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Abstract. The light statistical dependence of stationary saturated two-photon transitions is 
discussed. While at low intensities, in comparison with light having a stable amplitude, 
Gaussian amplitude fluctuations of the exciting radiation are more effective in populating 
the excited resonant state, light with amplitude fluctuations is less effective in saturating a 
two-photon transition. The amplitude fluctuations are shown to wash out the resonance 
curves. While at low intensities the effective Stark shift (i.e. the maximum of the dispersion 
curve) is larger by a factor of three in light with Gaussian amplitude fluctuations compared 
with radiation of constant amplitude, this enhancement factor becomes intensity dependent 
with increasing intensity. 

1. Introduction 

The description of resonance phenomena in laser-atom interactions with high-power 
lasers has necessitated a theory capable of describing laser temporal coherence effects 
(laser light statistics) in these processes (Agostini et a1 1978, Smith and Hogan 1979). 
The light statistical dependence of weak-field one-photon processes is completely 
determined by the mean intensity and spectrum (i.e. the Fourier transform of the 
first-order correlation function) of the exciting radiation. Similarly, laser temporal 
coherence effects of non-resonant N-photon transitions in weak fields are characterised 
completely by the Nth-order electric field correlation function (Lambropoulos 1976). A 
typical feature of saturated resonant atomic processes is their dependence on the 
infinite sequence of field correlation functions (Glauber 1965 ), corresponding to 
the infinite sequence of (virtual) up and down transitions of the electron between the 
resonant levels, which are responsible for the highly non-linear behaviour of the 
saturation of an atomic transition (Georges er a2 1979). The summation of all 
the resonant terms in the perturbation series is a formidable mathematical problem. No 
general solutions are available; instead, this problem must be solved separately for each 
model of stochastic behaviour of the exciting radiation. Two types of fluctuation 
models have received particular interest in this context: the phase diffusion model 
(PDM) corresponding to a single-mode laser with a diffusing phase and the chaotic field 
(CF) model describing light from a multimode laser with a large number of uncorrelated 
modes (Glauber 1965, Zoller 1980). For the PDM the averaging over the fluctuations 
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turns out to be rather simple as the atom-field averages can be decorrelated (see, for 
example, Agarwal 1978 and references quoted therein). For the CF such a decor- 
relation is impossible even in an approximate sense (Georges et a1 1979); instead, 
non-perturbative methods such as the diagrammatic summation method (Elyutin 1977, 
Georges and Lambropoulos 1979) or Fokker-Planck eigenfunction techniques had to 
be developed (Zoller 1979a, b). 

The application of these non-perturbative methods for the CF has until now been 
mainly limited to saturated one-photon transitions (Georges and Lambropoulos 1979, 
Zoller 1979a, b). In particular, the excited-state population of a strongly driven 
two-level system has been studied for the PDM and the CF with the result that the CF is 
less effective in saturating an atomic resonance compared with a PDM of the same mean 
intensity and bandwidth (Georges and Lambropoulos 1979). Even more dramatic 
changes have been predicted for the spectrum of resonance fluorescence and double 
optical resonance in agreement with experiment (Georges and Lambropoulos 1979, 
Zoller 1979a). In some aspects the saturated two-photon transition might be a more 
promising candidate to check these theoretical predictions regarding the difference in 
the saturation behaviour in the CF and the PDM. By saturated two-photon transitions we 
mean the process where an atomic ground state is coupled to the excited state by the 
infinite sequence of (virtual) two-photon emissions and absorptions. Since the Rabi 
frequency for the two-photon resonance is proportional to the light intensity (and not 
proportional to the electric field amplitude as for one-photon transitions) the saturation 
of a two-photon resonance shows a higher degree of non-linearity. Thus, one would 
expect a greater difference between the effects of the CF and the PDM. In addition, Stark 
shifts are important in two-photon transitions because they are usually of the same 
order of magnitude as the Rabi frequency (Agostini eta1 1978). If intensity fluctuations 
are present, the Stark shift will be fluctuating and will tend to wash out the resonance 
curve. The maximum of the dispersion curve will, therefore, in general not appear at 
the frequency expected from the mean value of the Stark shift, but will be shifted by a 
different amount. This offers the possibility of studying the light statistical dependence 
of Stark shifts in a CF. 

