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We study laser-intensity effects in two-photon collisional redistribution of radiation. Thereby we
concentrate on a special case of recent experimental interest, where the transition from the excited to
the final state is saturated by a strong laser field. Both exciting lasers are, however, assumed weak
in the sense that the dynamics of a collision between the radiator and a perturber is not significantly
influenced by the laser fields. In particular, our treatment explains the intensity independence of the
polarization dependence of total fluorescence from the final state which has been measured previ-
ously even if the transition from the excited to the final state is saturated.

I. INTRODUCTION

Scattering of light by atoms undergoing collisions with
a gas of foreign perturbers is an important tool for study-
ing interatomic interactions.!—® In recent years there has
been a considerable effort to obtain this type of informa-
tion from scattering experiments.!%!! Typically in such an
experiment a laser with frequency w; excites an atom
from its ground state to an excited state and the spectrum
of the spontaneously emitted radiation is detected. Of
particular interest is the situation where the laser is so far
detuned from the atomic transition frequency w, that the
photon is absorbed during a time much smaller than the
duration of a (strong) collision 7, i.e., 1/ | oy —wo| << Te.
Under this condition details of the intracollisional evolu-
tion process are probed and the influence of collisions on
the excited atom can no longer be described within the
Markov (or impact) approximation.? Studying the col-
lisionally redistributed peak of the scattered spectrum,
which is centered around the atomic transition frequency
wy, yields information about interatomic potentials.!!

Recently, Alford et al.'? generalized the usual one-
photon scattering experiments and studied scattering of
two-laser fields by an atom undergoing collisions with a
gas of foreign perturbers. The first laser thereby excited a
barium atom from its ground 'S, state to an excited 'P;
state. Its detuning from the atomic transition frequency
A, was so large that the laser photon was absorbed during
a collision, i.e.,, 1/|A;| <<7.. The second laser then in-
duced an almost-resonant transition from this excited 'P,
state to some final state of IS, symmetry, ie.,
1/|A,| >>7,, and the polarization dependence of the to-
tal fluorescence originating from this final state was
detected. With this setup they were able to probe the
excited-state manifold and hence obtained detailed infor-
mation about a collision between the barium atom and a
noble-gas perturber. At the same time, they avoided to a
large extent trapping of the fluorescence radiation. In
particular they made the surprising observation that the
polarization dependence of the total fluorescence was in-
dependent of the intensity of the second laser, even when
the transition from the excited 'P; to the final 'S, state
was saturated. '
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In a recent paper,'® we studied theoretically the scatter-
ing of two weak laser fields by an atom undergoing col-
lisions with a gas of foreign perturbers. Here we want to
generalize these investigations to a case where the laser
fields are no longer weak. In general, this is a complicat-
ed task, in particular when the laser fields become so in-
tense that they strongly modify the collision process be-
tween the atom and a perturber.“"s"6 However, we shall
not consider this situation here. Motivated by the experi-
ment of Alford et al.!?> we shall study the case, where the
first laser is strongly detuned from resonance in compar-
ison with the inverse duration of a collision, whereas the
second laser is almost on resonance. Both laser fields are
assumed to be weak in the sense that they do not signifi-
cantly influence the collision process between the atom
and a perturber, i.e., | Q| 7, << 1, where € is the Rabi fre-
quency (defined below). The first laser field will be as-
sumed weak, in the sense that the ground-state population
of the atom is not significantly depleted. However, the
second laser field may be so intense that the almost-
resonant transition from the excited to the final state is
saturated. In particular, we shall consider the final-state
population of the excited atom for a J=0—J=1—-J=0
type transition for various polarizations of the exciting
laser fields. This is the quantity that has been measured
by Alford et al.'? in their two-photon experiment. Within
the binary-collision approximation we shall derive analyti-
cal expressions for the final-state population in the sta-
tionary limit valid also for situations where the second
laser saturates the transition from the excited to the final
state.

