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line shape
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Lorentzian models for laser line shapes lead to qualitatively incorrect results for off-resonance excitation of atoms.

This paper is the first attempt to present a theory of the nonperturbative interaction of an atom with a chaotic field

(representing multimode laser radiation having strong amplitude fluctuations) with a line shape falling off faster than

a Lorentzian. To this end we suggest a stochastic Markovian model for a non-Lorentzian chaotic field. To solve the

multiplicative stochastic differential equations describing the atom-field interaction we propose a "marginal

characteristic function approach. "This not only reproduces our earlier results in a more elegant way and establishes

the relationship between approaches used by other authors in a different context, but also provides the simplest

possible basis for our present discussion of ac Stark splitting in double optical resonance. While for a chaotic field

with a Lorentzian line shape the asymmetry of the two-peaked off-resonance spectrum is reversed for all values of
the detuning compared with the monochromatic case, our present model predicts a reversed peak asymmetry only

for detunings smaller than a few laser bandwidths in agreement with experiment. The on-resonance spectrum is

dominated by the amplitude fluctuations and is only weakly affected by changes of the spectral line shape of the

laser.

I. INTRODUCTION

In recent years there has been growing interest
in laser temporal coher'ence effects in saturation
and ac Stark splitting of an atomic transition. ' "
Nearly all the work published so far on finite band-
width excitation of atoms in intense electromag-
netic fields is based on the Lorentzian line shape
to model the laser spectrum. 'The reason for this
assumption is mainly one of computational sim-
plicity; many calculations performed so far be-
come much more cumbersome, if not intractable,
if something more complicated than a Lorentzian
spectrum is assumed. Realistic laser line shapes,
on the other hand, are generally expected to re-
semble more closely a Gaussian distribution. "
'The central question regarding the applicability
of a Lorentzian profile to model a realistic laser
spectrum is whether or not both lead to qualita-
tively different. predictions. Clearly, one would

expect some qualitative differences; but a qualita-
tively different behavior is certainly unacceptable.

The problem with Lorentzian line shapes is that
the far wings fall off very slow. ly." If we tune a
radiation source with a Lorentzian spectrum many
linewidths away from the resonances of an atomic
system, the incoherent contributions to the exci-
tation of this atomic state (through absorption of
resonant photons out of the wing of the laser spec-
trum) can dominate over the coherent part for all
values of the detuning. For a realistic laser spec-
trum with a line shape falling off much faster than
a Lorentzian, these incoherent contributions
should be negligible; because for large detunings
one would expect the laser field to appear mono-

chromatic to the atom. These difficulties with
Lorentzian line shapes far off resonance are best
illustrated by two examples.

One of the qualitatively new features, which have
been observed experimentally in finite bandwidth
radiation fields, is the reversed peak asymmetry
in the doublet spectrum of double optical reso-
nance (DOR) for off-resonance excitation. " In
DOR a strongly driven atomic transition is probed
by a second weak laser inducing population in a
third unperturbed state. This prediction has re-
cently been confirmed experimentally by Hogan
et al." In this experiment, however, the reversed
peak asymmetry persisted only for detunings of a
few laser linewidths, reverting back to normal for
larger detunings, while the theory —based on the
assumption of a Lorentzian line shape —predicts
a reversed peak asymmetry for arbitrary de-
tunings. '4 Physically, this reversal of the peak
asymmetry is caused by the overlap of the wing
of the- laser spectrum with the atomic resonance,
leading to an enhancement of the two-step process
in comparison with the off-resonance two-photon
absorption. The disagreement between theory and
experiment may, therefore, be attributed to the
assumption of a Lorentzian line shape in the theo-
retical treatment, while in the experiment the
wings of the spectrum were falling off much, faster
than a Lorentzian. C onsequently, calculations
with a realistic laser spectrum are expected to
lead to a reversed peak asymmetry only within a
certain range of detuning. Similar problems with
Lorentzian line shapes also appear in off-reso-
nant multiphoton ionization by finite bandwidth
laser light: A Lorentzian line shape of the laser
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field leads to incoherent excitations of the atomic
levels by the photons in the wings of the laser
spectrum which, even far off resonant, may dom-
inate the ionization probability by orders of mag-
nitude. " Recent experimental results, however,
have demonstrated these incoherent contributions
to be negligibly small. "

'The above examples illustrate the necessity to
study stochastic models with line shapes falling
off faster than a Lorentzian. In recent papers we
have shown how the phase-diffusion model (PDM}
(describing light from a single-mode laser with
stable amplitude but flucutating phase) can be gen-
eralized to include a non-Lorentzian spectrum. '
It is the purpose of the present paper to present a
theory describing the interaction of a chaotic field
(CF) having a non-Lorentzian line shape with an
atomic system. A CF is a radiation fieM with
Gaussian statistics of its (complex) amplitude. It
models the radiation of a multimode laser with a
large number of uncorrelated modes. Only re-
cently, it has become possible to treat rigorously
the effect of amplitude fluctuations of the CF in
saturation and ac Stark splitting of an atomic tran-
sition. ""'"Owing to the difficulties in the treat-
ment of amplitude fluctuations all the (model) cal-
culations performed refer to Lorentzian line
shapes. The present paper is, therefore, the first
attempt to deal with non-Lorentzian line shapes in
the presence of (strong} amplitude fluctuations.

