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We theoretically study intensity-saturation effects in resonant harmonic generation and

multiphoton ionization. A first laser excites a two-photon resonance which is coupled by a

second laser to an autoionizing state. Starting from an effective Hamiltonian for the three

resonant atomic states, we derive a set of equations for the density matrix of the gaseous

medium and the electromagnetic field within a semiclassical framework. We present and

discuss analytical and numerical solutions of these equations which show a variety of line

profiles depending critically on the intensities of the incident laser pulses.

I. INTRODUCTION

An autoionizing state is an approximate bound
state of a multielectron atom whose energy lies
above the first ionization threshold. Due to config-
uration interaction, this state is unstable against
ionization with one electron being ejected. '

With the development of tunable dye lasers it has
become possible to study the autoionizing reso-
nances by multiphoton excitation. ' From the
spectroscopic point of view this allowed to observe
and classify with extreme accuracy autoionizing
states which cannot be reached by one-photon vacu-
um ultraviolet (vuv) absorption spectroscopy from
the atomic ground state. ' On the other hand, the
high intensities and narrow spectral widths of laser
radiation introduce the additional aspect to study
the behavior of autoionizing states in strong laser
fields. "' A bound-bound transition strongly
driven by a near-resonant laser becomes saturated
and undergoes ac-Stark splitting. ' The saturation
behavior of an autoionizing transition in an intense
laser, on the other hand, is complicated by the
simultaneous presence of both the radiation field
and the configuration interaction. ' Owing to the
large decay widths of autoionizing states, relatively
large laser powers (typically ) 10' W/cm ) are re-

quired to saturate a (one-photon) autoionizing tran-
sition. In the context of (multiphoton) ionization
the weak-field Fano theory of autoionizing line
shapes has recently been generalized to include in-

tensity effects, manifesting themselves in a consid-
erable distortion of the familiar Fano profiles of
photoabsorption as a function of the intensity and
interaction time. ' There is some indication that
recent multiphoton ionization experiments in
alkaline-earth atoms have observed such effects. "

While so far most of the theoretical work has
concentrated on the ionization problem, these inten-

sity effects are also observable in related processes.
One example of particular relevance is harmonic
generation which provides a source for coherent vuv

light. ' A typical scheme of a wave-mixing pro-
cess of this type in an alkaline-earth atom is the fol-
lowing: A first laser is tuned to a two-photon reso-

nance; this avoids strong absorption at the funda-
mental frequency. A second laser then excites the
electrons to states above the first ionization thresh-
old. Scanning with this laser over the autoionizing
resonances, one observes a considerable enhance-

ment of harmonic production with lineshapes
differing from those of photoionization. Most of
these theoretical studies so far have only been con-
cerned with weak-field excitations of the two-
photon resonance and the autoionizing state, where
an intensity-independent nonlinear susceptibility
can be defined, neglecting saturation and induced
ionization of the resonances as well as pulse propa-
gation effects. '

Motivated by present-day experimental possibili-
ties, the purpose of this paper is to generalize the
theory of nonlinear sum-frequency generation via a
two-photon and autoionizing resonance including
intensity-saturation effects. We thereby extend the
pioneering work of Armstrong and Wynne,
Armstrong and Beers, and Heller and Popov. In
view of the intimate relationship between harmonic
generation above the ionization threshold and ioni-
zation, such a study must be complemented by an
investigation of the competing process of two-

photon resonant three-photon ionization near the
autoionizing state.

This paper is organized as follows. In Sec. II we
derive the density-matrix equations of our gaseous
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ground state are excited to an autoionizing reso-

nance. In harmonic generation, only autoionizing
states with J=1 can be seen in the dipole approxi-
mation; these are the states known from (one-

photon) absorption spectroscopy from the ground

state. In multiphoton ionization, generally also
higher-angular-momentum states become visible.
To suppress the third harmonics at 3ui and 3coz,
both lasers are usually taken to be circularly polar-
ized in opposite directions.

A. Density-matrix equations for the medium

FIG. 1. Atomic configuration.

medium and the nonlinear atomic polarizations,
which provide the source terms in the classical
Maxwell equations for the two injected laser signals
and the generated harxnonic light. Pulse propaga-
tion effects are only included in terms of a phase-
matching function, neglecting depletion of the fun-

damental light waves. Approximate analytical ex-
pressions for the energy of the harmonic radiation
and ionization signal are derived in Secs. III and IV.
These results are discussed and illustrated by nu-

merical examples for various parameter combina-
tions in Sec. V.

II. BASIC EQUATIDNS

In this section we derive the basic density-matrix
and Maxwell equations describing the process of
(two-photon resonant) harmonic generation and
multiphoton ionization near an autoionizing reso-
nance. Figure 1 illustrates the atomic configuration
which is studied in this paper. We consider a gas of
atoms interacting with two laser beams with fre-
qucncics Qp i and N2. Thc first laser cxcltcs clcc-
trons from the ground state

~ g ) to the two-photon
resonance

~

e). The second laser is tuned to the
one-photon transition from the excited state

~

e ) to
an autoionizing resonance ~a) {where ~a) denotes
the bound-state part of the autoionizing state)
which decays into a series of continua ~E ) by
configuration interaction. In addition, both ~e)
and

~

a ) can be ionized by one photon of the first
or second laser. From the autoionizing state the
atoms can decay to their ground states, emitting
vuv photons with frequency m3 ——Mi + ~2. This
process of harmonic generation competes with
resonant three-photon ionization.