The paper is organized as follows. In Sec. II we present
the problem under investigation and give a general set of
equations that determine the populations of the excited
atom in the stationary limit for arbitrary polarizations of
both laser fields. Special examples are given in Sec. III,
where we focus on the stationary final-state population
brought about by linearly and circularly polarized light.

II. PROBLEM AND GENERAL EQUATIONS

We study a neutral atom (radiator) that is surrounded
by N structureless perturbers and interacts with a classical
electromagnetic field. The density of the perturbers that
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collide with the radiator is assumed to be small enough
that the collisional interaction with the radiator may be
treated within the binary-collision approximation
(BCA).> 1> The classical electromagnetic field

E(1)= 2 &+ cc. (1)

consists of two monochromatic laser fields of frequencies
@@, and polarizations e;,e,. In particular, we consider a
situation where the first laser field (w,,e,) excites the radi-
ator from its ground state |g) with total angular momen-
tum J=0 to an excited state |e;) with J=1 and the
second laser photon (w,,e,) induces a transition from this
manifold to the final state |f) with J=0 (see Fig. 1).
This excitation process can be described in the basis of ro-

—iwt
tating radiator states {|g), o

d lg))=|ede %, |F)
—|f)e” o1+ } by the effective Hamiltonian'?

3
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FIG. 1. Schematic representation of the excitation process in
the radiator.
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Small quadratic Stark shifts due to the other levels in the
atom and ionization from the final state have thereby been
neglected. Within the BCA the reduced density matrix of
the radiator o(¢)=Trperturers[P(2)] then obeys the equation

of motion®!3
%a(t =[Leg+ T +N Trp(Vipp)lol(t)
t
+ [ de Mt —t)o(r) (3a)
with the collisional memory kernel
M(7)=N Trp[VG(7)Vpp] (3b)
and
%Gl(T)'—‘(Leff—f—Lp-{*Vl—f-F)G](T), >0 (3¢)
with G (r=0)=1. Thereby we defined
1
Leff{ tr }=Tg[Heff’{ U }] ’
l

Lp{ }~;%[(”/2M>i 1.

V is the radiator—single-perturber effective interaction
potential, which is assumed to couple only degenerate ra-
diator states, i.e., we neglect inelastic collisions. p and M
are the momentum and mass of a perturber. pp is the
density operator of one perturber, e.g.,

pp=exp(—PBp2/2M)/Trplexp(—Bp2/2M)]

with B=1/kT. All effects due to the motion of the radia-
tor are neglected in Egs. (3). Equation (3a) is valid for
times much larger than the duration of a collision 7, as
initial radiator-perturber correlations, which decay on a
time scale of order 7., have been neglected.? The tetradic
operator I' describes spontaneous decay of the radiator
states in the Markov approximation.!*> Equations (3)
determine the population of the radiator atom in a two-
photon excitation process for arbitrary relative values of
[Ar], |As], | Qfe, | | Q4 |, and the inverse duration of

a collision 1/7, as long as the three-level approximation
of Eq. (2) is justified. In particular, they include all the
typical saturation effects due to the lasers, which are usu-
ally calculated by Bloch equations, and are able to treat
cases where the usual Markov treatment of collisions
breaks down, because the characteristic time scale of the
dynamics of the radiator in the laser fields becomes small-
er than the duration of a collision 7, (r,~10"'% s for a
van der Waals interaction).? It is precisely such a situa-
tion that is of great interest in redistribution experiments
due to the fact that one becomes able to probe details of
the intracollisional evolution process.’

