerate intermediate state as discussed
in Appendix G. Equation (66) in particular shows that as
long as points of stationary phase are well separated, the
two-step contribution dominates for large detunings such
that for a R interaction

~
4

~

' "
&& 1 (which is the

ratio between the interference and the two-step term).
The direct two-photon contribution is consequently smaB-
er by —

~
hr,

~

~ . For these large detunings the
subsequent-collision contribution [first term in Eq. (24)] is
also negligible, as has been shown above, and the total
redistributed intensity is again given by Eq. (27).

(4) Other cases. An asymptotic evaluation of the
second-order collisional quantities becomes quite compli-
cated in other cases where some detunings are antistatic
and others quasistatic. However, we can get some qualita-
tive insight by considering the CARE transition probabili-
ty

~
(III ~X)I '

~
for a nondegenerate three-level sys-

tem in the weak-field limit as given in Eq. (G6). This ex-
pression shows that the total redistributed intensity goes
to zero as soon as 6]+62 and dL~ or 6]+62 and A2 are
antistatically detuned due to the fact that the sequential-
collisional contributions also vanish in this case.

(co2, ez).
If all detunings are larger than the inverse collision

time, new types of collisional quantities, which cannot be
studied by one-photon collisional redistribution, become
important. If 6& and A2 are quasistatically detuned, all
points of stationary phase well separated and all detunings
sufficiently large, the redistributed intensity is dominant y
determined by a "molecular" two-step process. The pho-
ton (cubi, e2) is absorbed at a certain internuclear separation
and the radiator-perturber system subsequently evolves
with the radiator in the excited-state manifold I ~

e; ) I un-
til the second photon (to2, ez) is absorbed at that internu-
clear separation, which matches the corresponding differ-
ence potential. As soon as, in addition to b, &+A&, 6& or
62 are also antistatically detuned, the redistributed inten-
sity becomes vanishingly small. If all three detunings are
quasistatic and points of stationary phase not well
separated or detunings not sufficiently large, the situation
is quite complicated, because interferences between the
transition amplitudes associated with the molecular two-
step process and the direct two-photon excitation may be-
come important.
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APPENDIX A EVALUATION OF THE STATIONARY
REDUCED DENSITY-MATRIX ELEMENTS

V. CONCLUSIONS

We have studied collisional redistribution of radiation
in an atom, which is excited by two weak laser fields via a
degenerate intermediate state and undergoes collisions
with a bath of structureless perturbers. In particular, we
have investigated the total redistributed intensity corre-
sponding to the atomic transition from the final to an in-
termediate state. Qur general expression for the redistri-

. buted intensity is valid for arbitrary polarizations of the
exciting laser fields and arbitrary detunings of the laser
frequencies from the atomic transition frequencies and
contains information about different kinds of collisional
events. If bz is in the impact region and hi quasistatical-
ly detuned, it measures a process where a photon (co„e,)

is absorbed at a certain internuclear distance and the sub-
sequent completion of the collision causes a reorientation
of the radiator-perturber system This typ. e of process has
also been studied in one-photon collisional redistribution
by investigating the polarization of the emitted pho-
ton. ' If, on the other hand, 5& is in ihe impact limit
and A2 is quasistatically detuned, the total redistributed
intensity contains information about a collision with the
radiator in the excited-state manifold [ ~

e; ) I, which is in-
terrupted by the instantaneous absorption of a photon

OO

0( t) = lim dx e '"'o'(x+i e)
2& e~O

This yields

[z i (L,tt+I )]a—(z) =io(t =0)+iM(z)o(z)

with

(A lb)

and

[z i (L,tt+Lp+—V, + I )]Gi (z) = i 1

M(z) =%Trp I [ Vi 6 i (z) Vi + Vi ]pp j .

According to the weak-field conditions [Eq. (8a)], we may
write up to second-order perturbation theory in the elec-
tromagnetic field

G i (z) =Go(z)+ Go(z)L/Go(z)

+Go(z)LpGO(z)LpGO(z)+ '

We start from the equation for the reduced density
operator ~(t) [Eq. (5)], where the BCA has already been
made and perform the Laplace transformation

o.(z)= I dt e "b(t), Imz ~0 (Ala)
0

with the inverse
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with the unperturbed propagator

Go(z) =
z i—(L +L +V, +I )

Thereby, we defined

Leff ——Lg +LE

(A3b)

(A3c)

where Lz is the diagonal part of L,ff and LE contains the
nondiagonal part due to the laser fields of amplitudes 8']
and 8'2. Up to second-order perturbation theory in the
laser fields, we find for the Laplace-transformed collision
kernel

with [K]=2K + 1. The operator

I j]m] j2m2»=
I
j]m] &&j2m2

I
(82)

is called a tetradic vector and is defined in terms of the ra-
diator states

I
j;m; & with total angular momentum j; and

magnetic quantum number m;. If L. . . =(1/i]]t)[0, . ]
is a Liouville space operator, corresponding to a Hilbert
space operator 0, its matrix elements with respect to two
tetradic vectors are given by '

M(z) =Mp(z)+M](z)+M2(z)

with

Mp(z) =N Trp I [ V]Go(z) V] + V] ]Pp I

M](z) =XTr I V] Gp(z)LEGp(z) V]]op I

(A4)
—&a

I
c & & b

I
0

I
d &*) . (83)

Treating the coupling of the radiator atom to the vacu-
um modes in Markov approximation and lowest-order
perturbation theory, thereby neglecting the atomic
motion, the tetradic matrix elements of I are given by '

M2(z) =J]]' Trp t V] Go(z)LE Go(z)LE Gp(z) V]ppj

The subscripts indicate the order in the electromagnetic
'field. The stationary solution of the reduced density
operator is then given by

«J]J2&Q I

I
I
J]J2J] Q » ~KK'~QQ'(Tl ]+YY2) (84a)

and

zo.(t~ ao ) = lim —.o(z)
z —+0 l

(AS) «J j ]&Q
I

I
l
J2J2I]. Q »

Evaluating the tetradic matrix elements in Eq. (A2) with
the help of the relations of Appendixes B and C finally
yields in lowest-order perturbation' theory in the laser
fields 8'] and 8'2 for taboo the stationary density-matrix
elements of Eq. (10).

APPENDIX B: TETRADIC VECTORS
AND THEIR MATRIX ELEMENTS

Ji K
[~]1/2

m] —m2 —Q
(81)

In order to exploit the spherical symmetry of the distri-
bution of the perturbers around the radiator, we represent
the reduced density matrix of the radiator in an irreduci-
ble tetradic basis with respect to the rotation group, which
is defined by

Ij]j21]Q»= g I j]m] j2m2»( —I)"
m&, m&

+++j +j J2 J2 K
[j2]/2 ]~QQ'~KK'

J& lr

(84b)

y; k is the spontaneous decay rate from state Ii & with
angular momentum j; to state

I
k &. In the dipole approx-

imation it is given by

4 3

Y' k=
I &J;llrllJk & I

'
3c (2j;+1) m=E, E„)o.—(84c)

with the fine-structure constant a, the speed of light c,
and the position operator of the electrons r.
y;=sky; k is the total spontaneous decay rate from
state Ii &.