Recently, Georges and Lambropoulos (1979) have studied the stationary popu- 
lations in a saturated two-level system coupled by a two-photon transition. They found 
that for low intensities the excited-state population in the CF was enhanced by a factor of 
2! compared with the coherent field, while with increasing saturation the ratio of the 
population in the CF to the one in the coherent field shows a minimum with a value less 
than one and finally approaches one for high intensities. Their treatment, however, 
neglects Stark shifts and the bandwidth of the radiation. Saturated two-photon 
resonances have also been discussed in a recent paper on two-photon resonant 
three-photon ionisation within the Fokker-Planck eigenfunction formalism (Zoller and 
Lambropoulos 1980). Stark shifts and the finite bandwidth have been included in this 
treatment. The intrinsic time dependence of the multiphoton ionisation process, 
however allows, in view of computer time, the ionisation probability to be calculated 
with high accuracy only over a limited parameter range. It seems necessary, therefore, 
to complement th.: above investigations by calculations within a simple model which 
allows an explicit solution of arbitrary accuracy over a wide range of parameters. 

In this paper we shall study such a model. We shall investigate the stationary 
excited-state populations in a two-photon coupled two-level system in a CF and a PDM. 
We shall discuss the intensity dependence of the ratio of the excited-state population for 
the two model fields, the effective Stark shifts and the resonance curves. 
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2. The model 

We consider the interaction of a two-level atom with an electromagnetic light wave with 
an electric field vector of the form E = e 8 ( t )  e-'"' + cc. The two atomic levels 10) and 11) 
are assumed to be coupled resonantly by two-photon transitions via the non-resonant 
states of the atom. 8(t) is the stochastic amplitude of the electric field whose statistical 
properties will be specified below. w is the mean frequency of the radiation. The 
optical Bloch equations of this two-level system are given by (Kimble and Mandel 1977) 

(A - S w )  0 -,LLw2 &w2 PlO(t) 

,LL.s*(tY -,LLm)2 - iK  0 p o o ( t )  

[ i $ + [ - p : * ( t ) 2  - ( A - W + h  ,LL%(tY ,LL8*(tI2 i K  -,LL8*(t)]][;;;h.d;;] 0 = o  (1) 

with pl,(t) (i, j = 0,  1) being the slowly varying density matrix elements. A = 2w - wl0 
denotes the detuning from resonance, K is the spontaneous decay rate of level Il), 
,LL represents the effective two-photon coupling matrix element ,LL = 
C r ( p o I .  e ) ( k z l  . e ) / ( w r o - w ) ,  while Sw is the quadratic Stark shift of the transition 

Because of the stochastic nature of %(t ) ,  the optical Bloch equations (1) are a system 
of stochastic differential equations. It is our purpose to solve them for the averaged 
excited-state population (p l l ( t ) ) ,  with ( ) denoting the averaging over the fluctuations 
of %(t) .  In particular, we shall study below two different stochastic radiation models, 
the phase diffusion model (PDM) and the chaotic field (CF) model. The PDM describes a 
single-mode laser with a stable amplitude, but a slowly diffusing phase 4 ( t ) ,  obeying the 
Langevin equation & ( t )  =F4(t) .  F,(t) is a random Gaussian force with (F,(t)F,(t')) = 
2b8(t - t ' ) .  The spectrum of the light in the PDM is Lorentzian with bandwidth b. Higher 
order correlation functions can be shown to have the factorisation property (Georges 
and Lambropoulos 1979) 

IO) + 11). 