We have decided to apply the theory to ac Stark
splitting in DOR. The reasons for this choice are
twofold. 'The experiments on ac Stark splitting in
a field with strong amplitude fluctuations have so
far been performed as DOR experiments. " Fur-
thermore, our present results permit comparison
with our earlier calculations on DOR for a Loren-
tzian CF and a non-Lorentzian PDM field. But
there is still another aspect of the present paper
worth mentioning. As we have remarked before,
the treatment of non-Lorentzian line shapes in
the presence of amplitude fluctuations poses rather
difficult mathematical problems. To solve the
stochastic density matrix equations of DOR for
Markovian driving fields we suggest in this paper
as a new method a "marginal characteristic func-
tion approach". This will provide not only a math-
ematical basis as simple as possible for our pres-
ent purpose, but will also show the relationship
between different approaches which have been de-
veloped in the last years in a similar context.

) ~ 8 10' 17

'The paper is organized as follows. In Sec. II
we propose a model for a non-Lorentzian chaotic
field. Section III discusses the basic equations of
DOR. Section IV is devoted to a discussion of
multiplicative stochastic differential equations.

Section V contains results obtained for DOR in a
non-Lorentzian CF.

II. MODEL FOR MULTIMODE LASER RADIATION

The electric-field amplitude of a multimode
laser with M modes is given by"

I=2~oc(~~(t)~')=2~oc
=1

of the multimode laser radiation is the sum of the
intensities of the different modes. The angular
brackets ( ) denote averaging over the random
phases Qz. Higher-order moments of the field
amplitudes are most conveniently derived from
the characteristic function"

by differentiating y„(A., X*) with respect to X and
X'. J, is the Bessel function of zero order. In
the limit of a large number of modes (M- ~,
c&- 0) the characteristic function takes on the
limiting form

(y ys} e-Ial (lel

and the probability distribution P(e, c~) of the field
amplitude, the Fourier transform of the charac-
teristic function, becomes a Gaussian

dXP (~ ~ ttt) e(((a+(((*~
X (g y t(t)

@~a -1 e I 2/ & l e I ~)

(((t ~ I') (4)

as one expects in view of the central limit theo-
rem.

Multitime electric-field correlation functions
can be discussed in a similar way. Consider the
generating functional

z (tt, t"t= (exp( —i t'(t)t(t(ttt-t tt (t t~ (t (dt))
(

whose functional derivatives with respect to the
test functions ttt(t) and (tt *(t}give the field correla-

e(t)= a e '"~' "~
=1

e&= (j= 1, . . . ,M} denote the field amplitudes of the
different modes, && are the mode frequencies rel-
ative to a mean frequency ~, and Q& is a set of
randomly distributed phases, which to a good ap-
proximation are independent of each other. The
mean intensity
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where P denotes permutation. Below we will dis-
cuss stochastic models for a CF.

Previous treatments of the interaction of an
atomic system with a CF were confined to first-
order correlation functions of the form"'"

(e*(f)e(t'))= (~
e ~')e"" ' '. (9)

tion functions. For the first-order correlation
function we find, for example,

Q2

(e(t) *(t'))=i', , J„(Q,P')
4=4+ =0

2 &-3~~(t -t')

=1

ln the limit of a large number of modes, J„(p,p')
becomes the generating functional of a (complex)
Gaussian process"

J (0, 0'}=exp(-fdtdt 0 }t}'(E'('}}&(}'}}g(t'}}
)

(7)

with (e(t)e(t'))= (e*(t)e*(t'))=0. Equations (4)-(7)
prove in an elegant way the well-known fact that
multimode laser radiation takes on Gaussian sta-
tistics, i.e. , becomes an ideal CF, if the number
of independent modes becomes large. " From Eq.
(7}, a CF is characterized by the infinite sequence
of correlation functions"

(e *(t,)e (t,') ~ ~ ~ e *(t„)e(t„'))

is a Lorentzian with bandwidth b, falling off as
for frequencies larger than the cutoff value

P. It is not difficult to see that the amplitude e(t)
is then the projection of a tw'o-dimensional com-
plex Markov process"

e(t) = -be(t)+ F(t),
7(t) = -Pg(t)+F~(t),

with Gaussian forces

(13a)

(13b)

(Fv(&)F„-+(&'))= 2(~ e
~

')bP(b+ P)5(t -t') .
Comparison of the Langevin equations (13a) and

(10) reveals that we have replaced the 5-correlated
force F, by the Gaussian force F(t) with finite co-
herence time I/P. In general we may note that
Markovian models for a CF always lead to spectral
line shapes which are rational functions of ~ (the
correlation functions are a sum of exponentials). "
'To describe a CF with a Gaussian spectrum, for
example, one would have to give up the Markov
property of e(t); a rigorous treatment of the in-
teraction of an atom with a non-Markovian CF
seems, however, at the moment, intractable in
view of its mathematical difficulties.

It is interesting at this point to compare the
first-order correlation function (11) of the CF and

its spectrum (12}with the modified version of the

PDM, which we have suggested recently. ' In the
PDM the laser radiation is assumed to have a
constant amplitude «p but a fluctuating phase
$(t)(e(t)=e, exp[-ip(t}]}, with p(t) obeying the
Langevin equations

'Tahe spectrum, as given by the Fourier transform
of (9), is then a Lorentzian with bandwidth b

Since the time dependence of the first-order field
correlation function (9) is a simple exponential,
the amplitude e(t) obeys a one-dimensional com-
plex Markov process described by the Langevin
equation' "

Q(f)= 5'~(t), 9~(t)= -PÃe(t)+F~(t) .
F~(t) is a Gaussian random force with

(Fo(t)Fo(t')) = P'2bb(t t') . -
From the first-order correlation function

(e(t}e*(t'))=e',exp(-b[~t f'~+ (e "' '-' —I)/P]].

(14)

e(t) = -be(t)+F, (t),

e*(t)= -be*(t}+F„(f),
with Gaussian random forces

(F,(t)F„(t'))=2b(i e i')|}(t-t').