Matrix elements of the dipole Liouville operators LJ.
which describe the coupling due to the laser field 8'J are
evaluated using the relation

i&«j]j2I]'Q ILJ I
j3j41]"Q'»= —g(e&")*(—I)'( —I) ' '&J,J,&j] llpllj3 &&I j',~,~,GQ Q

+pe,' '( —1)" "(—1)'+ + 'n, , &j, lli. llj, &8',*;g„GQQ
q

with E&,E2 )E3,E4 and

(Bs)

K' 1 E E' 1 KGK'K
( 1 )~1+J3+Q [~]1/2[+.r]1/2

O'Q Q' e —Q j]
L
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J]
=( — )

'

, &Allvlljz&.

APPENDIX C: DEFINITION
OF THE COLLISION OPERATORS

In this appendix, we shall perform the angular integra-
tion over the directions of the perturber velocities and
simplify thereby the tetradic matrix elements of the col-
lision operators of Eq. (A4). In the negligible ground-
state interaction approximation [Eq. (7)] all matrix ele-
ments with V,

I jsj~00&& on the right-hand side vanish.
On the other hand, all collisional matrix elements with
«jfjfOOI V& on the left-hand side also vanish if we
neglect inelastic collisions even if the final state is per-
turbed. As has been shown by Burnett et al (in. th. eir
Appendix C) this is related to the fact that

I f & is nonde-
generate and is valid as long as the influence of bound
states of the radiator-perturber system on the collisional
quantities is negligible. In the following, , we shall assume

The polarization and dipole operator are thereby decom-
posed into their spherical components (i.e.; ej ——g eqi'eq

and p=g pqeq with eq defined in Brink. and Satchler
q

[formula (4.37)]). The reduced dipole matrix elements are
defined by

&Jim'
I p I jzm2&

that this is thc case. Lct us now discuss thc remaining
collisional quantities determining the dynamics of the ra-
diator in the laser fields.

1. Zero-order collisional quantities

Assuming that the equilibrium density operator of an
ensemble of perturbers and the interaction between radia-
tor and perturber are rotationally invariant, we can sim-
plify the tetradic matrix elements of the collision opera-
tors of Eq. (A4) considerably. For these purposes we de-
fine new collision-frame (tetradic) vectors by

I jij2«» =g
I jij2&Q »~g, (II),

Q

IAj~&Q&&=X[~gq«)]' IAj2«&& .

The new basis
I j&j2«» is obtained from the

laboratory-fixed basis
I j&jzICQ» by a rotation of the

coordinate system such that the new z axis, for example,
is always directed antiparallel to p (the kinetic momentum
of the perturber in a classical path approximation) and the
orthogonal directions are defined in an arbitrary way. 0
here indicates the three Euler angles necessary for describ-
ing the rotation. Neglecting inelastic collisions the
tetradic matrix elements of the zero-order collision opera-
tors of interest are of the form

I

«J'iJ'2&Q
I
Mo(z)

I

J'iJ'2&'Q'» =&fd&, fdpp «J'iJ'2&Q
I «PP I [Vioo(z) V&+ Vi ]pp I

J'iJ'2&'Q'»

=2 & fd»'«JiJ2«
I «Pp I

[ViGo(z)Vi+ Vl ]PP I
JiJz&'e'»

q, q

X dQ Ngq(Q)[&g q (0)]'=5xx.5gg JJ'JJ'M (z) .2' J[J2 (C&)

iJ'Jj',M (z) =
P i ~P2~P 3~@4~

q

In the second line we have thereby used the assumption of rotational symmetry of the collisional environment of the ra-
diator. fd0 denotes the integral over all possible orientations of the collision frame (Euler angles) and is given by Brink
and Satchler (Appendix V). The bars over the quantities j indicate the rotating states of Eq. (2d) (with I g& = lg&).
Mo(z) is therefore diagonal in K and independent of Q. Using relation (81) we find (for integer j&,jz)

Ji Jz & J& J2
1) 2 4 —P& P2 O' —P3 P4 9'

&&&f d'pid'p2«J 1P1pl J2P'2pl I
V1Go(z) Vi+ Vi

I JiP3pz jzp4pz»p(p2) (C3)

with the radiator states in the collision frame
I
jp&.

Thereby, we have assumed pz to be diagonal in the
momentum states

I p & with p(p2) =
& p2 I pz I pz & and the

normalization 4vr fdpp p(p) =1.
The collisional decay rates in the reduced density-

matrix equations of the radiator are then given by

i 1J2MK( )
[i2i 1M'( )]eJ1J2 J2J1 (C5)

t

It is thereby understood that the imaginary parts (shifts)
have been absorbed in redefined atomic energies. Using
the relation

y,g(b, i) = —Re[;AM'(z =0)],
yf, (b,, ) = —Re[f;M'(z =0)],
yfg(hi+52) = —Re[fqM (z =0)],
y = —Re['„'M (z=0)] .

(C4)

we immediately recognize that J~'z'M (z =0) is purely
real. Neglecting inelastic collisions, each of the atomic
manifolds

I f&, I I
e; &I, and

I g& is complete (as long as
scattering states are complete and bound radiator-
perturber states may be neglected) and y

= as well as the
quantities /~M (z =0) and ff M (z =0) vanish. "
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2. First-order collision quantities

Assuming no-ground-state interaction and neglecting
inelastic collisions (and also bound and quasibound states),
in lowest-order perturbation theory in the laser fields only

I

four first-order collisional quantities enter the reduced
density-matrix equations [Eq. (5)]. We shall now discuss
them and perform the average over perturber directions
under the same assumptions as in Appendix C 1.

Let us consider first the quantity

«J,J,K'Q
I
M, (z)

I J,j, lg'&)

r&I(&J',jeKvi I
~iGo(z) lj,j,Kzvz&&&&J Je'K'zgz ILi IJ' jslgs&&&&J' jglQs I

Go(z)l i IJ,J', lq4&&ppI
0) C2 ig V4

K2, Q2, Q3

x&gq (A)[&g'q (Q)]*&g q (Q)[&gq (fl)]* . (C6)

Thereby we have neglected inelastic collisions and have transformed to collision frame (tetradic) states lj &j zKq)) using'

the relations of Eq. (Cl). Taking into account the contraction formula for rotation matrices as given by Brink and
Satchler (Appendix V) and performing the integration over all Euler angles as in Appendix C 1 we find with the help of
relation (B5)

with

((J,J,KQ
I
M, (»

I j,Js lg'» = ((J,J,KQ
I
L

~ I J,Js lg')) C(K,eeeg, z) (C7a)

C(K, eeeg, z) = 1 E 1 1 E1
1

)Pz+P4
Vi —pz Q ps —p4 Q

x~ f d pld pzd psd p4&&j.pipi j,pzpl I
V1Go(z)

I J pspz J p4ps))

«&J,espz, J,ops I
Go(z) 1'i

I J.psp4, J,Op~&&p(p4) . (C7b)

Similarly, we obtain for the other tetradic matrix elements of interest the expressions