A typical experimental situation we have in mind
is the following: Alkaline-earth atoms with a J=O

The Hamiltonian H =HO+ V+8 governing the
time evolution of an atom in the gaseous medium
consists of three parts. The configuration interac-
tion is described by V, while D= —p -E(z, t) is the
dipole interaction with the electromagnetic field,
where

3

E(z, t) = g e, g', (z, t)exp[ i [cojr ——k, (z, t)z]]+c.c.

(2.1)

describes the three relevant modes of the elec-
tromagnetic field propagating in z direction. 5'j(z, t)

and kj(z, t) denote the slowly varying amplitudes
and wave vectors at the position of the atom at the
fundamental frequencies m], co2 and the frequency
of the generated harmonic m3 ——2cu2+co2. The time
evolution of the atom is determined from the above
Hamiltonian using the following approximations
(for mathematical details see Appendix):

(i) Following Pano's treatment of autoionization'
we assume

~

a ) to be an isolated autoionizing reso-

nance interacting with the continua ~E ) and all

other bound states via the configuration interaction
V. The bound states ~g) and ~e) are assumed to
be exact eigenstates of the atomic Hamiltonian

Ho+ V [compare Appendix, Eq. (A5)].
(ii) The interaction of the radiation field with the

atom is modeled by a three-level system with the
states ~g), ~e), ~a) in the rotating-wave approxi-
mation. The decay of the levels

~
e) and

~

a ) into
the continua by laser-induced ionization and config-
uration interaction is described by decay widths,
which assumes that both the dipole and the
configuration-interaction matrix elements from the
bound states ~e) and ~a) to the continua ~E )
are smoothly varying functions of the energy over
the relevant energy range. Laser-induced transi-
tions between the continua are neglected. ' These
processes mainly redistribute the electron energies
in the continua and are not expected to have any
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significant effect on the line shapes of the atomic
resonances which are of primary interest in this pa-
per. Nonresonant atomic states coupled to !g),
! e ), or ! a ) by dipole matrix element give rise to

quadratic Stark shifts of the states of our thrm-level
I

system. The interaction of the atom with the gen-
erated harmonic can to a good approximation be
neglected for typical conversion efficiencies.

These approximations which define our model
yield the following effective atomic Hamiltonian:

H.«=(~x+5s)! g) &g I +(~.+5~.—(-, ).}
I
e &&e

I +[~.+5~. &
—, ()—.+I'. )1!a & &a

I

+F4g + lexp [ —2~ [~ i r —k i (» r» j! ! e & & g I +V„~T'expI 2~ [~ i r —k i (»r» j! I g & & e
I

—po. I — g 2exp[ —([~~t —kz(z t)z~!
I
a & &e! —p. I — gzexp[~'[~2t —kz(z r)zl!

I
e & &a

I
~

Vae 9'ae

Here rag, co„and r0, denote the energies of the levels ! g ), ! e ), and ! a ). The energy shift 5co of ! a ) due to
the configuration interaction with all other atomic states has been included in the definition of ~, . 5'~ with
j=g,e,a is the quadratic Stark shift of the level ! j) induced by the first and second laser. y~ with j=e,a are
the field-induced one-photon ionization widths of ! e ) and ! a ). In terms of the dynamic (complex) polariza-
bilities defined by

ak(m ~ )=ak (mi )+~ak'(co
~ ) = —k p. e i

1 +p'e)
Q)k +CO )

—Hg + l 6'

(2.3)

for an atomic state
~

k ), the Stark shift of the ground state may be written as
5' = —a ~ (co ~)! 8', !

—a '
(co )!8'2

~

. The shift and width of the two-photon resonance ! e ) is given by

5a), i , y, =———a,(co()!g')! ' —c7,(co2)! 8'p!

The bar on a, (co2) indicates that in the infinite summation over the atomic states represented by the resolvents
in Eq. (2.3}the (divergent) contribution in the second term from the autoionizing state ! a ) should be project-
ed out according to

a, {ru2)= —e p'e2 0 p'ex+a e2Q H . Q p ez
M~ —C02 —Hg e +CO2 —Hg + lE

with Q, =I—
! a)&a!; this coupling is treated explicitly in our effective Hamiltonian equation (2.2). In a

similar way we find for the shift and width of the autoionizing state,

. 1~u —&, )'a —4a
~I)I

!
gl

CO~+6) I
—Hg +LE QP~ —Ql

~
—Hg +l6

+ p'e2 p'ep
CO++&2 —Hg +lE

+p e2Q, H . Q.V.e~
Q)z —N2 —Hg +lE

where Q, =l —
! e)&e

~

again points out that the
contribution from !e) should be projected out in
the first term of Eq. {2.3) in analogy to Eq. (2.4).
The expressions for the dressed atomic states ! f;+ )
are given in the Appendix [see Eq. (A6)]. Note the
different signs of ! g;+) in Eq. (2.S) and the polari-

zabilities in Eqs. (A6), (A7), and (2.I9};

I.=2~+!&Z. ! V[a)!',

is the autoionization width of level ! a ) . The effec-
tive two-photon bound-bound matrix element of the



1376 G. ALBER AND P. ZOLLER 26

transition
I q )—+

I
e ) is given by

1
Peq & P e1 P

Ng +co1 —HA

(2.7)

The Fano parameter'

Pae
qae =

~QVaEPE e
Ea =~a

(2.9)

The dipole matrix element for the resonant excita-
tion step

I

e )~ I
a ) is

with

with

p,„=(P.I p, e, Ie),

I y. ) =
I
a )+f' g. V

I
u ) .