(10)

To construct a Markovian CF with spectrum falling
off faster than a Lorentzian, we generalize the
correlation function (9) to a sum of two exponen-
tials

(e(t)e*(t'))= (ie i')(Pe ""-be~""')/(P —b), (11)

so that for P» b the spectrum

b P(P+ b)„.,p.

(15}

we identify, assuming P» b, the parameter b with

the bandwidth of a Lorentzian spectrum, which

has a cutoff at frequency P. In the limit P» b the

spectrum of the PDM thus shows a qualitatively
similar behavior as the spectrum of the CF as
given by Eq. (12}; of course, both models differ
in their higher-order statistics.

HI. DOUBLE OPTICAL RESONANCE

In DOR22 we consider an atomic system with
ground state

~

0) and two excited states
~
1) and

~
2), with respective energies I~,&K&u, &h&u, . The

excited states ~1) and ~2) have natural decay widths

widths g~ and g, . The first transition
~
0) —

~

1) is
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assumed to be strongly driven by the CF described
in Eqs. (13). The ac Stark splitting of this transi-
tion is detected by observing the population induced
in level

~

2) by a weak-probe laser, as a function
of the probe frequency. In order not to perturb
the ac Stark splitting of the strongly driven sys-
tem ~0) —~1) we adopt the weak-probe approxima-
tion, i.e. , we neglect the depopulation of the two-
level system

~
0),

~

1) by the probe laser. In the
rotating-wave approximation we find the following
equations for the slowly varying density matrix
elements' '":
—+ )t, p»(t) = i-, Q' p»(t)+ c.c. ,~ ~

+ x&2+ 2 )('»
~
p~2(t) i~ 0 p»(t) + i p'O, t (t)p()2(t)

I'd
/

—+ ili, + ia, +-,'ll. ,)P„(()
~dt

ig 0 po, (t)+ i[go,c (t)] p»(t)

+ Kg( p)~(t) = zt(o~t(t)po~(t)+ C.C. ,r
d

]

(16)

—+i&,+&&„p„t = i p.„ct p» t -p„t~ ~

IV. MARGINAL CHARACTERISTIC FUNCTION
APPROACH TO MULTIPLICATIVE

STOCHASTIC DIFFERENTIAL EQUATIONS
WITH MARKOVIAN DRIVING FIELDS

In this section we study multiplicative stochastic
differential equations (SDE) of the form"

p„(t)+ p..(t) =1,
with K.g= Ic]+ K'g. pop is the dipole matrix element
of the transition

~

0) -
~

1). 0' is the Rabi frequency
of the probe. &,= & +yp and &,= &' —» denote
the detunings in the first and second transition,
respectively.

Owing to the stochastic nature of the CF e(t)
[compare Eq. (13)], the density matrix equations
(16) are a system of stochastic differential equa-
tions (SDE}"which must be solved for the aver-
aged population (p») of level

~

2). Angular brack
ets () denote the averaging over the flucutations
of the incident field. For a CF with Lorentzian
spectrum, these equations have been solved em-
ploying Fokker -Planck-eigenfunction techniques'
and, in the strong saturation limit, by diagramma-
tic summation methods. "' Here we are interested
in solving Eqs. (16) for the non-Lorentzian CF.
To this end, we suggest in the following section a
"marginal characteristic function approach" to
solve the stochastic differential equations (16).
Readers not interested in mathematical details
can proceed to Sec. V without loss of continuity.

d u(t)=A[t(t), t]u(t) (17)

with A a matrix and u(t) a column vector. c(t)
denotes a set of stochastic variables. Qur goal is
to solve Eq. (17) for the average (u(t)) where the
angular brackets denote averaging over the sta-
tistics of e(t). An equation of the form (17) arises,
as we have seen, in studying the interaction of an
atomic system with an intense fluctuating driving
field. The difficulty in solving equations of the
form (17) is that standard mathematical proce-
dures, such as Van Kampen's cumulant expan-
sion, ' are perturbation expansions in terms of the
parameter (xr, («1) where c( denotes the magni-
tude of the fluctuations and T, their coherence
time. The requirement of ~7', being small is,
however, not generally met for the problems un-
der consideration; in particular for the case dis-
cussed in Sec. II. If we identify o with the mean
Rabi frequency 0 = 2 p, ((~ e

~

'))'~' and r, with 1/b
or I/P, we get 0/b»1 or 0/P =—1 for high intensi-
ties, respectively.

Progress in solving Eq. (17) without the assump-
tion of a small correlation time (r, «1/(x) can be
made if we restrict ourselves to Markov processes
t(t),""for describing the fluctuations of the driv-
ing field, such as those in the model discussed in

Sec. II. 'This assumption permits us to reformu-
late the problem of solving Eq. (17) for (u(t)) in

terms of an equation for the so-called marginal
averages u(c, t) "Brie.fly, the corresponding
theorem states that —given the master equation

—'+L(Z) ~P(Z, t)=0
et

for the probability distribution P(c, t) of c(t)—the

required averages (u(t)) can be found by solving
the equation

(18)

—~ L(E)]il(E, )=A(E, ()M(Z, ()( (19)

for the marginal averages u((!,t} under the initial
condition u(c, t = 0) = (u(t = 0))p, (e, t = 0) the initial
distribution of t(t) 'The av'era. ges (u(t)) are then

given by

( (i))= f«(i(). , (20)