(8*N( t l )%M(t2)  * * s*N(t2,-l)%N(t2")) = fi (%*N(t2,- l )8N(t21))  (2)  
r=l 

for tl 3 t 2  3. . .a  tZn. Two-time correlation functions are given by 

( % * N ( t l ) s N ( t 2 ) )  = / % 0 1 2 N  exp(-N2bItl -t&. (3) 

The CF is a field exhibiting Gaussian amplitude fluctuations. Typically the higher 
order correlation functions of a CF fulfill (Glauber 1965) 

( % * ( t l ) $ * ( t 2 )  . . . 8(t2"-1)8(t2")) = fi (s*(t,)%(tP(r+"))) (4) 
P r=l 

where P denotes permutations. In this case the two-time correlation functions are 
given by 

( 5 )  
Examples of a CF are light from a thermal source and radiation from a (pulsed) 
multimode laser with a large number of uncorrelated modes. A Markovian model for a 
CF can be described by the Langevin equations (Zoller 1979a, b) 

(s*N(t l )%N(t2))  = N ! ( I ~ I ~ )  exp(-l\rbltl- t21). 

&( t )  = -b%(t)+F&) &*(t) = --b%*(t)+FES*(t) (6 )  
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with (F~(t)F~*(t’))=2(1812)bS(t- t ’ ) .  The spectrum of the CF described by ( 5 )  is a 
Lorentzian with bandwidth b. 

3. Saturation of a two-photon transition 

We are looking for solutions of the stochastic optical Bloch equations ( l ) ,  averaged over 
the fluctuations of the electric field amplitude s(t). In particular, we are interested in 
the stationary population of state 11) after all transient effects have died out. 

For the PDM the averaging over the field fluctuations is particularly simple (Avan 
and Cohen-Tannoudji 1977, Agarwal 1976, Eberly 1976, Kimble and Mandel 1977, 
Georges and Lambropoulos 1978, WGdkiewicz 1979). Due to the factorisation pro- 
perty ( 2 )  of the electric field correlation functions, the atomic populations can be 
rigorously decorrelated from the field variables at an appropriate stage of the 
calculation. It can be shown (Agarwal 1976, Wddkiewicz 1979) that the averaging 
replaces the transverse decay constant ~ / 2  in the optical Bloch equations (1) by 
~ / 2  + 4h. Note that the additional factor of 4b stems from the relaxation constant of the 
second-order field correlation function (3) with N = 2. Thus we find for the averaged 
excited-state population for the PDM 

( P I ~ P D  = WPD/(K 2 WPD) (7) 
with 

WPD $f12(4b + ~ / 2 )  
(A - 6w)’ C (4b + K/2 ) ’  

where fl= 2pl%‘(t)12. WPD may be interpreted as the transition rate l O ) - l l ) .  
For the CF, on the other hand, the averaging ever the fluctuations is much more 

complicated because a decorrelation of the atom-field variables is possible only for 
large bandwidth fields b, K >>(a>, (Sw) ,  but becomes inadequate in the saturation 
regime. In the particular case of zero bandwidth field (b  = 0), (pll(t)) may be found by 
averaging the excited-state population in the coherent field, namely 

p11(%‘, %*) = $2”- K / 2  ) - I  (9) (A-86~)’ + (K/2)’ 

over the Gaussian amplitude distribution ?s(%‘, %‘*I = [ l / ~ ( / % l ~ ) ]  exp - (1%12/(lSi2)) of 
the CF (Glauber 1965): 

1 A ( f l ) ’ ( 8 ~ ) ~  s(fl)’(A’+ K2/4) +(8w)2(K2/4-112) R =-- 

For arbitrary bandwidth it can be shown that the stochastic optical Bloch equations (1) 
may be transformed to an infinite system of differential equations for the averages 

2 ( f ( f l ) 2 + ( 6 w ) ’ ) ~ - S i ( n ~ ( ~ ( f l ) 2 + ( S ~ , ) 2 ) 2 ~ ~ ( A 2 +  K’/4)+K2/4((SW)/(f l))  2 ] l / 2 ’  
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with 

S" = Im (P:;> 

A, = (K/2 + 2b(n  + I ) ) / (R )  

B, = ( f l ) / ( ~  + 2 b n )  

and 

D, = (A- (Sw)(2n -t 3))/(Cl).  