COa —HA

(2.8)
pE e ——(E

I p eq
I
e) and Vaz ——(a

I
V

I
E ),

characterizes the interference in the autoionization
step. Defining a correlation coefficient

—1/2

Pae = g VaE PE e g I
VaE I g I Phoae I

—1/2

(2.10)

which is one (
I P„I

= 1), if only one continuum participates, and whose modulus is smaller than 1 for a decay
into several continua, we obtain the relation

r."'=
I 2p., @'z

I
'~(p, q., )'I . (2.11)

for the field-induced ionization rate of the excited state
I

e ) due to the second laser.
From the effective Hamiltonian (2.2) we derive the density-matrix equations describing the properties of the

gaseous medium

d 1

ct
—+r, +I,+—p„=21m [@„(1+i/q„)5'zp„],

1 1 42—

dt
+re+ Pee Paa = 2 [IJ'ge g 1 Peg+Pea( ~ ~qea )&2Pae] ~

d 1 1
~l ~2+ 2 7a + a + + Pag ~I ae(1 /qae )+2Peg +~Peg 1Pae g

dt 2
a ag

d 1 1 1——i 62+ —, y, +y, +1,+—+—+ p„=i@„(1—i /q„)8'2p„—t'p„(1+i/q„)8'2p„
(2.12)

42—
+~I ge +1 Pag ~

d . I 1 1
~~1+ 2 3 e+ + Peg = ~Peg+1(Pgg Pee)+~Pea(1 ~/qea)+2Pag ~

t 7e T

d 1 1 +2-—
pgg

— paa pee =2Im(I ge1 peg),dt Sag pe

where we have used the abbreviation pj =pj(z, t)
and neglected the inhomogeneous broadening due to
the atomic motion in the gas. The various Ys
describe the effects of spontaneous decay and atom-
ic collisions and have been added phenomenologi-
cally. The bars on the off-diagonal elements indi-
cate the transformation to slowly varying variables:

and

61——2cui+(Ng+5cog) (N +5N )

~2=u2+(ue+5COe )—(COa +5COa )

denote the dynamic detunings.
For the following it will be convenient to define



HARMONIC GENERATION AND MULTIPHOTON IONIZATION. . . 1377

1 2
y, +r, +—+ Tlg Qg

I,
1 1 2|e+ Ye+ra+ + +

~8 ~C 08

(2)

1 2+ +
~8 8g

(2.13)

P(T) =1 p—~(T) p—„(T)
1/r,

p~(T)
1/~. +r. " (2.15)

8. Maxwell equations

The polarization of the medium, as calculated
from the density-matrix equations, provides the
source terms in the Maxwell equations for the elec-

tromagnetic field. Decomposing the electric field
according to Eq. (2.1) the first-order Maxwell equa-
tions for the slowly varying complex electric field
amplitudes read

P(T)=1—p~(T) —p„(T)—p (T) . (2.14)

If the ionized electrons are measured after a time
long compared to the lifetime of

I
a ), Eq. (2.14) has

to be replaced by

where in practice P,» is expected to be close to l.
Note that if I, becomes comparable to the spon-
taneous decay width of Ia) autoionization and
spr~ntaneous decay are no longer additive process-
es, ' as is implicitly assumed in Eq. (2.12).

The total ionization probability of the atom after
the interaction time T follows from the solution of
Eq. (2.12):

a 18
5'k(z, t) =i I'I, (z,t),

Bz c Bf 260c

k =1,2, 3 . (2.16)

X is the atomic density, assumed to be independent
of z. Pk(z, t) are the slowly varying polarizations.
The equations for S*i(z,t) and 8'3(z, t) describe the
propagation of the inc~dent light ~aves in the medi-
um. Propagation effects, such as depletion, are of
no concern in the present paper; they are negligible
for short cells, smaller than a characteristic absorp-
tion length defined below. The polarization P3(z, t),
which is responsible for the generation of the har-
monic, is given by (see Appendix)

P3(z, t) = [a»(co3 )p»»(z, t)+a, (t03 )p„(z,t)+a, (t03 )paa(z, t)] I'3(z, t)

+ [(»,&3(z,t)p~(z, t)+p», (1—i/q», )p,»(z, t)]exp[ i hk(z,—t) z] .

The coefficient multiplying 8'3 contributes to the complex index of refraction. The ground-state polarizability
0

ju'e3
H P e3+P 'e 3Qu'lf ~ QaP'e3

6)g —co 3
—Hg Ng+N3 —Hg+l6

pgg( 1 —/ /g~g )

hi+62+i , I', /p, »—

The first two terms describe the contribution from the nonresonant states including the continua. The third
term is due to the presence of the autoionizing state, giving rise to a Pano-type resonance profile. A similar
expression is found for a, (co3),

aa(F3)= —pa+ p e3Q» Q»P e3+P e3 P, e3
M~ —CO 3

—Hg Nz+QP3 —Hg +EE

Pa» I
1 i /Cu» I

—( b, , +b.2)+i—,1,/p. »
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while a, (co3) is given by Eq. (2.3). Here, ps, = (g
~

p, e i ~ P, & is the dipole matrix element for the transition

~ g &~
~

a &, and qs, and pz, are the corresponding Fano parameter and correlation coefficient defined in anal-

ogy with Eqs. (2.9) and (2.10).
The nonlinear part of the polarization consists of two contributions. The first term corresponds to the exci-

tation of the two-photon resonance, followed by the absorption of a photon of frequency co2 and the emission
of a photon at the generated harmonic frequency cu3 via the nonresonant states or the continua described by
gs„where

with

1 -+ ~ -+ —AL' 1(=—g p e3+p eiQ, P Qap'e2
co —co 2

—Hg Ng +26) ] +C02 —Hg

~X&g I) e~ I&.&«. IS
.elle&

where P denotes the principal value of the integral involved. The second part involves the resonant contribu-
tion from the autoionizing state. For a Doppler-broadened medium, the polarization Pi(z, t) in Eq. (2.16) has
to be averaged over the velocity distribution of the atoms in the gas.