The conventional proof of Eq. (20) involves the fact
that u(t) together with c(t}describes a Markov
process whose joint probability distribution obeys
a master equation which can be reduced to the
form (19)." From the point of view of quantum
optics this proof is somewhat abstract. In Appen-
dix A we present a proof of Eq. (20) which is based
on the assumption for the electric-field correla-
tion functions, the quantities of direct physical
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significance, to have Markov property.
In the context of atom-stochastic field interaction

one is particularly interested in solving the SDE
(17) for Gaussian processes e(t}. The electric-
field amplitude a(f) of the CF and the phase (I)(f) in
the PDM are examples for such Gaussian Markov
processes. Below we propose, with reference to
the theorem quoted in Eqs. (17)-(20), a "marginal
characteristic function approach" to solve the
SDE (1) for a Gaussian-Markov process. Rather
than presenting the method in full generality, we
give an outline of this approach with several rele-
vant examples. In particular we will apply the
method to solve the stochastic density matrix equa-
tion (16) for a non-Lorentzian CF. The advantage
of the method proposed here is that it gives a
simpler and physically more transparent deriva-
tion of our earlier results and establishes the re-
lationship with different methods suggested re-
cently by other authors.

A. Real Gaussian processes

tic function

(&, t) (e='""' ()))= fdae'""' (a t)

yields the equation

(24)

(8 8, ,1 . 8+—r& +—r(&')&'~u(&, t) = A+iB —u()(, t), (25)t 8
&

' B~

with u(A. , t = 0)= (u(t = 0})(e '"'"'), where (e '"'"')
= exp(='232(e2)} is the characteristic function of the
Gaussian process (21). Equation (25) agrees with
an equation derived recently by Eberly' in a sim-
ilar context. Eberly's starting point is an equation
for the quantity exp[-ikey(t)](((t) which, with the
help of the Langevin equation (22), can be written
as a multiplicative stochastic diffe&ential equation,
involving only the 6-correlated Gaussian variable
F(i):

—+yX—+i&F(i) e ("'"'u(t)
(

d 8

dt BA,

'The first and simplest example we shall consider
is the SDE

g+ &~ +-its(t)81
8 A.)

(26)

—u(t) = [A+ Bt(t)]u(t),
d

(21)

with A and B noncommuting matrices. c(t) is a
real Gaussian process obeying the Langevin equa-
tion"

d—c(t) = -ye(f)+F(i),

(F(t)F(t')) = 2(c2)y6(t -t') .
(22)

We have encountered an equation of this form in
our work on the interaction of an atomic system
with a field obeying the phase-diffusion equation
(14}.' To find the average (u(t)) we have to solve
Eq. (19}. In our example, L(c} is given by the
Fokker-Planck operator

8 q 8
L(~) = -)—e -y(e2)

86 BE
(23)

The Fourier transformation of Eq. (19) which
amounts to introducing the marginal characteris-

I

u()( i) ( ie2(1))(g(y i)
—e ((/2)1 (2 )g(g i) (27)

since g(A, , t) can be expected to have a smoother
dependence on & than u(&, t). Expanding g(X, t} in
a power series in X,

Note that this reduction is possible only at the
expense of introducing partial derivatives with
respect to &. The averaging over the field fluc-
tuations of Eq. (26} can be performed by general-
izing the results of Fox and Wodkiewicz. " 'The
equation derived in this way is identical with (25).
The equivalence of Eberly's formalism and our
approach is, of course not confined to the present
example but holds quite generally.

Eberly has suggested to solve Eq. (25) with a
series expansion of u(A, t) in A. . It is not difficult
to see, however, that this only reproduces a per-
turbation expansion for (u(t)), although in a con-
cise way. A more appropriate way to solve (25}
is an ansatz of the form

g(Z, f) = (e"~"" ~ 'e ("2"'u(i)) = g [-i((C')/2)'~')(]~ —(H [C(i)/(2(e'))'~ ](((f))
a=0 8 ~

we find from (25} the infinite system of differential equations

(28)

(29)

for the one-time averages

(H„[~(i)/(2 &"))"']M(i)). (30)

Equation (29) must be solved for (u(i)) = (H()M(t))

I

under the initial condition (H„u(t= 0))= 6„,((((t= 0)).
Equation (29) is identical with our result in Ref.
9 which was derived from (25} by expanding the
marginal averages in the complete biorthogonal
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(u(t)) = . ds e"1 1
-( )

(u(t-0)).

X(s) is the matrix continued fraction

2 es+y -A B -B
s+y -A

(32)

The matrix (e(r) = (I/2vt) fds e~K(s) may be identi-
fied with the kernel in the integrodifferential equa-
tion for the average (u(t))

set of eigenfunctions of the Fokker-Planck operator
L(e}. The present derivation of this result has
the advantages not only to be simpler but also to
establish the connection between the averages (30)
and the generating function (28) as well as its equa-
tion of motion (25}. An explicit solution for the
average (u(t}) can be constructed in terms of the
Laplace inversion'

B. Complex Gaussian processes

Having discussed the marginal characteristic
function approach in detail for real Gaussian
processes, we confine our discussion here to
a brief outline of its application to complex
Gaussian-Markov processes. The interaction of
an atomic system with an electric field having
the complex amplitude e(t) leads to a stochastic
density matrix equation of the form

—u(t) = [A+ Be(t) + Ce+(t)]u(t),d
dt

(37)

with A, B, and C constant matrices. Again, the
following steps to solve Eq. (37}for (u(t)) are
easily generalized to include higher-order poly-
nomial couplings in e(t) and e*(t): Let us start
our discussion by assuming e(t) to be a one-di-
mensional complex Markov process obeying the
Langevin equation (10). With the help of the
Fokker-Planck operator

d t—(u(t}&=A(u(t))+ dr (e(T)(u(t -r)&.
dt

(33) L = —b ——b e* —2b(l e I')B B B

Be Be* BABE*
(38)