The average ( p l l ) C F  is then given by 

According to (1 3 )  the coupling of S o  to all higher order S" indicates the influence of the 
higher order statistics on the saturation behaviour. 

In the weak-field limit (R) ,  (Sw)<< K ,  b, neglecting the coupling of So to the higher 
order averages, we again find a result of the form (7) with WPu replaced by the 
transition rate 
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This result is also obtained in the decorrelation approximation. Note that WCF differs 
from WPD in the overall factor of 2! and that the different factors by which the 
bandwidth is multiplied reflect the differences in the second-order correlation functions 
in the PDM and the CF. Furthermore, the Stark shift is enhanced by a factor of three in 
the CF as compared with the PDM. 

For high intensities, we have solved the system of equations (13) by numerical 
methods. The results of these calculations will be discussed in the next section. 

(6w) = O  A =  0 

-2  -1 0 1 2 3 
O " ' t ' j ' J 1 ' 1  

4. Discussion 

Figure 1 shows the intensity dependence of the ratio of the populations in the excited 
state for the case of a CF and radiation obeying the PDM for b = 0, 0 . 5 ~ ~  l ~ ,  2 ~ ,  ~ O K ,  
A = 0,  ( S w )  = 0. At low intensities ( W << K )  this ratio is approximately given by the 
ratios of the induced bound-bound rates WCF/ WPn. For b = 0 we therefore have 
(P~~)cF/(P~~)PD+ 2!. In the limit of large bandwidth fields this ratio goes to 2! x 2  with 
the factor of 2 stemming from the additional factor multiplying the bandwidth in the 
PDM. Increasing the intensity results in the lowering of the ratio (P~~)cF/(P~~)PD. For 
small bandwidth fields we may even find (P11)CF to be smaller than (P11)PD (Georges and 
Lambropoulos 1979). This minimum in the intensity dependence, however, disappears 
for large values of b. In the high-intensity limit (P~I)cF/(P~~)PD approaches the value of 
one as the population of a strongly driven two-level system becomes one half, 
irrespective of the fluctuations in the exciting radiation field. 
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Figure 2 compares the resonance curves for a CF and the PDM for different values of 
the mean Stark shifts. Note that for b = 0 the maximum of the dispersion curve is 
smaller in a CF than for the PDM, while the resonance curve in a CF has higher wings due 
to the off-resonance 2! enhancement. Whereas in a field with stable amplitude the 
resonance curves are simply shifted with increasing Sw, the amplitude fluctuations of a 
CF wash out the resonance and cause an asymmetry. Also note that because of the 
correlation between the atomic transition and the Stark shift, the effective Stark shift 
Sues (i.e. the maximum of the resonance curve) is different from the mean Stark shift in 
a CF, contrary to the case of the PDM. 

___---___ 

h Ix 

Figure 2. Resonance curves for a CF (full curves) and the PDM (broken curves) for certain 
values of the mean Stark shift @U). 

Figure 3 shows the dependence of the ratio of the effective Stark shift S w e ~  to the 
mean Stark shift ( S w )  on the mean Rabi frequency for certain values of the laser 
bandwidth b. In this figure the mean Stark shift is assumed to be equal to the mean Rabi 
frequency. Note that the maximum of the dispersion curve is not shifted by the mean 
value of the Stark shift (Sw)  since in the presence of intensity fluctuations the Stark shift 
Sw enters the intensity dependence of the excitation probability in a non-linear way 
(compare equations (9) and (10) and Agostini et al(1978)). For low intensities (i.e. (a), 
(Sw)<< K ,  b )  this ratio approaches three. This value 3 = 3!/2! arises because the Stark 
shift-being a third-order correction to the lowest second-order perturbation cal- 
culation of WCF-is enhanced by the intensity fluctuations; with increasing intensity 
this ratio becomes even less than one. Note that at very high intensities the effective 
Stark shift is no longer well defined since the resonance curves become increasingly 
washed out by the intensity fluctuations. 