For short cells, depletion of the two incident laser beams may be neglected. This allows us to approximate
(z, t), j=12, wit. h the retarded time r = r z/c by its—boundary value O'J(z=O, r) in the density-matrix equa-

tions (2.12) and in the polarization Pi(z, t) In this w. ay we find for the energy of the generated harmonic

Ui =2eoc I dr
~

8'3(L,r)
~

i

(EL)' I dr
~ gs,p~(D, r)8'2(D, r)

2+0+ —cc

+ps, (1 i /qs, )P,s(0,—r)
~

2F(hk (O,r )L,e(0,r)L ),

where I is the length of the cell;

1 1+exp[ —2o (z,r )L]—2 exp[ —o(z, r )L]cos[hk (z,r )L ]F bk(O, r)L,o(D,r)L)=— '2
u(z, ~)L hk(z, ~)1.

2
+

2

represents the characteristic phase-matching function with the phase mismatch

hk(z, v )=k3(z, ~)—2k)(z, ~}—k2(z, x} .

The wave vectors kj(z, w), j=1,2,3, are defined by

QlJ. N)

k, (z,r)= %Re[as(r0/)p~(z, r)+a, (r0, )p„(z,r)+u, (n)J)p„(z,r)]+
26oc C

CO3
cr(z, r) = N Im[as(co3)p~(z, r)+a, (roy)p„(z,r)+u, (r03)p„(z,r)]

2Eoc

(2.23)

(2.25)

is the absorption coefficient of the generated harmonic. If a buffer gas is used to obtain phase matching ap-
propriate terms on the right-hand side of Eqs. (2.23) and (2.24} have to be added describing the change of the
index of refraction.

Equation (2.1) for the energy of the generated harmonic radiation together with Eq. Q.12} for the density
matrix of the medium are the basic equations which are studied in this paper.
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For completeness we also give the expressions for the polarizations P1(z, t) and P2(z, t) at the first and

second laser frequency,

P~(z, t) =[as(co&)p~(z, t)+a, (to~ )p„(z,t)+a, (ta& )p„(z,t)]@'~(z,t) 2p—g,p,g(z, t)8'~(z, t) (2.26)

P2(z, t) =[as(ai2)p~(z, t)+a, (to2)p„(z,t)+a, (t02)p (z, t)]$'2(z, t)+p„(1 i /q—„)p„(z,t), (2.27)

where the contributions involving the generated harmonic field amplitude have been neglected. The expres-
sions for the atomic polarizabilities are given in Sec. II A and in the Appendix.

The inverse of the imaginary part of the right-hand side of the equations for 8'1 and 8'2, evaluated at z=o,
provides an estimate of the characteristic absorption lengths of the incident light waves.

III. WEAK COUPLING TO THE AUTOIONIZING STATE

If the laser-induced coupling between the two-photon resonance and the autoionizing state is weak, the adia-

batic elimination of the density-matrix elements referring to the autoionizing states reduces Eq. (2.12) to
Bloch-type equations for the two-level system

~
g),

~

e):

d F 1 +2-
dt

+'Ye + Pee = —2 Im(Pge 8 1 Peg ),

d 1 2——„pgg——
pee 2Im(I ge+1 peg)

7 e

d . . F [ F 1 1

dt
~~1+~~eg+ 2 'Yeg+ + Peg = ~I eg +1(Pgg Pee )

7e T

(3.1)

This adiabatic elimination assumes all time scales of our problem to be slower than 1/I a e The Fano profile

2
p ()) (2) i 2 qea 2 a Pm + qea 2

Ye = Ye +Pe 1+ 2 ~apea
&& +(-, .fP/. , )'

(3.2)

describes the resonant decay of the population of
~

e ) to the continua where y,'", with r=1,2, represent the
contributions due to the first and second laser. The quadratic shift and width due to the autoionizing reso-
nance is

~ F ] F & (1) ~ (2) (q —r)
~~eg+ g Yeg 2 Xe + 2 Ye 1+ 2 pea~a 1

i (b, , + i),2)—+ , I', /p,g— (3.3)

which again displays the characteristic interference effects. Note the different dependence on the detunings in

Eqs. (3.2) and (3.3). The polarization driving the generated harmonic becomes

p, (1—i /q, )p„(1—i /q„)
P, (z, t)= g a;(co, )p;;(z, t)S'3(z, t)+ gg,

—
i=g, e, a ~1+~2+i 2

1 o/P g

X 8'2(z, t)p~(z, t)exp[ i bk(z, t)z]—, (3e4)
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where the second term in large parentheses is the
resonant contribution from the autoionizing state.
Both the density-matrix equations and polarization
given above are generalizations of the results ob-
tained by Georges et al.

IV. RATE APPROXIMATION

The purpose of this section is to provide simple
analytic expressions for various limiting cases of
parameter combinations for the generated harmonic
and ionization probability. Although in a quantita-
tive sense the validity of these approximations is
very restricted, they often allow a quite general
qualitative insight into the parameter dependences
of the problem and thus complement the results of
numerical calculations presented in Sec. V.