Equation (3a) has been discussed in a recent paper in
the case of weak fields.!* Thereby it was assumed that all
Rabi frequencies were much smaller than the inverse
duration of a collision and also much smaller than all de-
tunings of the lasers from their atomic transition frequen-
cies. The first condition allowed us to treat the influence
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of the laser fields on the collision between the radiator and
a perturber, which is described by G(7) in Eq. (3c), per-
turbatively. The second assumption implies that the in-
fluence of the laser fields on the radiator is weak so that it
can also be treated perturbatively. If these weak-field
conditions break down, things become quite complicated.
The most difficult situation certainly arises when the Rabi
frequencies exceed the inverse duration of a collision so
that the laser fields strongly modify the collision process.
In particular, degeneracy of radiator states should be
properly taken into account in such a case as it may give
rise to significant effects.!*>® However, here we shall re-
strict our study to a less complicated case of recent experi-
mental interest,'> but in which saturation effects still
occur, namely intensities such that

I 0"fe,- I ‘Qe,-g | <1/7¢, (4a)
| ‘Qfe,- I | ‘Qe,-g | <A, (4b)
(4c)

lﬂei;|2<< |Ap|max{ | Az ],7},
and detunings /

» 1
Y+ Wiaplt—0)=W 3 eP(e? )*<—1>‘+K+“1[K]1/2[

9 "
4q1-9>
K,Q

eres | W
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[Ay| >>1/76,7 (4d)
| Ay | <<1/7, . (4e)

v is thereby a typical spontaneous decay or collisional
rate. Equation (4a) implies that the influence of both
laser fields on the collision process between the radiator
and a perturber is weak so that Eq. (3c) can still be
evaluated perturbatively with respect to the laser fields.

According to Eq. (4d) the characteristic time for ab-
sorbing the laser photon (w;,e,), i.e., 1/| A |, is much less
than the duration of a collision 7, so that this photon is
absorbed instantaneously during a collision. But the
second laser photon (w,,e;) is absorbed on a long time
scale in comparison with 7, [see Eq. (4¢)] due to the fact
that the detuning A, is assumed to be small. According to
Eqgs. (4b) and (4c) the first laser field is effectively weak,
but as far as the second laser field is concerned we allow
also for situations where the transitions |e;)— | f) is sa-
turated, i.e., |A;| >> | Qg | >max{|A;,|,y}. Using the
relations of Ref. 13 we find from Eq. (3a) for the station-
ary populations of the radiator under the conditions of
Egs. (4) the expressions

K
g1 ¢ —Q ch(ee,t—mo)
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11
32 | A(A+A,)

, 1 l
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w1th oglee, t—o)={ee,KQ |o(t— 00 )) and o47(t—00)=(ff | 0(t—>0))). |ee,KQ)) is an irreducible tetradic vec-
tor with respect to the rotation group.!®> In addition to the conditions of Egs. (4) we assumed in the derivation of Egs. (5)
a spherically symmetric collision environment and a negligible polarizability of the ground state of the radiator. Equa-
tions (5) further assume a steady state, which does not deplete the ground-state population. Terms of higher order in the
parameter ¥/ | A;| << 1 have also been neglected in Egs. (5). v, and y are the total decay rates of states |e;) and |f)
due to spontaneous emission of photons. y_,. is the branching rate from | f) to |e;). The collisionally induced decay
rate of the optical coherence between states | e; ) and |g) is given by

YeA)=%N [ d’p; [ d’prpps) 3 Re i(A1+%i7/e)f0w drexpli(A+ +iy,)r]
I

X L joltP1,JgOP1 | Ur(7,0)71(0,0) | joptP2,jgOP2 ) | - (6a)

U;(7,0) is the tetradic time-evolution operator for the collision between the radiator and one perturber in the interaction
picture (for details see Appendix D of Ref. 13). Due to the fact that the first laser is strongly detuned from resonance,
i.e., | Ay| 7. >>1, this rate is frequency dependent, which indicates the breakdown of a Markov- (impact) type treatment
of the influence of the perturbers on the radiator. The laser photon (@,€;) is absorbed instantaneously during a collision
at the Franck-Condon point and ¥, (A,) therefore contains detailed information about the interatomic difference poten-
tial and the interaction dynamics around this point. The collisional decay rate ¥z (A,) of the optical coherence between
states | f) and |e;) is defined in an analogous way. However, the second laser photon (w,,e;) is absorbed on a long time
scale in comparison with the duration of a collision 7, i.e., 1/| A | >>7,, and this quantity has therefore to be evaluated
in the impact limit and becomes (approximately) frequency independent. X is a frequency-independent collision rate
describing the decay of the orientation (K = 1) and the alignment (K =2) of the excited-state manifold |e;).!> As we are

neglecting inelastic collisions we have ¥ =% =0.2 The quantity
' 1 X 1 1 KX
(K) - _1ytas N
e (A1) “1,“2,.2._ s (=1 Mo —pr Q| |4 —p3 Q ]

x [d’py [dp; [ d%s [ d’paplps)
X 2AIm [«J'e.ulpnfe.uzpl | Ur(0,0) | jettsPasjettaps

