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Vortex creation in a trapped Bose-Einstein condensate by stimulated Raman adiabatic passage
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We examine a scheme for the optical creation of a superfluid vortex in a trapped Bose-Einstein condensate,
using the stimulated Raman adiabatic passage techi®IKRAP). By exposing an oblate, axis-symmetric
condensate to two copropagating laser pulses, one can transfer external angular momentum from the light field
to the matter wave, if one of the beams is the fundamental Gaussian mode and the other is a Gauss-Laguerre
mode of angular momentumi1We demonstrate the complete transfer efficiency by numerical integration of
the multicomponent Gross-Pitaevskii equation and explain the results with an intuitive and accurate approxi-
mation within the Thomas-Fermi limit. In addition, we discuss residual excitatioreathing modeswhich
occur in the two-dimensional regime and present the Bogoliubov excitation spectrum.
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I. INTRODUCTION tweezers and twistefd8-20. Surprisingly, even the transfer
) ) ) of angular momentum to ultrasonic waves in fluids can be

Ultracold atomic gases have provided us with novelychieved that way21]. In the context of a BEC, using the
physical systems that exhibit all genuine many-body pheyngylar momentum of light to create a doubly charged vortex

nomena known from traditional condensed matter physic$,55 peen proposd@2],  pulses in Raman type transitions
and, still, admit all the superior coherent control tools used iy gre examined23] and an adiabatic passage to a vortex

quantum optics. After the e_xperimental realization of a Bose;iate was investigated by changing the two-photon detuning
Einstein condensatéBEC) itself, tremendous efforts were ¢ 5 effective two-level systerj24].

fpcused on the creation of topologic_:al and solitary excita- | this paper, we will examine the transfer of external
tions of condensategor a current review see Refl]). Es-  gngular momentum of light to the matter wave with the help
pecially alternative methods for the creation of vortices haveys 5 stimulated Raman adiabatic passe§EIRAP) [25]. The
stirred the minds, as the traditional “rotating-the-squeezedp,gic effect relies on a quantum mechanical interference be-
bucket” procedure was not successful, initially. Thus, theyeen two ground states and gives rise to a multitude of
first fruitful proposal to create a vortex involved a rapidly physical phenomena, e.g., dark resonances in optical spec-
rotating Gaussian laser beam entangling the external mOtioﬂ?oscopy [26], velocity selective coherent population trap-
with intgrnal state Rabi Qscillatior{§,3]. Later, cqndensates ping (VSCPT) [27], a drastic modification of the optical in-
were stirred up mechanicall—6] and evaporative spin-up ey of refraction(EIT) of normal [28] and BE condensed
techniques created vorticitly7] and recently giant vortices systems[29,30, as well as constructive procedures to pre-

[8] could be created. Due to larger asymmetries in the rappare[31] and readout quantum states of atomic beams and
ping potentials that can be achieved nowadays, vortices aigytical cavities[32).

now predominantly created with the stirring method and fas- * s paper is organized as follows: In the Sec. Il we will

cinating Abrikosov lattices cont'aining up to 300 vortices develop a scheme for creating a vortex in a BEC using the
have been madg5,9,10. Alternatively, prospects for creat- gT|RAP method. In analogy to single-particle physics, it is
ing vortices by optical phase imprinting1] were investi-  ossible to derive the relevant three-component Gross-
gated(in analogy to the successful soliton experimeI])  pitaeyskii equation. In Sec. Il we will present the results of
and applying magnetic interactions were considef8l.  nymerical calculations that are in good agreement with a
Moreover, there have been ideas to create vorticity Dyimple analytical approximation within the Thomas-Fermi
sweeping a laser beam on a spiraling trajectory across gyt |n addition, we will discuss the physics of the remain-
trap, inducing a Landau-Zener transition between the irrotayng residual excitations in terms of the “breathing modes” of
tional and the rotational stafd4]. a quasi-two-dimensional system. In particular, we will calcu-
On the other hand, the transfer of angular momentunie the radial Bogoliubov excitation spectrum of a conden-
from an optical field to a macroscopic rigid body or an gate in the vortex state with angular momentuin Einally,

atomic particle has also a long standing tradition in quantuny,e \will summarize our results and conclude in Sec. IV.
mechanics. The first proof that circularly polarized light car-