In a square-pulse approximation for 8'&( t) and
8'z( h) the time dependences of the density-matrix
elements are determined by the eigenvalucs of the
Liouville matrix in Eq. (2.12). If one of its roots is
smaller than the other eigenvalues, it dominates the

I

long-time behavior of the system; physically this
means that one of the rates governing the redistri-
bution of the electrons between the atomic levels is
slower than the other ones and corresponds to a
bottleneck in the excitations of the electrons. One
way of isolating these slowly decaying roots is the
adiabatic elimination of the fast variables in the
density-matrix equations. Below we shall study in
this approximation the two limiting cases of a sa-
turated two-photon transition coupled weakly to an
autoionizing resonance and a weak two-photon exci-
tation coupled to the strongly driven system

Ie), Ia&.
If the second laser exciting the autoionizing reso-

nance is weak, the adiabatic elimination of the off-
diagonal density matrix elements in Eq. (3.1) leads
to rate equations for the populations p«and p~,
where the decay to the continuum states described

by the Fano ionization rate y, [Eq. (3.2)], and the
redistribution of the electrons between the ground
state and the two-photon resonance is governed by
the two-photon transition rate

~~=2
I
p~g'&

I
Im

—1

(2)g
I p' @'~

I

'( 1 —
~ ~I., )'

I+h g Ye eg
4(+kg+i , I /P—s

(4.1)

These rate equations are valid for weak fields, if the
transverse decay constants are larger than the diag-
onal decay rates, and describe the time-averaged
behavior of the populations in the strong-field limit,
where Rabi oscillations appear. If one of the rates
in Eq. (3.1) dominates over the others, the time
dependence of the ionization probability can be ap-
proximately described by

p„(t)+pgg(t)=e

we determine R by requiring

(4.4)

I

which is proportional to y,s [compare Eq. (3.3)]. A
more rigorous derivation of the single rate approxi-
mation (4.2) for the second ionization probability is
the following '. Starting from the Ansatz

with

9'(h) =1—e (4.2) J Ch[p„(h)+p~(h)]= f e "'Ch=

(4.5)
F

re ~~

r.'+ —'+2K.
e

(4.3)

a single time-independent ionization rate.
For a saturated two-photon transition, the ioniza-

tion rate is equal to —,r, , whereas for a weak
bound-bound step the ionization rate equals W~

According to its definition, R represents a global
time-averaged ionization rate. By integrating the
density-matrix equation (3.1) over the time, we ob-
tain a system of linear equations for the time-
integrated density-matrix elements, which is readily
solved for R in agreement with Eq. (4.2). With the
same approximation as in Eq. (4.2) we get

p~(t) =
2—LPeg

—~~i+~~~+-, r~+—+ T
F i F 1 1

e eg

r' +—
2

r,' +—+28'eg

—Rte (4.6)
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and the energy of the harmonic becomes

2

U3 —— ( NL )'
I gge W( i( (+42) @'2

I

'
I Peg (f =-0)

I

'F ( &k L, fJ& )T ff,
2E pc

(4.7)

where Tcff —(1—e )/2R is the effective interaction time. In the derivation of Eq. (4.7) the time variation
of F( 6 k L,oL) has been neglected.

The modification of the line profile due to the (weakly excited) autoionizing resonance is contained in the
Fano-type factor

pg,p„(qg,—& )(q„—t )

pge (qg, i)(—h(+ b,2+i , I',—/P,g )
(4.8)

In the low-intensity limit of the first laser and for
qg,

——0 the nonlinear susceptibility in Eq. (4.7) is in
agreement with the results of Refs. 7 and 8. The sa-
turation of the two-photon resonance, contained in
the second factor of Eq. (4.6), inanifests itself in a
saturation dip in the resonance profile as a function

22, 25

ac-Stark splitting of the two-photon transition
occurs if the two-photon Rabi frequency exceeds
the spontaneous and induced widths of

I
e ). Scan-

ning with the second laser as a probe over the au-

toionizing resonance, this dynamic Stark splitting
can be recognized only at such extremely high in-

tensities of the first laser, for which the two-photon
Rabi frequency is larger than the width of the au-

toionizing structure in the continuum.
For 6(——0 and P«-P,g the ionization rate is

given by

& =-, [)'(~ + I(

+)'. (~2 —
I v'g &( I

)]p»(~(=o»

(4.9)

U3 I ~(~2+
I
p'«@'(

I
) I

'

+ I ~(~2—ls «g(l ) I'. (4.10)

, r. /P«—

g2+(
' (2(/P )2

Let us now turn to the case of a weakly excited
two-photon resonance coupled to a strongly driven

transition to the autoionizing resonance. Electrons
excited to

I
e) are readily transferred to

I
a) and

ionized into the continuum. Since the two-photon
transition is the bottleneck of the excitation in the
system, the populations of

I
e ) and

I
(2 ) are small.