X [” drexp{i[A+(E (p3)—E(p)) Aitity.]r)

(et sP2:JgOP3 | Ur(1,00¥1(0,0) | jept3P4rjgOPs) |, (6b)
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describes the instantaneous absorption of the laser photon
(wy,e;) during the collision according to the Franck-
Condon principle (because 1/|A;| <<7,) and the subse-
quent completion of the collision, which leaves the radia-
tor in that particular linear combination of excited states
| e;>, which gives rise to a multiple component K. This
quantity has been discussed in detail by Cooper.’
(ellpllg? and (fllu|le> are reduced dipole matrix ele-
ments and eq , i=1,2 are the spherical components of the
laser polarization vectors e;. The field-induced transition
rate between states |e;) and | f) due to the second laser
field is given by

Ve +Vr+27s(4A)
A+ [(Ye+1p) /247 (B
(6¢)

=5 [ llle) 82

Note that there is an additional field-induced coupling be-
tween states |e;) and |f), which is proportional to e; e}
and involves the ground state of the radiator through a
stimulated Raman process. If e;-e; =0 this stimulated
Raman process is forbidden and the corresponding transi-
tion rate vanishes.

III. EXAMPLES

In order to demonstrate the influence of the intensity of
the second laser field on the stationary final-state popula-
tion of the radiator, which has been measured in a recent
experiment,'? we discuss now the set of Egs. (5) for two
special types of laser polarizations.

A. Linear polarizations

1. e;=ep

Using a quantization axis parallel to e;, Egs. (5) for the
stationary reduced density-matrix elements reduce to the
following equations for the stationary populations:

(Vet+ 3P+ W)og(t— )
=3y Vo, (> w)+o__(t—wx)]

+(W+ 57 se)op(t—o)+R+SY

(7e+%7’(2))[0++(t—'>00 )+o__(t— )]
=3yPolt— oo )+%7’f.—>eaff(t—->00 )+28,
(7a)

(Vr+Wlogr(t— 0 )=Wog(t— 0 )—R

with 0++(t—>oo)—«€ ml—+1 e,m;= +110'(t—>oo)»
etc. This set of equations is graphically shown in Fig. 2.
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FIG. 2. Rates determining the stationary populations for
linear polarizations and e;=e,.

The effect of the first (weak) laser is to populate the excit-
ed states |e; ) with the rates

+ 37 (A)+3T2NA))
A}

S = 3ﬁ2 | Cellullgy €112

and

S _ T (A )

2

2y (B —
L ellulig)#, 122
342 il A2

(7b)

Through I“Lf,)( Ay) and 7y.(A;) these rates contain detailed
information about the collision process due to the fact
that the first laser photon (w,,e;) is absorbed instantane-
ously during a collision, i.e., 1/|A;| <<7..”1'~13 States
[f) and |e,m;=0) are coupled by the field-induced
transition rate W [see Eq. (6¢c)] due to the second laser.
However, there is an additional coupling between these
two states described by the rate

1 | {ellullg) &2

R=w
3% A?