«jfjgOO IMi(z) Ijej lg'» = «jfjg00 ILz Ij ejg 1g'»C(fgeg z)

((JfJ lg
I
M&(z) lj fj 00)) = ((jfj, lg I

L
~ Ijfj 00))C(fefg z),

«jfj.lg I
Mi(z) Ij.j.K'Q'» = «jfj. lg

I L, Ijj,K''Q'))C(K', f«e, z)

%'lth

«fgeg, z) =g s & f d'pid'pzd'psd'p~&&JfOpi J,Opi I
l'iGo(z)

I jfOp»j, ops&&

(CSa)

x«J,vp»j, ops IG, (z)v IJ,vp j,op, )&p(p, ),

«fefg»=g s & f d'p'id'p'zd psd p4((Jfopl J @pl I

1'i Go(z)
I jfopz j.ops»

(CSb)

x «Jfop„j,ops I
Go(z) 1'&

I Jfop4j, op4&&p(p4),

and

C(K', feee, z) = ( —1
)~z+~4

1 E' 1 1 K'

Vi —Vz Q' ps —p4 Q'

XN f d Pid Pzd Psd P4((Jfopi~JePzpi I
1 iGo(z) IJfopz~JePsps&&

«&J.Vip»J, Vsps I
Go(z) l'& jlPsp4 J,l 4P4&&P(P4)

Using again the arguments of Burnett et al. (i.e., neglecting inelastic collisions and bound radiator-perturber states) im-

plies C(K =0, feee, z =0)=C(K =0, eeeg, z =0)=0.
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3. Second-order collisional quantities

Similarly, as in Appendix C 2, we find for the second-order collisional quantities, which determine the dynamics of the
reduced density matrix of the radiator in the weak-field. limit, the expressions

«Jfi. lQ 1~2(z) lj,jgiQ'&&= g e,"'(e,'")'( —l)" " 1 1 Kj 1 1 JCi

—e2 Q —Ql Q' —el —Ql

with

1 1XlK, l 2
—&ifllPllje &&J, IIPlljg &*&*,@'2lD1(Kl,feeg z)+D2(Kl, feeg z),g2

1 1 EI 1 1 K)
«JfJ, lQ

I
~2(z)

I igie l Q'
&&

= g (eq" )*(eg")*(—l )"[Kl ]

z, , g,

1 1

3
& Jf I IS I li, & &j, I IP I lJg & &1@'2D3(K 1 fege, z)

(C9a)

D 1 (Kl,feeg, z) =
P (*IJ2eP3~84

Q)

( —1)~2 P4
1 I K) 1 1 K)

P4 P3 —Q 1 P2 P 1
—Q 1

X+ f d J 1 d P «6Jfop»J Pep2I1l lGO(z)
I Jfop2~JeP4P3&&

X «Jfop»igops I
Go(z)

I ifop4, igOps » «J.Plp4 i ops I
Go(z) l 1 ~ i,P3p6,j,op6&}p(J16)

D2(K1,feeg, z) =
jtl2yP3e e ~ ~ e P 7p

Q)

( —l) '
P3 P2 Ql P7 P6 Ql—

XX f d p, . d p «j6fopl, jP2pl~ +1GO(z)Ijfop2 J P4p3&&

X «JeP3P2t~JeP4P3 I Go(z)
I JePsp4iJeP6ps &&

X«j.p p.,j Op IGo( )~ IJ,p p,J,op &&J(J ), (C9b)

D3(K1, fege, z) =
P2,P3, . . . , P7,

Q)

l )93+85' x,
P3 P2 Ql, Ps —P—7 Ql

X~f d'J d'J. &&Jfop i.P p I
~ Go( )ii~op„J,P p»

X «Jep3P2~Jep4p3 I Go( )
l Jepsp4~Jep6ps &&

X «Jgop4 JeP6ps I Go(z) &1 IigOp6 i.P7p6»aV 6) .
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APPENDIX D: COLLISIONAL QUANTITIES
IN THE INTERACTION PICTURE

ab
I

Uo(tl t2)
I
cd))

= &u I Uo(tl, t2)
I
c & &b

I
Uo(t»t»

I
d &* (D2)

and the interaction potential

Vl(tl t2) = Uo(tl t2) Vl Uo(tl t2)I (Dlb)

We now discuss the time-dependent form of the col-
lisional quantities and give estimates for their magnitudes.
For convenience, we shall write them down in an interac-
tion picture, defined by the time-development operator

UI(t„t2) = Uo(tl, t2) Us(tl, t2) (D 1a)

with the Hilbert space time-development operator

1
Uo(tl, t2) =exp (HI1 +Hp)(tl t2)

and the Hamilton operators Hz and Hp are for radiator
and perturber, respectively. The interaction-picture time-
development operator is a solution of the equation of
motion

where

( )
1 R+ Pll 1 21

o t»t2 =e
OI

rUI(tl ~t2) Vl (tl, t2)UI(tl ~t2) ~ tl ) t2
dt]

(D3a)

is the unperturbed (tetradic) time-development operator
and

[ ~+4+ i)~ 1
—'2~

Us t„t2)=e
is the time-development operator for the interacting
radiator-perturber system. The tetradic matrix elements
of these time-evolution operators are defined in terms of
Hilbert space matrix elements in the usual way, "' e.g.,

UI(t„t2) = UI(tl, t2) Vl(t„t2)I
dt2

(D3b)

with the initial condition UI(t2, t2) = 1.
Transforming the expressions for the collisional quanti-

ties of Appendix C to the time domain using Eq. (Ala)
and the definition of the interaction-picture time-
development operator in Eq. (Dla) we find

yfe(42) g 3 N f d pld p2i3(p2)« i[62+ ,'i (y, +yf —)]f drexpIi [62+ —,
' i(y, +yf )]r}

P

X «Jf0Plt j Ppl I
UI« o) Vl(o, o)

I jf0P2,j,pp2&)

yfg(~1+~2) N f d Pld P2p(P2)Re i(~1+~2+ —,iyf ) f «exp[i(~1+~2+ 2 iyf )r]

X «JfOP1~Jg0pl I
UI(2'~0) Vl (0,0)

I Jf0P2&Jg0P2))

y,g(b 1)=y ,'N f d'pld'p—2p(p2)Re i(&1+—,'iy, ) f d3. exp[i(&1+ —,'iy, )r]
P

X «j Pp J 0P I
UI(, o) V'(o o)

I J Pp j 0P »

(D4)

PI Pp~P3 P4~

1 )82+84 1 1 E. 1 1 E
Pl F2 0 P—3 i24 Q—

XN f d Pld~p2P(P2)« f',
"«e "&&J.i41P»J.i42pl I

Vl(r 0)UI('r, 0)V1(o o)
I JeP3P2 J P4P2&&

«fefg, g)=g T'N f d pld'p2d p3d p4i3(p4)

X d~)exp ~ 5,+~+ —,'i y, +yf ~, jfOp, ,j,pp, V] &),0 Ur &],0 jfOp2, j,pp3

X fo dr2exp(1 I ~l+~2+g+[E(P3) —E(P2)]/&+ —,
'
iyf }'r2)