The long-time behavior is governed by the slowly

decaying ground-state population pgg(t) =e
where R turns out to be identical to the bound-
bound rate W«already derived in Eq. (4.1) in a dif-
ferent context. To study for fixed hi the depen-
dence of the ionization rate R and the energy U3 of
the generated harmonic on the detuning h2 of the
second laser, both R and U3 are conveniently writ-
ten in the form

and the energy of the generated harmonic becomes
proportional to with

(4.11)

1 I 2 2 2 2
I
i3(+i32+qae 2 f'aPegpae I

+( 2 f'a/Pag) (l PegPagpae)(l+qaePagPegPae)
W(hi, h2) =

[&(+&2 , &, /P, gg(&()]'—+—(, &, /P, g )'[l —2)(—h()]'

and

2

U3 —— ( EL)
I ggeS g'2

I I p,g(0) I
F(hk L,oL )T,ff

26pc

with

(4.12)

(4.13)

pga pae Vga
—

&

pge age
—

&

[~(+~2 z F./P.gk(~i)]+i , F./P.g[l
'q—(~i)l— (4.14)
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and the slowly varying density-matrix element in the absence of an autoionizing state,

g2
p~(0) =

~, +i ,
'
y,-"'IP~

(4.15)

The modifications in the ionization and generated harmonic due to the strongly driven transition to the au-

toionizing state are contained in the Fano profile W(hi, h2) and X, respectively. The shift of the resonant po-

sition and width of these Fano profiles are given by

ae ae i e eg
{4.16)

g+( —,y,
' '/P, g)'

( —,y,
' '/P, g )(q„—1)+2q„hi

(2)p 2 g e eg ae ae

&i+( , y, IP,g)'—
(4.17)

respectively.
Note that 1 —g(h&) itself is again a Fano profile as a function of Li with a minimum near

b i
————,q„y,' '/P~. Since the effective Pano parameter of the ionization modification factor F (hi, h2) is

roughly q,n
——[q„+g(b,i)]/[1 —r) (hi)], the shape of this Fano profile changes with the detuning hi. At this

point the width can, at least in principle, narrow down to the collision-induced and radiative decay rates, pro-

vided that p„P~is close to 1. While in the generated harmonic this narrowing appears as a strong enhance-

ment of the resonance signal, in the ionization probability the small denominator gets (almost) canceHed by

the Fano minimum in the numerator so that at this critical value P (hi, h2) = 1.
To study for constant h2 the dependence of the ionization probability and the harmonic energy on the de-

tuning of the first (weak) laser h„Rand Ui are conveniently written in the form'

, , y,
"'

I ~i+~2+pea/Peg i 1 aqae I +(2 f'a/Pag) (1 PegPagpae)(1+qaePagPegpae)
(418)eg i

p If I'

U3= (NL)'I g' ,g'ga~MS' Ii2
2EOC

2

age qge
—I

F(hk L,0L )T,g . (4.19)

The roots of the polynomial

f=(&i+& , y,
' 'IP,g )(&i+&—i,+i , I ', /P, g )

I
p„—g'q

I
'(1 —i—/q„)' (4.20)

determine the positions and widths of the resonance hnes. Generally, both R and U3 will therefore exhibit a
two-peaked structure. If the strong second laser is tuned off resonance, one resonance line appears near
hi+52 ——0 corresponding to the nonresonant three-photon excitation of the autoionizing state, while the
second peak near 5& ——0 is a contribution due to a stepwise excitation via the two-photon resonance.

For near-resonance conditions of the second laser both the ionization probability and the harmonic energy
exhibit ac-stark splitting in the intensity regime where the Rabi frequency 0„=2p„S'2exceeds both, the au-
toionization width and the induced ionization widths of

I
e) and I a), according to
2

(1+q„)I,

1 1

~i + 2~aqae ~i + 2~uqae+ (4.21)
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I age@'2Peg&i I

4lv-g2I' 1+,
Sac

Pge Cge

Pge Qge
—

&

with

In thee formulas wc have assumed Pee ~ Peg ~ and Peg to be close to 1 ~ Note that as a result of intcrfcfcncc thc
widths of both Stark-split dressed states are different. %'ith increasing intensity of the second laser the width
of the second line has a minimum when y,

' '=I, . At this critical intensity the corresponding dressed state
becomes quasistable against a decay to the continua. ' ' The sm. all width, however, leads to a strongly peaked
resonance line in the energy of the generated harmonic. The experimental realization of the line shape (4.$1)
and (4.13) heavily depends on the condition according to which both the autoionization and ionization decay
are saturated in time (I",T»1, y, T»1). For interaction times and intensities such that y, T(&1 but
I,T »1, a short time expansion of the density-matrix equations (2.12) (

I peg8'~ I, I h~ I &&1/T) shows that
both, the ionization probability

(4.23)

and thc energy of the generated harmonic

are charactenzcd by the Pano profil~, which we already found ln the limit of perturbation thMV of a wmk

second laser [see Eqs. (3.2) and (4.8)].

V. NUMERICAL RESULTS

To illustrate typical line profiles in multiphoton
ionization and harmonic generation we present in
this section results obtained by numerical integra-
tion of the density-matrix equations (2.12), assum-

ing a square-pulse shape of length T for both 8'~

and 8'2. To separate the atomic contribution to the
generated harmonic linc shape, represented by p,g

and p,g in Eq. (2.12), from contributions due to
pulse propagation effects, we have assumed
throughout this section that F(hk L,oL )= l.
Physically, this corresponds to the restriction to low
atomic densities or very short cells, i.e.,

I &k(O,r ) I
L (& 1 and o(O, t)L ((1; this neglects the

change of the phase mismatch with the redistribu-
tion of the atomic populations. In view of the re-

sults of Ref. 22 we expect the time-dependent
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0.06

1.6

U, y

(b)

FIG. 2. Ionization probability and the harmonic ener-

l.g,y is plotted as a function of (a) b and (b) 6i an 2, respective-

y. The first transition isis saturated

|ping'~

I
=0.1I,), while the coupling to the au-

toionizing state is weak (II2 ——2
I
p„g'2

I
=0.27I' )a .