(e(r) describes the memory effects associated with
the finite correlation time 1/y of e(t). In the limit
of large y, k(s) can be truncated after the first
step, so that (33) takes on the form

the Fourier transform of (19) leads to the equation

l

—+33 —+33' + 33 (le()33')3(3 3* t)
iB B B

(Bt BX BA.*

d t—(u(t))=A(u(t))+ &e'& dr B e(~'""B(u(t -v)&.
dt

(34)

a=
I
A+ Bt —+ ct u(~, v, t)

I, Bz BX+

for the marginal characteristic function

(39)

Equation (34) is the Bourret approximation" for
the SDE (21}and agrees with the lowest-order re-
sult (Born approximation) of the projection opera-
tor method. " Within the limit of validity of (34),
i.e. , the lowest-order term of the expansion in

r„o(( (t u-r)& can be replaced by (u(t)) and the
integral can be extended to infinity so that

Alternatively, the first-order term of Van Kam-
pen's cumulant expansion may be derived from
(34) by the replacement (u(t -r)&- e "'&u(t)& to get

d (
dt
—(u(t))=!A+ (e'& drBe'~'""Be "'I(u(t)). (36)

i
As has been pointed out by Van Kampen" and Ter-
wiel, "(33) and (34) are equivalent to lowest or-
der in nw, . If the matrices A and B commute, Eq.
(36) is exact for arbitrary correlation time. For
matrices, which commute approximately, the
smallness of the noncommutivity may be used,
according to the suggestion of Chaturvedi and
Gardiner, ' to generate an expansion valid for ar-
bitrary correlation time.

u(g 3(3. t) &S
iM( )-i-li3 (i)u(t)) (40)

As an ansatz, we attempt a solution of the form

u(x, z*,t)=&s '"'"-'" 3 ' '&g(x, ~+, t) . (41)

g(z, z*, t) =&exp[ax*& I e!') —te(t) —tx*e*(t)]u(t)&

P(3+ I (3)
le I& &ag (+I I&'

x &s-i~«i)L)~(I '
(t))((!e! '&

with e(t) = Ie(t)I e (3"" and L„Lgaeurre polyno-
mials. Inserting Eq. (42) into (39) we find an
infinite system of equations for the averages

&s '~""L ~ [Ie(t)!'/&IeI'&]u(t)),

which is identical with the one derived in our

Similar to Eq. (28}, g(X, X*,t} can be expanded in
a power series, regular at A. =O, in

h. =e e i'/(&
I
eI'&)'i' and A* = re'"/(&

I
e I'&)"
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previous work ' and Ref. 10. Here again we
find the present method to reproduce these earlier
results in a simple and elegant way.

The subject of the present requires the solution
of the stochastic density matrix equation (16) with
e(t) the two-dimensional complex Markov process
(13). The foregoing discussion to solve the SDE
(37) can be immediately generalized to the pre-

sent case. The only new feature is that, as a
first step, we transform e(t) and/(t) in Eq. (13)
to the new set of variables

e =a+ S/(p —b), f=9 . (43)

This diagonalizes the drift terms in the Langevin
equation (13). The Fourier transform of Eq. (19)
then yields an equation for

u(X, X*, u, p", t) =(exp[- ice(t) —i&*e*(t)—i yf(t) —i p.*f*(t)]u(t)& .
Defining, in analogy to Eq. (41), the quantity g(X, X*, p, ti*, t) by

(44)

u(X X p, , u, t) =(exp[-iA (et) —1X e (t) —1 pf(t) —1/l f (t)]&g(X, X, p. , p t) (46)

we derive the equation

with

and

L=5A, —+PX —+ c.c,
8 p.

(!el'& x*a p
9A, P-5

—+ I, !g = (A + iBc + iBe *)g,&t
(46)

I

the stochastic density matrix (16), can be found
in Appendix B.

V. DISCUSSION

In this section we discuss the solution of the
stochastic density matrix equation (16}for DOR
in the non-Lorentzian CF. Applying the methods
of Sec. IV B to the system of equations (16), we
find the stationary limit, when all transients have
died out, that the averaged population of level
! 2&, (p»(t)&, is given by

—-b(lel'& p* .1 8

P —gp Bp,
(47b) &p..(t)& =

4 Re! 4t ~ (p,.(t)&,l .
g" (.~~

Ky K2
(48)

The averages (u(t)) can be found from its solution
according to g(X= ~ ~ ~ du*=0, t)=(u(t)). The
details of the solution of Eq. (46}, as applied to

The averaged off-diagonal density matrix element
(p»& can be found from the matrix-continued
fraction

((pi2(t)&4i~, /io')

I, (p„(t) —p., (t)& /
AQ-B,

1
A~ —B2A B2

~ 2

B,

(- ~, &

(49)

A„and B„are two-by-two matrices. The deriva-
tion of the matrix-continued fraction solution
is rather lengthy; details of the mathematical
steps and explicit expressions for the matrix
elements of A and B are given in Appendix B.
Here, we confine ourselves to a discussion of the
physical contents of the solution (49). For Eq.
(49) to be valid, it is necessary, that the Rabi
frequency 0 is less than the curoff P (0 ~ P); but
there are not any restrictions on the Rabi fre-
quency 0 in relation to the bandwidth b. In the
limit of Lorentzian laser line shape (P- ~), the
continued-fraction solution is equivalent to our
earlier results. '