ries angular momentum dates back to Beth’s original experi-
ment of 1936[15]. More recently, due to the availability of Il. STIRAP IN A BOSE-EINSTEIN CONDENSED
Gauss-Laguerre laser beams with well-defined external an- GAS
gular momentunj16,17 it is possible to use them as optical The STIRAP method is now applied to a trapped BEC of
three-level atoms in A-type configuration shown in Fig. 1.
The two internal electronic ground states, e.g., the hyperfine
*Electronic address: gerrit.nandi@physik.uni-ulm.de levels of an alkali atonj29,33,34, are denoted byb) and
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=@ for linear, dissipative quantum systenmi25,27,32. A full
. Ap/ \Aa . population transfer can be reached if the field amplitudes
b I satisfy the conditions
|6P (7'7 t)|2 |6d('r7 ¢’ t)lz t
- iim 22 — g, 6)
Wp t—>—oc8d(t)
_ -G _gph)
—-— lim © = oo, (7)
ep(r, t)ethe® ea(r, t)redetkaz tor28d
—_— —_—

which is guaranteed by the pulse sequence given in @gs.

FIG. 1. A A-system exposed to two copropagating laser pulses"'md ). -
in two-photon resonance. The atomic transition frequencies are Far below the transition temperatulle<Tgec, one can
Doppler-shifted with respect to the rest frame i.ep=w, describe a multicomponent BEC effectively within a simple

+hk,2)/2M, wp=wp, we=wy+fi(ky—kg)?/2M. Only one Gauss- mean-field picturd35,3§. Thus, we introduce a three com-
Laguerre laser bearfey) carries % of angular momentum. The ponent state vectow(r,t), that represents the components
individual detunings from the excited state akg=w,—wp=wy, of the macroscopic atomic matter wave. For the time evolu-

Ay= wa— 0~ wy. tion of this multilevel state vector, one can derive a general-
ized Gross-Pitaevsk{iGP) mean-field equatiofi37]
|c), and by absorbing an optical photon, one reaches the ex- W(r 1) = (Wo(r, 0, Wo(r ), W (r,)7, (8)

cited statga), respectively. The condensate is confined spa-
tially by an oblate, axis-symmetric harmonic potential, which ) B
reads in cylindrical coordinates, ¢,2), it W (r,t) =HOW(,Y. ©)

V(r,2) = SM(o2+ o22), 1) W(r,t) is normalized to the total particle number,
whereM denotes the single-particle mass. By choosing the N:J EBr(|W,(r, 02+ [Wy(r,0))2+ [P(r,H>), (10
radial trapping frequency much less than the longitudinal

frequency, i. e..w<w,, one can confine the motion effec- ;, 1he BEC. Due to the unitarity of Eq9), this particle

tively to the radial component. _ number is conserved at all times. However, as we use explic-
Now, we will expose the dilute atomic gas to two €o- iy time-dependent laser fields, the energy of the system can
propagating traveling “pump” and “dump” laser pulses, change(see Sec. IIl B,
E(z) =N, sp(t)e—i(wpt—kpz) +c.c., ) The internal structure of the Hamiltonian is quite easy to

understand, as it follows straight from the single-particle
_ “i(wt-k2) physics that rules the dynamics of the dilute gas interacting
Eqr ¢:20) = Ag eq(r, e +cc., (3 with light. In Fig. 1, we have depicted the optical dipole
where\, and\4 denote the corresponding polarization vec-transition scheme for a-type atom. Within the standard
tors. The slowly varying laser beam envelopgseq have a ~ rotating-wave approximation of quantum opti¢89] one

nontrivial temporal and spatial structure, finds for the internal state Hamiltonian
eplr.) = () =5, €772, (4) hatd Q1) Q4.4
HO/K=| Qi) hy+d 0 . (17
e, g =sgr e 2, (5) Qrg 0 he=s

For the pump pulse, we choose the fundamental Gausd-he Rabi frequencied) (t)=¢y(t)dya/72 and analogously
Laguerre(GL) laser mode[16] with a spatial width larger Qq(r,é,)=eq4(r, ¢,t)dca/ i, measure how well the photon
than the BEC size and a temporal Gaussian turn-on shagteld couples to the electronic transition and are proportional
with the width d. Numerical simulations prove that in this to the atomic dipole momentg,, dc,. The remaining param-
limit the spatial Gaussian envelope can be disregarded alt®ters are the Raman detunidg=(A,+Ay)/2 and the two-
gether in Egs(4) and (5). This pulse reaches its maximum photon detuning=(Aq—Ap)/2, which refer to the individual
intensity at some time>0. In order to transfer orbital an- detuningsA,, A4 of the laser frequency and the Doppler-
gular momentum from the light beam to the matter wave, weshifted electronic transition frequency. In order to achieve
pick the first excited GL mode that carries external angulathe optimal STIRAP performance, we will assume a two-
momentum, the so-called “doughnut-mode,” for the dumpphoton resonance conditiaix 0 later, and pick a nonvanish-
beam[17,18,22,28 While spatial extension and temporal ing detuningA in order to avoid detrimental spontaneous
durationd can be set equal in both pulses, it is crucial thatemissions, which would disrupt the coherent evolution. In
the dump beam reaches its maximum intensity=dl, first.  the preceding derivation of Eq11), we have also tacitly
This “counter-intuitive” pulse sequence is the key of the STl-adopted co-moving and co-rotating reference frames such
RAP procedure and achieves an efficient adiabatic passagleat
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W(r,t) = (@ Mk (1 1), @I, (v 1), @lect I-pkazhy ()T, (12