(b)

FIG. 3.
er . Th

. ~a) Ionization probability and (b) h armonic en-

gy. he first transition is weak (0 =0.01I ,), while
ond transition is almost saturated (02 ——0.5I )a .

phase-matching function only to introduce some ad-

itional asymmetries in the resonance profiles.
We assume bdow a model atom with an autoioni-

zation width of I =10' s ' All hs . other atomic

parameters are chosen as follows:

11 1 1 1 =2y10 'I, ,
ag ae

1=1=1
eg Tag Tae

=2y 10-'I, ,

)'a=o I I2v~~t I'+)'"
(jj

re =0

T=100/I a .

(F03/2coc)(NL) (
I gs, I /Ip„I') —,I,

The Pano parameters are taken to be
and =2qg,

—— with the corresponding correlation coef-
ficients p„=pg,——pg, =0.9.

ionization probability P(T) and the generated har-
monic energy in units of

on the detunings of the first and second laser Ai
and A2 (in units of I , /2). The first laser saturates
the two-photon resonance, but the laser-induced
coupling to the autoionizing state is still weak. As

lines h
expected from Eqs. (4.3) and (4.7) then . t e resonance
ines have the form of asymmetric Fano rofiles as

a function of 6o 2, w"ich are characteristic of weakly

c ano pro i es as

excited autoionizing states. " The
profile of h

e resonance

p i e o t e ionization signal is a power-broadened
symmetric Lorentzian as a function of th d

*

n ig. ( ) we recognize a saturation dip in the
onic. ear resonanceenergy of the generated harm

'
N

2-0, the two ep ai s are somewhat asyrnrnetric as a
function ofof A~ caused by interference effects in the
autoionizin tr
the a

' '
g ransition. In contrast we not th

asymmetry found by Georges et al. is a
e at

uence 0
e a. is a conse-

q of the time dependence of the phase
mismatch [see Eqs. (2.23) and (2.24)].

Beside ththe dominant resonance in Figs. 2(a) and

citation
2 b, at

&
-0 which corresponds to the stepwise ex-

co i fd i fiP2

Is&
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there is a second much weaker and broader struc-
ture at 6&+ 62-0 which is associated with the
direct three-photon transition to the autoionizing
state.

The ionization probability and harmonic produc-
tion for a weakly excited two-photon resonance cou-
pled to an almost saturated autoionizing state is
plotted in Figs. 3(a) and 3(b), respectively. In agree-
ment with Eq. (4.11) for constant h~ the resonance
line shapes of the ionization signal as a function of
hz are Fano profiles with the widths, the effective
Fano q parameters, and the positions of the maxima
critically depending on the intensity and the detun-

ing 5&. Similarly, the resonance behavior of the
harmonic energy can be understood on the basis of
Eq. (4.13). The appearance of peaks in Figs. 3(a}
and 3(b) is related to the Fano minimum of the
width function 1 —rI(b, ~) in Eqs. (4.12) and (4.14).
Note that such a peak will exist in the ionization
probability only for p„P~P~+1.2 While off reso-
nance (52+0), the line shape b, is practically sym-
metric; there is some asymmetric broadening at
hg ——0.

Harmonic generation for a saturated two-photon
resonance followed by a strongly driven transition
to an autoionization state (Fig. 4) has features from
both Figs. 2(b) and 3(b). We do not show the corre-
sponding ionization probability since, with the ex-
ception of the increase of the resonance width in h~
and the total amount of ionized atoms, the reso-
nance structure is similar to that of Fig. 3(a). Near
the resonance of both lasers, the doublet structure
of Fig. 2(b) and the peak discussed in the context of
Fig. 3(b) coalesce into a single broad asymmetric
resonance profile.

0.06

0

Q, = 1

(a)

0.16

Q a0
Qp1

(b)

FIG. 5. (a) Ionization probability and (b) harmonic en-
ergy. The first transition is weak (Qi ——0.01l', ), while
the second transition is saturated (Q2 ——I,).

In Figs. 5(a) and 5(b) we have plotted the ioniza-
tion probability and harmonic energy for a weakly
excited two-photon resonance coupled to a strongly
saturated transition to the autoionizing state. In
comparison to Figs. 3(a} and 3(b), the intensity of
the second laser is increased by a factor of 4. On
resonance, b,q

——0, the ionization probability now ex-
hibits ac-Stark splitting as a function of h~. As a
result of interference effects both Stark-split states
have different width [compare Eq. (4.21)]. The
peak in Fig. 3(a) has now given place to a narrow
resonance structure with its height quickly decreas-
ing towards h2 ——0. Asymmetric ac-Stark splitting
is also observable in the harmonic signal. Note that
with increasing saturation the conversion efficiency
becomes smaller.

Finally, Fig. 6 shows the harmonic signal for sa-
turation of the first and second transition. The ac-
Stark-split lines are now extremely broad, but the
interference minima are still well visible.

FIG. 4. Harmonic energy for Q ~

——0.11, and
02 ——0.85I,. The corresponding ionization probability is
not plotted since it is qualitatively similar to Fig. 3(a).