Before discussing the influence of the laser line
shape on the on-resonance (n, =0) spectrum of
DOR (Fig. 1), let us briefly recall the basic fea. —

tures of on-resonance ac Stark splitting in a
field with stable amplitude (PDM) and a field
having amplitude fluctuations as the CF ' In
an intense coherent driving field the spectrum of
DOR consists of two lines which are separated by
the Rabi frequency. The widths and heights of
these lines are determined by the spontaneous
decay constants and the bandwidth of the laser,
but are independent of the light intensity. Since
the splitting frequency of the doublet is propor-
tional to the electric-field amplitude, fluctuations
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of the laser amplitude will tend to wash out the
spectrum. Roughly speaking, one would expect
both lines to copy the amplitude distribution of
the incident light. For a CF the probability dis-
tribution of the amplitude 10(t}l is

P(~~l }=21~1/(I0l'&8 ' "' ' "
so that each of the lines will have a Rayleighian
line shape, i.e. ,

Qf2

Note that in a CF the splitting frequency is re-
duced to 0/M. With increasing light intensity
the lines in the doublet are successively broad-
ened and their height decreases.

Figure 1 shows the spectrum of DOR for on-
resonance excitation (4, =0). The Rabi fre-
quency was chosen as 0 = 5K' 5b. The two
different curves correspond to P=vb and P- ~
with P the cutoff of the of the laser spectrum.
Note that P-~ corresponds to the limit in which
the lineshape of the CF becomes a Lorentzian.
The line-shape dependence shows several char-
acteristic features. A decrease of P slightly
increases the splitting frequency and broadens
the lines in the doublet. At the same time the
heights of the peaks are reduced. This behavior
is readily understood if we note that a decrease
of the cutoff P increases the spectral power den-
sity of the laser spectrum at the line center. The
strongly driven atom, therefore, "sees" more
resonant photons. Thus, one expects the split-
ting frequency to be increased in comparison
with the Lorentzian limit. In general we note
that the high-intensity on-resonance spectrum
(0» K», b) is not very sensitive to the bandwidth
and the line shape of the laser spectrum; the
strong amplitude fluctuations of the CF are the

b, IK,

FIG. 1. The on-resonance spectrum (b& =0) for 0
=5K), K(=K2=b, and P=7b, ~. The spectrum is symmet-
ric around Q =0.

dominating source of the broadening of the lines.
For off-resonance excitation the spectrum con-

sists of two peaks. ""In the monochromatic
field the first peak corresponds (approximately)
to the two-photon absorption process

l 0) w 00'
l 2)

where the atom absorbs both a photon from the
first (strong) laser and the weak-probe field.
The height of this line is proportional to the in-
tensity of the strong laser I= 200(l 0(t}l ') and has
its maximum at &g' = ~20 —u& (b.,=—n.,}. The
second peak corresponds to the two-step process

l 0) —
I 1) w'12) where the atom makes a transition

to level l 1) by absorbing two photons from the
first laser and emitting a spontaneous photon.
By energy conservation this peak appears at
00'=~„(a,=0). Note that this line is proportion-
al to P. Therefore, in the monochromatic field
the two-photon line is stronger off resonance than
the two-step contribution. We call this the nor-
mal peak asymmetry. A finite bandwidth of the
laser can change these features quite dramatic-
ally. ' ' Owning to the overlap of the wing of the
laser spectrum with the excited state l1), the
two-step process l 0) —

l 1) ~ '
l 2) is strongly

enhanced (due to the absorption of resonant
photons out of the wing of the laser spectrum),
while the two-photon line is merely broadened by
the finite bandwidth. Thus the peak asymmetry
of the DOR spectrum can be reversed in finite
bandwidth excitation. "

To understand the line-shape dependence far
off resonance, let us first concentrate on the
population inversion (w(t)) . Truncating the con-
tinued fraction (49) at the first step, we find

(W(t)) =- K~/(K~+2W},

with
1 2 p K/2+b
2 p —b 4 +(K /2+b}0

(50)

1, K,/2+b
(52)

neglecting terms which fall off with the fourth
power of the detuning 4„we find for the non-
Lorentzian laser line (n, , » p)

1,K,/2

b K/2+P (51)
P —b &,'+ (K,/2 + P)'

the induced bound-bound rate
l 0) —

l 1). Note that
Wis the convolution of the spectrum of the excit-
ing light (12) with the atomic Lorentzian, in agree-
ment with Fermi's golden rule. While far off
resonance a Lorentzian laser line shape (P-~}
leads to
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The terms proportional to the bandwidth 5 in Eq.
(52) correspond to the, incoherent excitation of
electrons by the wing of the laser line, while
the leading term in Eq. (53) is identical with the
result for a monochromatic field.

The qualitative aspects of the line-shape de-
pendence of DOR can be understood in a similar
way. Truncating again the continued fraction at
the first step, the spectrum can be written in the
form

1 x/2+ 5 tc,/2 5 1 z,/2+P x,/2
Q (~) P b R Rxe +

Tx P f)fbi flag
+

Zx
(54)

with

R~ = i&~ + +2 x~0 +nb + m P

T" = (t(n ~ + 4~}+ +~ go~ +nb + y~S .