X « jf0p2 j 0P3 I UI(F0) V', (0,0)
I jfop4 j op4» (D5)
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C(fgeg, z) =g 3 Jii f d'pid'pzd'psd'p~p(P4)

x f d~, exp[i(b, , +bz+z+ —,'iyf)~, ]&&Jfop„Jgop, I v, (~„0)UI(~„0)IJfop„Jgop, &&

X f d~zexp(i I hi+z+[E(ps) —E(pz)]/A'+ , i—y,j~z)

x «j pp»jfop3 I
1(72 0)~i(0 0) Ij pp4jgop4&&

C(K, feee, z)=
P] )P2& ~ ' ~ ~ P5)

1 K 1 1 E
P3 P4 Q— Pi Pz Q—

XN f d Pid Pzd P3d Pgp(P4)

X f d~iexpIi[bz+z+ , i(y—,+yf)]71I

X «ifopi j.vzpi I
~i(~i 0)Ul(~i o)

I jfopz, j.vsps &&

X f d~zexp(i I z +[E(p3) —E (pz) ]/&+i y I ~z)

X «j,PiPz J PsPs I
Ul(~z 0) }'~i(0 0)

I

J' i 3P4 J P4P&&&

C(K, eeeg, z) =
P ) Jfkgp ~ ~ ~ p P 5p

1 1 K 1 1 K
~

)Pz+P4
Vz —Si Q V4 —WQ

XN f d Pid Pzd Psd P4P(P4)

d&&t-XP I Z+l Te '7] JeP)P)~JeP2P] Vl +1~ UI +1~0 JeP5P2~JeP4P3

X f dw ezxp(i [6i+z+[E(p3) E(p )z] /i ii+——,
'
iy3ITz)

X «j.esp» jgops I
Ul«»0) ~i(0 o)

I j.p3p4 jgop~&&

Di(K, feeg, z) =
P& Pp P3 P4

1 E 1 1 K
iji P4 Q Pz P—s Q—

XN f d'pi . "'p6p(p6)

d ~,exp Ii [Az+z+ —,
' i (y, +yf ) ]~i I

X «JfOPiiJ~PzPi I
~i(~i, O) UI(ri, o)

I JfOPz~JeP iPs &&

X f d~zexp(i I b, i+bz+z+[E(p3) —E(pz)]/A'+ ,'iyf I~z)—

X « jfop»jgops I
Ul(~z 0)

Iifop4 jgops&&

X f d73exp(iIbi+z+[E(ps) —E(pq)]/R+ ,'iy, I&3)—

x «j,p,p4,j ops I
Ul(~3, 0)vi(o, o)

I j,p„p„jgop, &&, (D6)
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D2(K,feeg, z) = y)] ]+]2
1 I K
p—] p4Q

1 1 K
-P2 P3 Q

X+ f d Jl ' 'dP6P(J26)

X f dv]exp[i[b2+z+ ,'i(—y,+yf)]7]j

&«&Jfop] J ] 2P] I
Vl(~] O) Ul(~] o)

1 JfoP2 J,] sp3&&

d~2ex.p i z+ E p3 —E p2 A+i@, ~2

X ~~JeP3P2~JePsp3 I
Ul(72~O)

I Jei26P4~JeP]ps &&

X f d1 3exp(i [ b, ]+z+[E(ps) E(P4)]/—fi+ —,iy, ]~3)

X ((J,]M6P4 JZOPS I
Ul(~3 0)~](0 o)

I JeP4P6 Jgop6&&

D3(K, fege, z) = ~)] ]+]2 1 j. K
p] p4 Q—1 1 K

—
] 2 @3 Q

Xi]i f d'J ]
. d'J 6P(J 6)

X f d~]exp{i [&2+z+ —,
' i(y, +yJ )]~]]

X ((JfOp],Je]M2P]
~
+](&],0)UI(&] o)

~
Jfop2, Jepsp3 &&

X f dv2exp(i Iz+[E(p3)—E(P2)]/]]]'+iy, I2'2)

&«(J,v 3P2 J Psp3 I
UI(~2 o)

l J,s 4ps, J,I 6P4&&

d~3CXp l —61+2+ E p4 E p5 ~+ 2«'p +3

«&J ops J.v6P41Ui(~3 o)~](oo) lJgop6J. v]P6&&
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with E(p) =p /2M. In Eqs. (D4) we also performed a partial integration using the equation of motion Eq. (D3a). For
y we used formula (B8) of Ref. 7. These forms of the collisional quantities are very convenient for the transition to the
classical path approximation and for estimates on their orders of magnitude.

A rough estimate of the second-order collisional quantities in the case where one time of interest is long (compared
with the duration of a collision) may be obtained in the following way: Let us consider the equation for D2(K, feeg, z).
For an upper bound we may set r2 ——0 in the integrand [i.e., Ui(r2 ——0,0)=1] and perform the integration over r2, which
gives rise to a factor minIr„l/ I

z
I j (for yer, «1) as r2 cannot exceed r, without making the integrand vanishingly

small. If one time of interest is large (e.g.,
I
z+ h2

I
v; « 1) we next perform the integration over ri using the equation

of motion for the time-development operator [Eq. (D3a)]. This gives us a factor [UI(oo, 0) —1], whose maximum
modulus is 2. The remaining integral can be estimated by max[y, g(0), y,g(z+61) j/ I

z+Ai+(iy, /2) I. With the help
of these procedures, we find the following estimates:

max[y, g(z+b, &),y,g(0) j « Iz+~2lr, «1
I

+~+-,' y, l

I
D2(K, feeg, z)

I 2minfr„l/lz
I j)&

'
maX( ) fe Z + 2 )yfe if Iz+b, , I,r &(1,
lz+~2+ i(y +yf) I

r

maxI yz, (z —b, , ),yg, (0) j if
I

z +b,2 I r, ((1
lz —S,+ —,'iy,

I

D3(K, fege, z)
I
~2minIr„ 1/

I

z
I j x max ( yf, z +b,2,yf, 0

if lz —h, lr, ((1,
Iz+~2+-, i(y, +yf)

(D7)

maxIy, s(z+hi), y,s(0) j if Iz+b, 2 r, &(1
lz+b, , + ,'iy, I—

I
Di«feeg»)

I
2minIr. I/I z+~i+~2I } &&

'
g () }nlax ( yfe z +k2 ) yfe 0

if Iz+b, i I
r, «I .

Iz+~ + i(y +3 f) I

A crude upper bound for D2(K feeg, z) and D3(K,fege, z) in the cases where
I
61+z

I
and

I
~2+z

I
are both large in

comparison with 1/r, may thus be obtained by setting ri ——0 everywhere in the integrand and setting Ur(r2 0)
upper-bound estimates obtained in this way are

I
D2(K, feeg, z)

I maxIy, (6i+z),y,g(0) jr, .

An upper-bound estimate for D i(K, feeg, z) is given by

I
Di(K feeg, z) ~max Iyeg(b i+z), y,g(0) j r, .