(7¢)

It is due to a stimulated Raman process involving the
ground state of the radiator and is crucial for our follow-
ing discussion. Besides these field-induced transition rates
the steady-state populations are also determined by the
spontaneous decay rates y., ¥y, and ys_,. and the col-
lisional mixing rate y'* acting within the excited-state
manifold |e;). The stationary final-state population is
given by
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Yet+V 1
1 (2)(7/e—T7f——>e)
I Yet+ 37 w
oplt—o0)=ys+ W 2 2
Ye+V Yet+V
€ 1,,(2) +W € 1, (2) +w
Yet+3Y Ye+3Y
1 | {ellullg?&1]? 2 ve+v? 2 Ve
X —— 5 S Vg A)————+ [T (A) —yP]——— (8)
3% A7 3 ‘Ve+';—7/(2) ye+%'}’(2)

As soon as W >y, the final-state population will exhibit a
nonlinear dependence on the intensity of the second laser
due to the fact that the transition from |e,m;=0) to
| f) is saturated.

2. e,le;

Again we choose our quantization axis parallel to e,
but e, is now perpendicular to this direction. From Egs.
(5) we find for the stationary populations the set of equa-
tions

(Ve+ 37 )ocolt— )
=37 P04 1 (t—>0)+o__(t—>w)]
+ 1YV faeOppt—0)+SY
Vet 7P+ W0, (t>0)+0o__(t—o)]

= %Y(Z)Uoo(t—» o)

(Y +2W)opp(t—0)=W[o,  (t>w)+0o__(t—>x)],

which are graphically represented in Fig. 3.

The excited states are again populated by the weak first
laser with rates S§’ and S{’. The effective stimulated
transition rate due to the second laser,

(2)

— +
w=tw—L (9b)
Yet?v '+z W
connects the final state with the excited states

|e,m;==1). Contrary to the case of parallel polariza-
tions there is now no additional field-induced coupling R
between the final the excited states due to the fact that a
stimulated Raman transition involving the ground state is
forbidden because e;-e; =0. The stationary final-state

+ 23V e + Wogp(t— 00)+2ST (9a)  population is given by
|
—1
Votv®? 1
y +'L’}/(2) (’}/e_T’Vf—»e)
ot (t— 0 )= Y+ W eT3 w
ff Yoty? Ye+7y®
€ 1,,(2) W € 1,,(2) W
Yet+3Y Yet+3Y
1 [Cellpllg)&]? 2 P+ Ve ,
Yy 2 T |Veg(AD) — [TE(A)—yP (10)
3 Ay 3 Ve ¥ re+rr® %
I
It is interesting to note that the polarization-dependent F(ef)( Ap—yEI=2 Veg Apa®A(A,) . (12)

quantity

Ulflf(t—>oo)-0’}f(t—>oo) _ 306(2)(A1)

ol (t—>w)t+op(t—>o0) 21472 /7)) +aP(A)
(11)

b=

is completely independent of the intensity of the second
laser, even if the transition |e;)— |f) is saturated.
Note that a'®(A,) is defined by the relation

The neglect of inelastic collisions implies a'X =%(A;)=1.
If the completion of a collision were unimportant, i.e.,

U;(,0)=1 in Eq. (6b), a'®(A,)=1 and the polarization
dependence p; is completely determined by subsequent
collisions, i.e., by the ratio ¥'?’/y,. In the extreme oppo-
site limit, where a/®(A;)=0, the completion of a collision
is extremely important and leads to p; =0 (see the discus-
_sion by Cooper in Ref. 7).
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B. Circular polarizations
1. €e;=e;

We choose both laser fields to be circularly polarized in the same direction. For o polarizations we find from Egs.
(5) for the stationary populations of the radiator the following set of equations:

e+ W+ V+1vPo__(t—0)=(W4 175 )opt— o)+ (¥ V= +yD)o,  (1— w)+ +yPoglt— w0 )+5,

Vet 57 000(t— 00) =5V se0ss (1= 00)+ 57 P[0 __(1—>0) 40, 4 (1—0)]+5E (13a)
Pet 77V + 5704 (1> ) =3V 05 (t—0)+ 5y V= 3yP)o_ _(t— 00 )+ +7Pog(t— 0 )+8