The positions and the widths of the lines of the spectrum as a function of 42 are determined by the three
roots of the polynomial in the denominator of Eq. (54). In the limit of well separated. lines (~ a, ~

» z»,
Q, b) we find

4 ~, " z/2+5 h))(a, +a)'+(r /2+))' )) —) &,'+((' (& +& )'+( „/2+)))') (55)

t

for the two-photon line (4, = —&,) and

1 0' 1 0 5' tc,2/2+ W/26, (P"& 4~ '.,/2+5 ~, +(„/2+W/2)*

(56)

for the two-step process (&, =0). 5'=bp'/(&, '
+ P') is a detuning-dependent effective bandwidth.
The two-photon line is the convolution of the re-
sult for monochromatic excitation with the spec-
trum of the exciting light (12}. The height of the
two-step line consists of two contributions; the
first, being proportional to R, is identical with
the result in a monochromatic field; the second
describes the incoherent population of

~
1) by the

wing of the laser spectrum. For 5 & z, /2 and
detunings smaller than the laser cutoff (h, » P),
the two-step line is stronger than the two-photon
process, i.e. , the peak asymmetry is reversed.
For 4, » P, on the other hand, we note that the
two-step line falls off with the fourth power of the
detuning (a,~) compared to the 4,2 dependence of
the two-photon line. With increasing detuning
the two-photon l.ine becomes stronger, than the two-
step process and the asymmetry reverts back to
normal. in agreement with the experiment of Ho-
gan and Smith. " In a Lorentzian laser field the
asymmetry is reversed for arbitrary detunings.

Equation (50) deserves one further comment
We derived (50) from the first-order truncation of
the continued fraction (49). This is equivalent to
solving the stochastic density matrix equation
(16) with the help of the decorrelation ansatz'~

(q(f)q(f')p«(f')) =(q(f)c(f')&(p«(f')). Since in the
decorrelation approximation, the atom is only
provided with information about the first-order
electric-field correlation function, the atom is
unable to distinguish between fields of different
higher-order statistics. In other words, the
atom "sees" the finite bandwidth of the field, but
not the intensity fluctuations. Consequently,
the terms proportional to 04 are not correctly
reproduced in the approximation (50), and Eqs.
(51) and (52) are almost identical with the re-
sults we have derived recently for the PDM (14).

Numerical calculations on the basis of Eq. (49)
confirm the above qualitative picture. Figures
2-4 compare the spectrum for different values
of the detuning &, and cutoff P, similar to the
on-resonance case. For larger values of the
detuning (Figs. 3 and 4), a decrease of the cutoff
P drastically reduces the height of the two-step
line. For n, » p (p=5b in Fig. 4) the asymme-
try reverses back to normal. The decrease of
the intensity of the two-step process is accom-
panied by a slight increase of the height and a
shift of the maximum of the two-photon line. This
can be understood as an interference effect with
the wing of the two-step line and is also due to
the increase of the spectral power of the laser
near the line center.

Figure 5 shows a plot of the laser spectrum
together with the detuning dependence of the asym-
metry parameter 3 9,a3 A ls def ined as the d Jf-
ference of the heights of the two lines divided by
their sum. Again we see that for detunings
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FIG. 2. The off-resonance spectrum (g =~&) for II
=5~~, ~1 =~2=b, and p=7b, ~.

FIG. 4. The off-resonance spectrum (+=los&) for II
=5&f +$ K2 b and p 5b, 10b, and ~.

smaller than the cutoff, where the spectrum is
essentially is Lorentzian, the asymmetry is
reversed (A &0). As soom as the detuning &,
becomes larger than P (i.e. , the overlap of the
wing of the laser with the resonance becomes
negligible), the asymmetry reverses to normal
as in the monochromatic case. The above con-
clustions are in qualitative agreement with the
experiment of Hogan and Smith. ' At present, a
quantitative comparison with our model seems
to be premature in view of the still unresolved
discrepancies which have been pointed out in
Ref. 7.

VI. CONCLUSIONS

In this paper we have presented a theory of the
interaction of an atom with a chaotic field (repre-
senting a multimode laser field with strong Gaus-
sian amplitude fluctuations) with a line shape
falling off faster than a Lorentzian. Starting with
a stochastic Markovian model for a non-Lorent-
zian CF. We proposed a "marginal characteristic
function approach" to solve the multiplicative SDE
describing the time evolution of the atom. This

reproduced our earlier results for the Lorentzian
CF in a more elegant way and established the
relation between approaches used by other authors
in a different context. It also provided a conven-
ient basis for our discussion of ac Stark splitting
in DOR in the presence of a non-Lorentzian CF.

The on-resonance doublet of DOR was shown
to be dominated by the amplitude fluctuations of
the CF; a decrease of the cutoff of the laser spec-
trum only led to a slight increase of the splitting
frequency. The off-resonance spectrum turned
out, however, to be extremely sensitive to the
decrease of the laser spectrum in the far wings
of the line. While for a CF with Lorentzian line
shape the asymmetry of the spectrum of DOR is
reversed for all detunings, due to the overlap of
the laser line with the atomic resonance, our
present model predicts a reversed asymmetry
only for detunings smaller than a few laser band-
widths in agreement with experiment. The pre-
sent stochastic model for a non-Lorentzian CF
should also find interesting applications in related
problems, as for example in multiphoton ioniza-
tion.

0.3

/10'b /
DsK,
d, = 5K

02-

+IOR

0
-10

I I

d, /K, 0 5 hfdf, 15 30
-10

0 hgc, 15 30

FIG. 3. The off-resonance spectrum (Q =5~&) for 0
=Kg, Kg =&2 = b and P =5b, 10b, and ~.

FIG. 5. The laser spectrum and the asymmetry para-
meter.



P'. ZOLLER, G. ALBER, AND R. SALVADOR

ACKNOWLEDGMENTS

We are indebted to Professor F. Ehlotzky for his
continuous interest and support. One of us (P.Z. )

thanks Professor P. Lambropoulos and Dr. K.
Wbdkiewicz for helpful discussions. This work
was supported by the Austrian Science Foundation
under Contract No. 3291.