Thereby we estimated the whole integral over ~z by ~, .
Similarly we find for y, r, «1

(D8b)

1

Ib, , +b2+zl
I C(fgeg, z)

I

~max I yes(b, i+z),y,g(0) j )&

if
I

b, &+62+z
I
r, &&1 and antistatic

1

I
5,+b2+z

I

I
C(fefg, z)

I ~maxIyfe(62+Z))yfe(0) j

if
I
5i+b2+z

I
r, ~~1 and antistatic

Note, antistatic means that there is no quasistatic (Franck-Condon) transition. Quantities like I s(hi) or I"f, (62) of
Eqs. (21) and (23) are of the order of maxIy, s(b, , ),y j or max[yf, (b2), y j as has been shown by CooPer.
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APPENDIX E: CLASSICAL PATH APPROXIMATION AND QUASISTATIC EXPRESSIONS
FOR COLLISION QUANTITIES

Following the arguments of Smith et a/. ' we can immediately write down the collisional quantities of Appendix D in
a classical path approximation. For the second-order quantities we find

Dl (K, feeg, z) =
P ],~P2~P3~P4~

1

( —1)1 1+
p

1 K 1 1 E
N/V

P4 Q P2 —P3 Q

X4~ f du u2f(u)2m f db bu f dto f drl f dr2 f dv3

X exp I i [z +62+ ,
' i (y—,+yf ) ]r3 I exp[i (z +b 1+~2+ z iyf )r2]exp[i (z +b, , + ,' iy,—)r,]

X ((Jfo,j,p2 I
Vl (r3+ 2+ 1»"'( 3+ 2+ 1 2+ 1)

1
Jf0 J Pl »

X((jfO J 0~ U ( + ) JfO J 0))((jp,J 0~ U'"'( „0)V',"'(0)
~ J p,j 0))

D2(K,feeg, z) =
p ))p2. ~ ~ ~ ~ p6i

(
1)V1+1,

1 I E 1 1 K
N/V

Pl P4—Q P2P3 Q—

X4vr f duu f(u)2~ f dbbu f dto f «1 f dt2 f

XexpIi[z+b2+ ,
' i(y, +—yf)]r3Iexp[i(z+iy,)r2]exp[i(z+b, , + —,

' iy, )r, ]

X «jfOjep2 ~

Vl (r3+r2+rl)U (r3+r2+rl, r2+rl)
1 jfOjePs&&

X «J,S 3 j,ps I

&'"'(r2+rl rl ) I.J.P6j P 1 » «j P6j,o
I

U'"'(rl o) V'1"'(0)
Ij p.,j,O»,

D3(K, fege, z) =
P l)P2) ~ 7 P6)

E 1 1 K
N/V

P 1 P4 0 —P2 P3 0—
X4~ f duu2f(u)2~ f dbbu f dto f drl f de f dr3

X exp I i[z +62+ , i(y, +yf )—]~3]exp[i (z+i y, ) ]erx2p[i (z 61+—,iy,)rl]—
X ((JfO)Jep2 ~

Vl (r3+r2+rl)U ('r3+r2+rl)&2+&1)
~
JfO)Jeps))

X (&J p3 jeps I

U'"'(&2+&1 rl)
Ij p4j p6 » «J 0j p6 I

U' '(rl 0) VI '(0)
Ij 0j pl » (E1)
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with the perturber density N/V. In an analogous way,
one can easily obtain the classical path expressions for the
other collisional quantities of Appendix D.

The classical path tetradic time-development operator is
given by

U' '(t„r, ) = U'"'(r„t, ) U' '(t„r, )*

V —-v fo ——
P

L PERTURBER
IOX)

Ib (~NITIA
I POSI T—z-AXIS OF

R COLLISIOX FRAME

(RADIATOR POSITIOg)

in the sense that

((12
i

U'"'(r „t,)
i
34))

FIG. 4. Straight-line trajectory of a perturber (P) passing a
radiator atom ( R } showing the definition of impact parameter b
and time of closest approach to.

with

l'A' U'"'(t1, t2) = V'"'(t, ) U'"'(t1, t2), t1 ) tP
dt&

(E2b)

and the initial condition U '"'(tz, t2 ) = 1.
V'1 '(r) =1/ifi[V'"'(r), . . . ] is the tetradic interaction
operator. ( k) indicates the dependence of the time-
development operator and the potential on the parameters
characterizing the initial state of the wave packet, which
describes the perturber motion, i.e., ( k)—:I b, u, to] (see Fig.
4). In the case of a spherical symmetric potential between
radiator and perturber, which we are for simplicity con-
sidering in this section, we have

1
(rl )=exp —. ~R(rl r2) V(R (rl ))

iA

)&exP . H~(t1 t2)—
iA

(E2c)

with

R '(r, ) =b'+ [U(r, + t, )]',
which describes the straight-line trajectory of the per-
turber. V(R) in Eq. (E2c) is the interatomic potential at
the internuclear distance R and is an operator acting

within the electronic states of the radiator-perturber sys-
tem.

The phase factors in Eq. (E2c) are unimportant in the
case of elastic collisions we are considering in this paper.
v is the velocity of the perturber with v =

~

v
~

and f(u)
the velocity distribution [4'f duU f(U)=1], b is the
impact parameter. The straight-line trajectory assump-
tion is certainly valid as long as

~

V(R)
~

&&(M/2)U . '

For short times of interest (large detunings b, ), where the
collisional quantities are dominantly determined by con-
tributions from stationary phase points [Ab, = V(R)], this
implies for a thermal distribution of the perturber
A

~

6
~

&&kT. As long as we are restricting ourselves to
the near wings (i.e., all detunings «kT/A'), the above
straight-line trajectory classical path expressions for the
collisional quantities are good approximations. For even
larger detunings, we have to go back to our original
quantum-mechanical expressions of Appendix C and cal-
culate these quantities with more sophisticated methods.

Before we approximately evaluate the second-order col-
lisional quantities in the quasistatic limit, let us first of all
discuss the basic 'concepts involved by considering for
simphcity a collisional dephasing rate, e.g., y,s(b1). Its
classical path expression in the no-ground-state interac-
tion approximation is given by

y,g(b, 1)=g 4' f dUU f(v—)2—m
OO OO OO

db bU f dtoRe (b1+ ,'iy, )
—f —drexp[i (b1+ —,

' iy, )r]

X(j,p ~

U' '(r, 0)V' '(0)
~ j,1M) (E3)

The time-development operator is a solution of Eq. (E2b)
with the interatomic potential operator V'"'(r) acting
within the excited-state manifold I ~

e;) I (within our ap-
proximation of neglecting inelastic collisions). For small
interatomic separations R, this potential is approximately
diagonalized by a Hund's case-(a) (Ref. 22) basis of elec-
tronic states. These states have total angular momentum
J=1 (because our perturber is in an internal J =0 state)
and a well-defined projection A in the direction defined by
the positions of radiator and perturber. Figure 5 shows
schematically typical diagonal matrix elements of the in-
ternuclear potential V(R) in this basis. These potential
curves only depend on

~

A
~

.