(’)/f-{- W)Uff(t—->oo)= Wo__(t—x) ,

f

which are graphically represented in Fig. 4. The weak  The second laser induces a transition between |e;) and

first laser populates the excited states with rates | f) described by the rate W of Eq. (6¢c). Due to the cir-
[ellnllg) &2 cular polarizations of both lasers an orientation is induced
S‘_i)=~—1— Lnd f ! in the excited-state manifold |e;), which decays with a
3% Af ‘ collisional rate 7', The other incoherent decay rates are
2 1 (1) 12) the same as in Eq. (7a). For o_ polarizations, Egs. (13a)
X[Ve+5Veg(A1)+7Teg (A1) + 5L (A1)] still apply provided we made the replacements
S(_c_)=~—1'~ |<e”l‘Hg)gl|2 (13b)
37 A} , ‘ o__(t—>w)—>0,  (t—>w),
t .
X[ 70— TG A+ TN, Tl ol e)
2
S = 1 Ce||p| !f V&1 i[ZVeg(Al)—rL?(M )] From these equations we find for the stationary final-state
3% A} 3 population the expression
|
. —1
4y
(Ve +7/“,)_‘)’e__27/__?2_)_(ye — 5V fe)
3V
] = ¢
ol (t—c)= +W:
" i Wy 4Lyl Ve +(7/e+7“’)—7—/ﬁ—yfi—7’e
e 2 6
ve+3r? Ye+5v?
x w
2
Ve iy YetY
W\ Yet v V4 5vP—— |+ +v")——F—F7
© T et 3y® ’ Yet3r® "
' )
1 I(d!ullg)gllz 1 n '}’e+')’(2) 1 pan(1) (1) Ye(7e+7’(2)
X— 27 (AN YV 4y ) | ———— — 5 [T (A) =y V] ———
377 A2 AN ey Vet 2y?@

o el +7")

vet3r?

++[T2A) — (14)

-
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FIG. 3. Same as Fig. 2 but with e,le,.

which will exhibit a nonlinear dependence on the inten-
sity of the second laser as soon as W >y, and the transi-
tion between states |e, m;=—1) and |f) starts to satu-
rate. ‘

2. e2=e,'

We consider now the case where the helicities of both
laser fields are different. Choosing again o polarization
for the first laser we obtain the following equations for
the stationary populations of the radiator:

(Ye+W+";'7’“)+%'}/(2))0'++(t——>oo)
=(W+TYfoe)opp(t— o)

+3(r V=39 P)o__(t—o0)

+ 57 Po(t—)+SE +R ,

e+ 37V +57rPo__(t—> )

(1 _

=5V foeOff(t—00)+ 5y Yo, 4 (t—> )

+ 57 Pon(t—>w)+5C
(15)
(Yet+ 2y P)og(t— o0)

=TV fseOsplt— o)
+'.177’(2)[0'++(t——>oo )+0'___(t——>oo)]+Sé)C) ,
(')/f+W)0'ff(t-—>oo )= W0'++(t—>oo )—R ,

which are graphically represented in Fig. 5. The signifi-
cant difference from Eqs. (13a) is the appearance of the
Raman coupling between |f) and |e, mj=+1), which
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(c)
s+

FIG. 4. Rates determining the stationary populations for cir-
cular polarizations with e; o, polarized and e;=e,;.

involves the ground state and is described by the rate R of
Eq. (7c). If we made the replacements

0'++(t—>00)“‘)0'__(t‘—>00) ’

o__(t—>w)—>0oy (t—>w),

Egs. (15) would describe the case where the fist laser is o _
and the second laser o, polarized. The stationary final-
state population is given by

Ye

(c) (c)
S, S

FIG. 5. Same as Fig. 4 but with e;=ef".
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Similarly, as in the case of linear polarizations the
polarization-dependent quantity,

_ O‘}f(t—»oo)—o}lf(t-eoo)

c

- p(t— oo )+alf‘f(z_>w)

_ 3a Ay /ye+7T)
Ve
(,}/e+y(2))

(17
2+a(2)(A1)

is completely independent of the intensity of the second
laser even if W >v,.