APPENDIX A

A formal solution of the SDE (17) for the average (f(e (t)) u(t)) with f(e (t)) an arbitrary function of e(t)
can be written as the perturbation series

t
(f( (t)) (t))=(f( (t&)) (0&+E J &t. . 4&„ f( (t))114( (t, ), t, )) (O).

ttsl p p ysg

(Al)

For Markov processes the correlation functions on the rhs of Eq. (Al) can be expressed in terms of in-
tegrals over products of the conditional probabilities P(e, t ~4', t') [with P(e, t' )e', t') =5(e —e') ] and the

distribution function P(e, t):

f( t(t ) ) „,[t(((tt), t ))
f sl

n-j.

dip. . dion &p + Cy ty Cy+I tymp A. & ty+j & tg+j~ ~
~ ~ ~ ~

ys]
(A2)

Both P(e, t ~e ', t') and P(e, t) are solutions of the
master equation (18). Defining a marginal
average u(e, t) so that, by construction we have

(f ( t (t)) tt (t )) = J4 tf ( t l tt( t, t ),

tions (46) read

(a/at+L+~, ) W+~, =-2tl&P„+2tle*P„,

(a/at+L +i', +g,/2) P„=—tle¹W,

(a/at+L —it)., +~,/2) p„=p. e W.

(Bl)

we readily see that, in view of Eq. (A2), we can
sum the perturbation series for 24(e, t) into the
integral equation

t
u(e) t) =24(0) P(e& t) + dt' dt'P(e t ie't')

0

xA(4', t') N(4', tt) .
Operating on both sides with a/at+L(e) we de-
rive Eq. (19).

APPENDIX B

In this appendix we derive the matrix - con-
tinued-fraction solution (49) for the averages
(p»& and (p»& —(p»&. Defining the population
inversion W(t) =p„(t) -p,n(t) in Eq. (16), the
equations for the marginal characteristic func-

a" W"=b~ W" '+b" W~'+
11 ll 11 ~l ttp a

with W" =[(6—b)/i)] "(L,[ le(t) I'/( le I'&] W(t)&

The coefficients Qyy b]y are given by

(B2)

Expanding W ppy and p„ into a power series in
X and tl, W=ZXnX™tl"p.¹nWn, etc. , wefindinthe
stationary limit from Eq. (Bl) an infinite system
of coupled algebraic equations for W"„„ppy an'd

pyp . Eliminating p»" and pgp in these equa-
tions we derive a recursion relation for W. Con-
fining ourselves to 0&P, i.e. , to Rabi frequencies
Q =2tl(( ~e ~2&)' ' smaller than the cutoff of the
laser spectrum, the terms W"„, with r, s t0 are
seen to be small and can thus be eliminated by
perturbation theory. Including terms up to
O((Q/P)4) and O(Q2b2/P4), we find after simple
but somewhat lengthy manipulations the three-
term recursion formula

+ l
(n + 1 )Q4b p/(p b)22 Re[( Dn+ln +D*nn)2]/N ntln

+ nQ4bP/(P b)22 Re[( Dnn-l ¹D¹nn)2]/Nnn-l

Q4b2/( P b)2(2 Re Dnn ) /N nn

bll =nQ p/(p —b)(ReD"" '+ —'Qnb/( p —b) Re[(D"" '+D¹" ') (D™1+D¹"'" ')])/N

with

(Bs)
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D"„=1/[(n+m)b+(r+s)p+i&, +v, /2]

N"„~ =(n+m)b +(r+s)p+g, + 2 Q2[p/( p —b)] [(n+1)D"„", +(m +1)D ~",~']

+&0'[p/(p-b)](mD" '+nD*" '~) ——,'0'[b/(p-b)][(r+1)D" „~+(s+l)D*"~ ]
——,

' 0'[b/( p —b)] (s D"„,+r D*"„»}.
The previous steps can be repeated in a similar way for the system of SDEs involving p»(t) and po2(t).

After some tedious algebra, one arrives at the inhomogenous three-term recursion relation for p„which,
when combined with Eq. (B2), yields the matrix recursion formula

(B5)

with

( w

I4«i/»»)

v, j
The coefficients a,"„,5», a», and 5,", are given by

—Nnn + & 0 (n + 1}bp/( p b)2/ T 8 InN +ill T ll+1n+i 04~p/( p b}2/T 1N Il-1 T INt I

+ x 04(n+1)bp/(p b)2/TnnN ~++I T nn+ & 04~p/(p b)2/T nnN&»T nn

& 04b2/(P b)2/TnnNnnT nn

b22 =4 nQ p/(p — )b(1/Too '+~ 0 [b/(p —b)]1/T~ No, Too
'

~& QR[b/(P b)]1/T nnN&-1nT &-lrt-1)

a ~» = —g, +a g, Q (n+1) (Do~'0/T 0'~", )p/(p —b)[1+2 Qb/(p —b)(D" ", +D~o,")/No' ", ]

Q n (Dllll / T lilt )p/(p b)[1 +L 0 b/(p b)(Dllfl +DQ II)/Nll+ Il ]
—g 0 g [b/(P —b)]D",o/T ~,

bS = —Q2 P/(P b) (DINt 1/T Iltl 1)[1 L 2b/( )(Dlltl 1 g)/ 1]

T"„=(n+m)b+(r+s) p+i(a, +&,)+-,'~„,
N "„~=(n+m)b +(r+s) p+i4, +a K»+ —0 (n+1}[ p/( p —b)]1/T"' +4 0 m[ p/(p —b)]1/T"„'

——,
' 0'(r+1)[b/(p -b)]1/T ~„——,

' 0's[b/(p -b)]/T "„,,
The solution of Eq. (I) is the matrix continued fraction (49).
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