0

U'"'(7, 0)=&exp —— dt V'"'(t) (E4)

As long as an adiabatic approximation is justified [i.e.,
U'"'(r, 0) is approximately diagonal in a particular basis]
the time-ordering operator u is unimportant but becomes

On the other hand, for large internuclear separations,
the radiator states with a well-defined space-fixed projec-
tion p of the total angular momentum approximately di-
agonalize V(R) [Hund's case (e), Ref. 22]. The time-
development operator may in general be written as a
time-ordered exponential, i.e.,
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VZ(R) variation of the potential), i.e.,

1 1 dV (r)
id, ) f

'
(rt dr

—1/2

(ES)

e ~ e e e

we may use the stationary phase approximation to ap-
proximately write

V(k)( ) V(k)(0) (E6a)

I I

R~~~ R~]~
S S

=R

FIG. S. Qualitative sketch of VA(R)=(j, A
~

V(R)
~ j,A) as

a function of the internuclear separation for Ba—rare-gas sys-
tems as given by Ref. 1. AA'~ ' is a quasistatic detuning with the
two stationary phase points Az", R~ ', where the laser photon
(co~, e~ ) is absorbed. AA~" is an antistatic detuning, where no sta-
tionary phase point exists.

important as soon as such an adiabatic approximation
breaks down. For large detunings, the main contribu-
tion to y,s(b, ) ) will come from times r with an associated
phase which is stationary. Times larger than the time of
interest rt about the stationary phase point (which is asso-
ciated with a phase of order unity) give rise to large phase
changes which should average to zero due to the integra-
tion over impact parameters b. Therefore, as long as the
time of interest ~I is small in comparison with the col-
lision time r, (which is the characteristic time scale of the

I

y,s(&))=g 4' f d—u u—'f(u)2'

and

exp i f dt[b, , R'V' —'(t)]

~expIi[b, , —R 'V(k)(0)]rj . (E6b)

kz indicates the particular set of parameters k such that
the interatomic potential can match the detuning (station-
ary phase point)

A'b, ) ——V (0) .

If the potential is monotonic, we have

r=0 C

and Eq. (ES) is roughly equivalent to

~b) ~r, &&l . (E7)

For the collisional dephasing rate we obtain in this sta-
tionary phase approximation together with

i
b, ) ~ &&y,

the expression

xl dbbe f d(eRe 6,—j)e eel((), —(( 'v'e'(0))~( v'e'(0) j)e)0 00 a, —x-'v(k)(0)

(E8)

Thereby we used the identity

f dr exp I i [b, )
—(rt

' V(")(0)]rj

+~5(~, —~-' v'"(o) ),
tI), , —I 'V'"'(0)

(E9)

R =RSJ(j)

(E10)

where P indicates the Cauchy principal value.
Only the 6 function contributes to the real part in Eq.

(E8). There are . two values of tc, namely
to +[(Rg' b)' ——l—u] with fib, )

——V(Rs("), where the in-
teratomic potential matches the detuning 6]. If in the re-
gion around E.,'~' the interatomic potential is approximate-
ly diagonalized by the Hund's case-(a) electronic states

~ j,A ) we find for the collisional dephasing rate
(j)

y,s(i)), ))=—b, (
—m g 2R,J22 2 &s (j)

, dV, (R)
- dR

I

with VA(R)=(j, A
~

V(R)
~ j,A).

~ j,A) is the electronic
state, which leads to a stationary phase point. Thereby we
used the relation

5(f(x))=g 5(x —xj),
~ dx

J

where j indicates all zeros of f (x), i.e., f (x~ ) =0. Obvi-
ously, this relation is only valid as long as

i
df Idx

i „„~0.
This expression is immediately recognized as the stan-

dard quasistatic result for the linewidth and explicitly
shows that y,g(b, ) ) measures directly the derivative of the
potential at a certain internuclear separation Rg', where
the absorption occurs. It should be mentioned that in a
case where

)&e
r=0
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(i.e., the two stationary phase points of Fig. 5 are very
close) and Eq. (E5) is violated, the above quasistatic pic-
ture is still applicable as long as

t/3-

v.=0

(E12}

But in this case, the time-ordered exponential has to be
evaluated asymptotically with the help of a transitional
Airy approximation giving rise to an oscillatory depen-
dence of the collisional quantity on the detuning
which is due to interference between the two stationary
phase points. %'e also see that in the case of an antistatic
detuning b,

&
(i.e., no stationary phase point Rs" exists)

y,g(b, i) becomes negligibly small (and in 'our asymptotic
evaluation it is even zero).

Let us now consider the second-order collisiona1 quanti-
ty [ReD2(K, feeg, z =0)—ReD3(K, fege, z =0)] in the
quasistatic limit, where

~

b, i ~
r, &&1 and

~

b.z ~
r, && 1 and

stationary phase points exist for both transitions, i.e.,

U'"'(r2, 0) = 1 .

Under these conditions, we find

(E13b)

~
g) ~I

~
e;) I and [ ~

e; ) )
—+

~ f ). As we are here only
interested in an order of magnitude estimate, we shall
evaluate this quantity only under the. assumption of a
nondegenerate intermediate state

~ j, ). This simplifies
our discussion and illustrates the basic physics, which this
collisional quantity represents. The extension to the non-
degenerate case is straightforward, but very tedious, since
it requires the modulus squared of sums of products. As
the times of interest fol 'T] and ~3 are short in comparison
with the collision time ~, we may approximately write

(&3+&2)~Vi (rz)(k) (k)

V, ( —r, )~V, (0),(k) (k)

(E13a)
U' '(0, —ri )~exp[ VI"'(0)ri],

U (7 3+7 2 72)~exp[ V'i"'(rq)r3]

As
~ j, ) is nondegenerate, we also have

OO oo OO

ReD2(feeg, z=0) —ReD3(fege, z=0)= 4' I d—vu f(u)2ir I dbbu I dto

X 2 I dr 2((Jf J ~

V$ (72) ir5( a2 i VI (7r2) )
~ Jf /Je ))

Q ((Je,Jg ~

vTo(bi —iV '(0))VI '(0)
~ J„Jg )) . (E14)

Thereby, we used relation (E9) and the fact that the Cauchy principal part contributions cancel each other. From this
expression we see that this collisional quantity describes a process, where the laser photon (co&,ei) is absorbed at the inter-
nuclear distance Rq and the excited radiator-perturber collision complex subsequently eUOIUes to the internuclear dis-

1

tance Rs, where the second laser photon (co&,ez) is absorbed. In the case where the stationary phase points of the rz in-2'
tegration are located well inside the integration interval, which is the case as long as R~ and Rz are not too close, we

1 2

can evaluate Eq. (E14}easily and obtain

2 Rea2 —2 ReD3 OO4' J du u f(v) —(2ir)'
V dVf, (R) 1 dV,g(R)

dR ~=~s A dR R =Rs
1

2R &f (Rs, /Rs, ) (E15a)

with

V„(R)=&e
[
V(R) [e &

—&g i
V(R) ] g &,

fib, i ——V,g(Rs ), (E15b)

tris, 2 ——Vf, (Rs ),

R &
——minIRs, rRs, I

and
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&s,&s,f (Rs, /Rs, ) =
g~ +Ay ~1 as Rs /Rs ~~ or as Rs, /Rs, ~0 .