We want to point out that we have neglected terms of
higher order in the parameter ¥/|A;| <<1 in Eq. (5).
These terms are negligible in Egs. (8) and (16) for the
final-state populations as long as the density of perturbers
is not too small, i.e.,

Yeg(Al) >>ﬁ_
(max{y,, ||} 7 A’

(18)

where ¥ is a typical spontaneous decay rate. This condi-
tion implies that the dominant contribution to the final-
state population comes from the two-step absorption pro-
cess and the contribution from the direct two-photon ab-

sorption process in negligible.!® Looking at the spontane- |

ously emitted radiation corresponding to the transition of
the radiator from its final state |f)to some intermediate
state, the two-photon absorption term determines the area
of the Raman peak described in Ref. 13, whereas the
two-step absorption contribution determines the area of
the Rayleigh- and the two-photon redistributed peak.
Alford et al'> have measured the polarization-
dependent quantity p. of Eq. (17) in their two-step ab-
sorption experiment and indeed found p. to be intensity

r

independent even in cases where the final-state population
exhibited. a nonlinear dependence on the intensity of the
second laser.

IV. CONCLUSIONS

We have studied intensity effects in two-photon col-
lisional redistribution of radiation for a case of recent ex-
perimental interest, namely a situation where the first
laser is detuned to the quasistatic wing and the second
laser is almost on resonance (impact limit). The first laser
was effectively weak and the second laser was allowed to
saturate the transition from the excited to the final state.
Motivated by a recent experiment!? we discussed the sta-
tionary final-state population of the excited atom for vari-
ous polarizations of both laser fields for a
J=0—J=1—-J=0 type transition. In particular, we
found that the polarization-dependent quantities p; and
P., which are convenient quantities for studying details of
the collision between the radiator and a perturber, are in-
dependent of the laser intensities even for cases where the
transition from the excited to the final state is saturated
by the second laser field. This is consistent with the ex-
perimental findings of Alford et al.,'* who studied the
case of circular polarizations. Our equations further
showed that there is an effective coupling between the fi-
nal and the excited state brought about by a stimulated
Raman process, which involves the ground state. This
process leads to the fact that the two-step contribution to
the stationary final-state population vanishes in the ab-
sence of collisions (see also the discussion in Ref. 16 for
the nondegenerate case). We stress that if this rate R were
not included in the equations, we would have failed to get
an intensity-independent quantity p. or p;. However, it is
not clear at this stage if a similar result also holds for sit-
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uations where different angular momenta are involved.

In our treatment we have neglected the motion of the
radiator. Let us now discuss qualitatively which kind of
effects the velocity of the radiator might give rise to. As
the first laser is strongly detuned from resonance, no

" particular velocity class of the radiator is excited by the
first laser transition. This also applies for the second
excitation step from |e;) to |f) as long as
max{y, | Ay |} >>(wy/c){v). (v) is thereby the mean
velocity of the radiator. As soon as our second laser ex-
cites a particular - velocity class, because ¥, |A;]|
<(w,/c){v), things become somewhat more complicated,
because in general we also have to properly take into ac-
count both ‘“hole” burning and velocity-changing col-
lisions.!”!® However, assuming that effects due to
velocity-changing collisions are unimportant in the sense
that the rate of velocity-changing collisions is small com-
pared to the radiative decay rates, the only effect due to
the velocity of the perturber is then to change
Ay,—Ay*(w,/c)v in the field-induced transition rate W of
-Eq. (6c). Though this would affect the velocity-integrated
final-state populations for the various polarizations of the
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laser fields, it would leave the ratios p; and p, of Egs. (11)
and (17) unaffected. The investigations of Berman et al.!®
also indicate that velocity-changing effects are expected to
be small. We note that these effects are unlikely to be im-
portant for the experiments performed by Alford et al.'?
since there the spontaneous decay rates y, and y, are
comparable to the collisional rates yz(4A,), y'?), etc. and
the velocity-changing rates are expected to be small com-
pared to the destruction of coherence and collisional mix-
ing rates.
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