If the two-level system loses population from the upper state by a weak-field 
induced one-photon process (for example, ionisation to the continuum), this transition 
rate will be proportional to (Is(t)12pll(t)). Including ionisation perturbatively in the 
two-level system is, of course, possible only for intensities for which the ionisation rate 
is smaller than the internal relaxation rates (spontaneous decay or similar relaxation 
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Figure 3. The ratio of the effective Stark shift Soefl and the mean Stark shift (So) as a 
function of the mean Rabi frequency (a) for various values of the laser bandwidth b. 

mechanisms). Although for many experiments this assumption is somewhat unrealistic, 
it is nonetheless interesting to compare the ratio of the ionisation probabilities per unit 
time (Is(r)12pll(t)>CF/(Is(f)12pll(t))FD in a CF and a phase diffusing field within our 
model. A time-dependent treatment of two-photon resonant three-photon ionisation 
has been given by Zoller and Lambropoulos (1980). This investigation was incomplete, 
however, in so far that only the first few terms in the expansion (1 1) of the solution of the 
equations (10) were taken into account. Figure 4 shows the ratio (lS12pil),~/(lS12~i,>~~ 
for b = 0, O S ~ K ,  l ~ ,  2 ~ ,  1 0 ~  with A = 0, ( S w )  = 0 as a function of the mean intensity. For 
low intensities we see that this ratio approaches 3! for small bandwidth fields (Lambro- 
poulos 1976). A finite bandwidth brings in the different factors multiplying the 
bandwidth in the PDM and the CF and, therefore, increases this ratio. In the limit of large 
bandwidth, however, the bound-bound and bound-free steps become statistically 
independent i.e. (I 8(*p1 1)CF = (I ~ / * ) ( p  ll)CF and the ratio (I 8I2pl 18 12p11)pD reduces 
to (pll)CF/(p11>pD -4 .  An increase of the intensity decreases these ratios. 

In summary, we have investigated the effect of phase and amplitude fluctuations of a 
laser field on a resonant atomic two-photon transition. We have seen that the different 
higher order statistical properties of the radiation fields cause significant differences in 
the saturation behaviour of the atomic transition. Whereas for low intensities the 
statistical dependence is completely determined by the second-order correlation 
functions, the saturation behaviour exhibits a highly non-linear response to the 
fluctuations in the incident field. The ratio of the populations in the upper level for a CF 
and the PDM therefore, for low intensities, approaches the value of 2! for small 
bandwidth and 2! x 2 for large bandwidth fields. With increashg intensity we find a 
minimum even less than one for small bandwidth fields. In this case the PDM is more 
effective in populating the upper level, contrary to the low-intensity limit. For the 
resonance curves for a chaotic incident field higher wings have been found and 
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Figure 4. The ratio of the rates 0f.a two-photon resonant three-photon ionisation for a CF 
and the PDM as a function of the mean Rabi frequency (0). 

moreover an asymmetry which is also brought about by the non-linear dependence of 
the Stark shifts on the amplitude fluctuations of the field. Because of the correlation 
between the atomic transition and the Stark shift in a CF, the effective Stark shift (i.e. the 
maximum of the resonance curve) is different from the mean Stark shift and depends on 
the intensity of the radiation. Within our model we also treated the effect of a 
two-photon resonant three-photon ionisation in a perturbative way. We found that in 
the small bandwidth case the atomic transition and the ionisation are correlated 
whereas for increasing bandwidth the excitation of the resonant intermediate state 
becomes statistically decoupled from the ionisation from the resonant state to the 
continuum. 
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