(Rg, —R ()' +(Rs, R—
&

)'

Thereby we have assumed that only one value of Rs and one value of R~ exist which fulfill Eq. (E15b). Numerically, it
1 2

turns out that even if Rs and Rs are not much different from each other f (Rs /Rs )~1 is a good approximation.
2 1 1 2

Equation (E15a) explicitly shows how the derivatives of the difference potentials at the points of absorption Rs', and Rg,
determine the second-order collisional quantity.

In order to compare the contribution (E15a) to the redistributed intensity with contributions from lower-order col-
lisional quantities, let us evaluate Eq. (15a) for the simple case of difference potentials of the form

Vf, (R)=

V,g(R) =

and a well-defined velocity of perturbers uo [i.e., f (U) =( I/4vrU )6(U —Uo) j. We define collision times r,"=Rii /Uo and

Weisskopf radii Rii. by

In terms of these parameters, we find in the quasistatic limit with f (R~ /Rs ) = 1 the relations

2 ReD2 —2 ReD3

y,g(&i)
b, id, 2(b, i+ b,2) 2

1 fe 2 1277
1

2
( ~ (&))(&(—i)/&t(& )

(E16)

The first factor is the contribution of a zero-order col-
lisional quantity to the redistributed intensity. Equation
(E16) and estimate (D9) together with the discussion at
the end of Appendix G show that for an antistatic detun-
ing of b, i+62 with

~

hi+62
~
r, &&1 the molecular "two-

step" process represented by the expression of Eqs. (27)
and (E15a) gives the dominant contribution to the redistri-
buted intensity provided all detuning's are large, i.e.,

~

b,r,
~

~
&& 1 for a van der Waals potential.

straightforward in general, as mixed cases may exist with
one detuning antistatic and the others not. In the follow-
ing, we shall restrict our discussion only to the cases
where all detunings determining a collisional quantity are
antistatic.

Let us first of all consider the collisional quantity
C(K, feee, z =0) of Eq. (D5). If the detuning b, 2 is antis-
tatic and large (

~
62

~
7; && 1) we can approximately write

Vi (ri, 0)~Vi (0,0),
Ui(ri 0)~UI(0 0)=1 .

(Fla)

(Flb)
APPENDIX F: ANTISTATIC BEHAVIOR

OF COLLESIONAL QUANTITIES

In the antistatic limit the detunings of the laser fre-
quencies from their atomic transition frequencies 6 are
such that

~

6
~
r, && 1 and no stationary. phase point exists

at any internuclear separation. In the zero-order collision-
al quantities, which depend only one particular detuning
6, the situation is quite simple. As soon as this detuning
becomes antistatic, the corresponding collisional quantity
goes to zero as may be seen from the discussion of y,g (6 i )

in Appendix E. The determination of the antistatic
behavior of the'first- and second-order collisional quanti-
ties, which depend on more than one detuning, is not so

The first approximation is due to the fact that the time of
interest in the ri integral rl ——1/

~

b,2 ~

is much smaller
than the collision time r, . The second simplification as-
sumes that only weak collisions with

~
Vi (~i, 0)

~

& I /~, && 1/
~

b,2 ~
significantly contribute to

C(K, feee, z =0). As no strong collision can match the
detuning A2, because we are antistatically detuned, the
contributions of strong collisions should average to zero
(due to the integration over impact parameters in a classi-
cal path approximation and noting that the phase is a
strong function of impact parameter. Using the approxi-
mations of Eqs. (Fla) and (F lb) we find
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2i ImC(K, feee, z =0)

p))p2~ - ~ - ~ p5)

1 K 1 1 L
s —p4Q pi —pzQ

X f d'aid'S»d'psd'pep(p4)

.~[&j op
I
v'(0o) ljfop &&j.) p lj.v p &

—&p Ip &&j.v p I
v'(00) lj.v p &'~

A2 iA

t'[E(p3) —E(p&)+iy ]r&x dr2e '
. «j, jM~P2, j,psps I

U, (~»0)v, (o,o)
I

J',p,p4j, p4pq))

. [&jfopi I
V(00) IJfOpz) &J pzpi IJ psps& —&pi Ipz&&J p2pt I

V(00) IJ psps&1
A2 IR

&& f dr2e' ' ' + ' « jepsps~jeplp2 I
Ul(1»0) Vl(0 0)

I Jep4P4 J'eiLL3P4&&

P )~92,~P3eP4~

E 1 1 EI
, )~,+~,

Ps P4 Q—P~ P2 Q—

&&&f d'S'id'p2p(p2) ~

X f «~e ' '&&jeipi jew&P| I
Vi«20)UI«20)Vi(00) ljewsp~jwuz&&

b, ~

2521mC(K, feee, z =0) ~ —y
antlstatlc

Thereby we used the relations

«1,2 I Ul(r, o)Vi(0, 0)
I
3,4)) =«2, 1

I
UI(r, o)Vi(0, 0) I4,3)),

« 12
I
V)(r, o)

I
34)) = [&1 I

V (r, o)
I
3) &2

I
4)*—

& 1
I
3) &2

I
V (r, o)

I
4)*],

l

(F2)

and relabeled the summation and integration variables.
Similarly we find

I,)+52,hl

ImC(fgeg, z =0) —+ 0,
antistatic

Terms of higher order in the parameter (spontaneous de-
cay rate)/(detuning) have thereby been neglected. Such
terms have already been neglected in using the approxima-
tion of Eq. (20).

ImC(fefg, z =0) ~ 0,
antlstatlc

2b, &lmC(K, eeeg, z =0) ~ —y
antistatic

(F3)
APPENDIX G: REDISTRIBUTED INTENSITY

AND CARE CROSS SECTIONS

ReD&(K, feeg, z =0) ~ 0,
antistatic

2ReD2(K, feeg, z =0)

—2ReDs(K, fege, z =0)
antistatic A~62

In this appendix, we briefly outline the connection be-
tween the total redistributed intensity as defined in Eq.
(16a) and dressed-state CARE cross sections. ' We give
the perturbative expression for the dressed-state CARE
cross section in a nondegenerate three-level system, which
describes the single-collision contribution. Similar expres-
sions are possible in the degenerate case, but (see below)
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the modulus squared of sums of m-state matrix elements
contribute.

In the weak-field limit, when the dressed states are well
separated, i.e.,

(G1)

the total redistributed intensity is proportional to the sta-
tionary dressed-state population'

E
Q I

tz&

Ired w %III,III( I~ oo ) (G2)

as may be seen from Eq. (lla). For the radiator con-
sidered in this paper, the energies of the dressed states are
shown in Fig. 6. Determining the dressed-state stationary
population from our density matrix Eq. (A2), we find in
lowest order in y, /

I
b,

I
and in the weak-field limit

FIG. 6. Energies of the dressed states of the radiator studied
in this paper in the weak-field limit neglecting the quadratic
Stark shifts.