VI. CONCLUSIONS

In this paper we have studied intensity effects in
harmonic generation and multiphoton ionization
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Q, = 0
Q, =2

FIG. 6. Harmon&c energy for 0 ~

——0.1I ~ and

Q2 ——2.7I, . Both trans1tions are saturated.

via a two-photon resonance coupled to an autoioniz-

ing state. In harmonic generation autoionizing res-

onances may lead to a considerable enhancement of
the harmonic production, compared to the off-
resonance value. In general, the saturation of the
resonances decreases the conversion efficiency; the

optimum intensities for the injected laser powers

will be to work at the onset of saturation. Note,
however, that the resonant enhancements predicted
in this paper depend on the assumption of a low-

density gas (or, equivalently, short cells). From the

point of view of conversion efficiencies, non-

rcsonant phase-matched wave mixing in long cells

with high densities may still be more effective.
Observation of the line shape of the generated

harmonic energy provides considerable information

regarding the behavior of autoionizing states in

strong laser fields, complementing the results ob-

tained for multiphoton ionization. At low intensi-

ties of the second laser which couples the two-

photon resonance to the autoionizing state, the reso-
nance curves are intensity-independent Fano-type
profiles as a function of 62.

Saturation of the two-photon resonance leads to
power broadening of the ionization probability and

yields a saturation dip in the generated harmonic as
a function of the detuning hi of the first laser. A
weak excitation of the two-photon resonance fol-
lowed by a strong coupling to the autoionizing state
results in Pano-type profiles in Az with line shapes
and width critically depending on the intensities

and the detuning 5). ' As a function of 6i, ac-
Stark splitting of the autoi'onizing transition into
dressed states with different widths is observed. '

The saturation of both the first Rnd second transi-
tion leads to a considerable broadening and washing
out of the resonance structures.
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APPENDIX

In this appendix we give an outline of the derivation of the effective Hamiltonian (2.2) describing the time
evolution of an atom within the gas and of the mean polarization entering Eq. (2.16). Thereby we shall make
the following assumptions:

(1) 8'J(z, t) is time independent. The generalization of our derivation to slowly varying time-dependent am-

plitudes 8'J.(z, t) is straightforward and does not change our results.
(2) The wave vectors kJ(z, t) are slowly varying functions of time (cojlc »

~
Bkj(z, t)fBr

~
).

(3) The generated harmonic is neglected in the time evolution of the atom in comparison with the incident
waves. Its action on the field-induced mean polarization P3(z, t) is taken into account perturbatively.

%C have to solve the Schrodinger equation with the semiclassical Hamiltonain H=Ho + V+ D and the ini-
tial condition

~
li ), 0= ~g) neglecting the generated harmonic 8'3. According to Floquet's theorem the

transition amplitudes may be written as

xexp( in [~,t —k, (z, t—)zj )exp[ im [cozt ——k2(z, t)zj ]

with the I'csolvcnt opclator

G(x +is) = 1

x +l6 —8
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The quantiti~
I J n— ~ & a«Floqu««ates" H' is the corresponding Floquet Hami)to»an" »d

1 i) is
Rn arbitrary atomic state.

According to Fig. 1 the coupling between the energetically degenerate states ~g, 0,0),
~
e, —2,0),

~
a, —2, —1), and

~
E, 2, —1}—must be treated exactly. The influence of all other Floquet states can be tak-

en into account pcrturbatively. VAth thc help of thc projcctlon operator

~=g o 0& &g o*01+
I
e —»0& &e, —2,0

I
+

I
a —» —1& &a —» —1I

(A2
+ g IdE.

~
E., —2, —1)&E., —2,

%c restrict thc rcso1vcnt on thc subspacc of thc resonant states

PG(x +ig)P =
X + l6' —Hp

%herc H~g l.s given ln pole RpproxMlatlon

«o+ V)
I g &=s lg&

(Ho+ V) [e)=ai, ~g),

(Ho+ (a (
V

)
a ) ) )

a ) =a),
)
a ),

Qu(HO+V)Q. IE &=~N I~ &

Q, =l —[a)(a (
.

Substituting Eq. (A3) into (Al) we keep the coupling to the electromagnetic field in Q space up to second-
order perturbation theory. Ehminatmg (E,—2, —1

~
G(x+ie)

~ g,0,0) in the pole approximation and neglect-

ing field-induced continuum-continuum transitions me Kind a Schrodinger equation in the atomic subspacc

~ g ),
~

e ), and
~

a ) with the effective Hamiltonian given by Eq. (2.2).
The complex polarizability of the autoionizing resonance

~
a ) due to the first laser is given by

P C 1+@'C1 p'ei 4a
6k~ —QP ~

—Hg +lE ~ +~ 1
—I& +gP

le &=la&+Q. „Q.Vla&.

For thc Inodlfled atoIDlc polarlzRINllty caused by thc second laser %'c find

u eiQ. H . Q. l
.ex+I ei

H . V'ei
Nz —N2 —Hg +PE QPz +A)2 —Hg +$6

with Q, =l —~e)(e ~.
Thc s41ft of thc Rutolonlzlng rcsonancc duc to thc conf lgUl ation lntcI'action ls

Ro=(a
(

V V~a} .
APE —Hg

The expressions for RB other parameters determining the time evolution of the atom may be found ln Sec.
II A. Thc mean RtoIMc polarization ls defined by
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%'1th

I
(i')r =

Pl, PTT, S = —co

—iHF,
( I, n—, —m, —s

I
e '

I g, 0,0)exp[ in—[ro, t —k~(z, t)z] I

X exp[ i—m [toqt k2—(z, t)z] ]exp[ —is[(2co~+to2)t —k3(z, t)z]] .

The Floquet Hamiltonian H no~ includes the generated harmonic. In lowest-order perturbation theory of
the electric field and in pole approximation me find after a trivial but lengthy calculation the expressions

(2.17), (2.26), and (2.27) for the polarizations I'k(z, t) of our gaseous medium.
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