Yf&III,III( I~ oo ) =
~i ) =I

~
I&,

~
II&), I II2),

~
II3)

XTr [p ((IIIIII
I

U (,0)V, (0,0) lii)) Io,, (I ) . (G3a)

Thereby we have used the fact that whenever condition
(Gl) is fulfilled, i.e., dressed states are well separated, the
secular approximation indicates that nondiagonal
dressed-state density-matrix elements are negligible. ' In
addition, we have performed a partial integration under
the assumption that all collisions are completed (i.e.,

're, pf 2 e (& 1, see Ref. 1 3) and defined the interaction
I

I

picture in a similar manner to in Eqs. (Dla) and (Dlb) but
with

(Lp+L ff)(tJ t2)
U0(t), t2) =e (G3b)

In the classical path straight-line trajectory approximation
we further get

oo dQv
y'fITm, III(t~oo)=g —42r I duu f(u) 2~ dbb

I
(IIIIX)t' „I

~;;(I~oo),
0 4~

where we have integrated over to. The time evolution of
the electronic radiator-perturber state is determined by

I

This equation has to be solved with the initial condition

with

V' '"'(I) = V(& (I) )

g (t)=b +u I

I x&,"=[H,«+ v""'(I)]
I
x,"'

dt
(G5a)

lx&,"' „=II) . (G5b)

(j IX)", is therefore an 5-matrix element between the
dressed states

I j) and
I
i ).

Using the procedure of Yeh and Berman' we find in
the case of a nondegenerate three-level system for the 5-
matrix element between the dressed states

I
I) and

I
III)

in the weak-field limit the expression

I (111lx&I" I'=
I &Jf lu e2lj. &&2I'

I «J. II eII jg&@'II',

00 1
dt]

Vf, (II )

A'6]

V,g(II )
exp —I f dI2[61+52—Vfe(I2)/ I Veg(I2)/~]

Vfe(&I ) Vg(I2 )
exp i dt—I [b 2

—Vf, (t3 ) /A]

t2
X exp i f dt4[b—, I

—V,g(t4)/fi]

Whereas Yeh and Herman's formula (6.1) (Ref. 10) is pro-
portional to the total scattered intensity including both
the collisional-induced Rayleigh and the Raman peak in
the zero-density limit of perturbers, Eq. (G6) characterizes
the single-collision contribution to the total redistributed
intensity. Using the asymptotic formula of Berry and Ta-

I

bor for the integrals in (G6), which is valid as long as
stationary phase points are well separated, we can easily
discuss some limiting cases in the regime where

)),.I I ~2I r ))1 and
I +I+~2l+ ))l. In par

ticular, we see that
I (III

I
X)'," „I

will be zero, whenev-
er 6&+62 and 6& or 6&+62 and A2 are antistatically de-
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tuned. For an antistatic detuning of b ~+ b,2 the first term
in the modulus of Eq. (G6) vanishes and we are left with
the two-step contribution (i.e., the square of the second
term in the modulus), which is equivalent to Eq. (E15a).
As soon as there is also a stationary phase point in 5~+ 52
we also have a direct contribution to the redistributed in-
tensity [i.e., from the first term in the modulus of Eq.
(G6)] as well as an additional endpoint contribution from
the t2 integral in the second term of Eq. (G6), and an in-
terference term. Using the asymptotic formula of Berry
and Tabor we see that the ratio between the direct contri-
bution (which is of the order of a typical zero-order col-
lision contribution) and the two-step contribution roughly
varies like

~
hr,

~

for a van der Waals potential

whereas the ratio between the interference and the two-
step term decreases only as

~
br,

~

~' [see Eq. (E16) and
subsequent discussion]. This implies that even in the case
of a stationary phase point associated with 4~+42 the
two-step process dominates the redistributed intensity for
sufficiently large detunings (at least as long as stationary
phase points are well separated). However, due to the
slow decrease of

~

b,r,
~

' there is a considerable range
of detunings, where the interference term of Eq. (G6) is
not negligible and ( (III

~

X)I"
~

has to be investigated
more carefully. In particular the endpoint contributions
of the asymptotic formula of Berry and Tabor must be
properly taken into account.

~W. J. Alford, N. Andersen, K. Burnett, and J. Cooper, Phys.
Rev. A 30, 2366 {1984).

~F. H. Mies, Theoretical Chemistry: Advances and Perspectives,
edited by D. Henderson (Academic, New York, 1981), Vol.
6B, pp. 127—198.

P. R. Herman, in Advances in Atomic and Molecular Physics,
edited by D. R. Bates and B. Bederson (Academic, New York,
1977), Vol. 13, pp. 57—122.

K. Burnett, J. Cooper, R. J. Ballagh, and E. W. Smith, Phys.
Rev. A 22, 2005 (1980).

5S. Yeh and P. R. Herman, Phys. Rev. A 19, 1106 (1979).
J. Light and A. Szoke, Phys. Rev. A 18, 1363 (1978);

7K. Burnett and J. Cooper, Phys. Rev. A 22, 2027 (1980); 22,
2044 (1980).

G. Nienhuis, J. Phys. B 16, 1 (1983).
J. Cooper, in Spectral Line Shapes, edited by K. Burnett (de

Gruyter, Berlin, 1983), Vol. 2, p. 737.
S. Yeh and P R. Berman, Phys. Rev. A 22, 1403 (1980).

~tE. W. Smith, J. Cooper, and L. J. Roszman, J. @nant. Spec-
trosc. Radiat. Transfer 13, 1523 {1973).
C. Cohen-Tannoudji, in Frontiers in Laser Spectroscopy, Les
Houches Summer School, 1975, edited by R. Balian, S.
Haroche, and S. Liberman (North-Holland, Amsterdam,
1976).

E. W. Smith, J. Cooper, and C. R. Vidal, Phys. Rev. 185, 140
(1969), in particular, their Eq. (56).

G. G. Lombardi, D. E. Kelleher, and J. Cooper, Astrophys. J.
288, 820 (1985).
K. Burnett, J. Cooper, P. D. Kleiber, and A. Ben-Reuven,
Phys. Rev. A 25, 1345 (1982).

' K. Burnett and J. Cooper, in Proceedings of the International
Conference on Multiphoton Processes III, edited by P. Lam-
bropoulos and S. J. Smith (Springer, Berlin, 1984), pp. 91—97.

7J. Cooper, Astrophys. J. 228, 339 (1979).
A. Ben-Reuven, Adv. Chem. Phys. 33, 235 (1975).
M. Ducloy, Phys. Rev. A 8, 1844 (1973).
D. M. Brink and G. R. Satchler, Angular Momentum (Claren-
don, Oxford, 1968).
E. W. Smith, C. R. Vidal, and J. Cooper, J. Res. Natl. Bur.
Stand. Sect. A 73, 389 (1969).

2&G. Herzberg, Spectra of Diatomic Molecules, 2nd ed. (Van
Nostrand, Princeton, New Jersey, 1950).

23J. Cooper and E. W. Smith, J. @nant. Spectrosc. Radiat.
Transfer 27, 665 (1982).

"J. N. L. Conner, in Semiclassical Methods in Molecular
Scattering and Spectroscopy, edited by M. S. Child {Reidel,
Dordrecht, Holland, 1980), pp. 45—107.

25Equation (E15a) should be compared with the first term of Eq.
(6.52) of Ref. 10.
M. Belsley (private communication).
M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser. A 349,
101 (1976), Eq. (A11).