in order to strip off the trivial plane wave qharapter of the ez, t) = ( B/,n.)1/4e—iﬁt/2e—ﬁzzl2 (18)
beams, see Eq&2) and(3). To keep the notation simple, we
will drop the bar over the state vector in the following dis- of the one-dimensional harmonic oscillator in theirection,

cussion. which is normalized to one, i.e.,

For the external motion of the multicomponent gas, we o
want to assume that all components are confined by the same f dz |(p0|2 =1. (19
harmonic potential, cf. Eq¢l). This is not a stringent re- —

quirement for the excited state componely, as particles Please note that the third component now carries the me-

W'I.I only rarely occupy this Ievel_ a_lnd move through it chanical angular momentum ofi Jer particle. After project-
quickly. Due to this low occupancy, it is also not necessary to

consider any mean-field shifts arising from self-interaction Ing the state vector along tiedirection, we finally arrive at
y 1sing ‘an effective Hamiltonian in the radial direction. Using the
or the motion through the remaining components. Conse-

: O ..~ natural units of the transverse harmonic oscillgtone unit
quently, we can simply use the bare trap Hamiltonian with & ol length scaleo= /M), one finds
HO= ; HO=V .

Doppler shift
2 iap(r,t) = H(D) #p, (20)
hha= 2+ V(r,2) + 7k, 2. (13)
2M M h©@+A Q1) r Qq(t)
For the ground state components, we will only consider H®=| Qu) h®+5+«n(r) 0 :
mean-field shifted energy contributions that arise from elas- r Q) 0 h® — 5+ kn(r)

tic collisions and denote the interspecies and intraspecies (21)
scattering lengths biay,, ayc, acp, act. Hence, these compo-

nents read where k=87 a and all scattering lengths are equalao
This assumption holds well fot'Rb (see below. The par-

2 2 . L
p 4 2 2 ticle density is denoted bw(r) =]y, (r)[>+|(r)|? and h™
fihp=—+V(r,2) + |2+ a, ¥ 14 ) . by e\l .
®~ oM r.2) M (Bl Wol” + 2pd Wel),  (14) represents a two-dimensional radial harmonic oscillator
Hamiltonian
2 2
_P Pz 4mh 2 1 1 e
Ahc= M +V(r,2) + (K, — kg) M + M (acd Ve h(m = — > 7+ ?&, T r2 (22
+agy| Wpl?). (15 in an angular momentum manifold with= 0.
The optical absorption-emission cycle imparts angular, as
well as linear momentum onto the final state matter-wave lll. RESULTS AND DISCUSSION

V.. However, linear momentum cannot be conserved in a

trapped system, and it would lead to a sloshing motion alon pical scattering parameters f87Rb [33.34. To simplify

the z direction. This can be suppressed either, by choosin atters, we will also assume that the self-scattering and
equal laser frequencies and photon momenta, or by Squeecr'oss-cc')m onent scattering lengths are eqagla .~ 9
ing the trapping potential into a very oblate configuration P g 'eng GAIRY= = Bnc

such thatB=w,/w>1. This effectively “freezes” the longi- =a= 11.0 thr radii(ag). This turns OUt. to be a vgry robust
tudinal motion due to an energy selection argument. approximation and we comment on this later. By implement-
ng a numerical algorithm for solving the three-component

The later situation leads to a more stable configuratio ; . ) ;
and is favorable. Thus, we are able to approximate the stat ross-P|taevs_k|| eq_uqt|q|20), we can show that a q“@”t'zed
' vortex (m=1) is building up. For the trap frequencies we

vector choosew=27x10 s and w,=27 X 1000 s?, respectively.
W(r,t) = (o(r, 1), (r,1),€7% g(r,)Too(zt), (16)  With an atomic mass df1=86.91 amu, we find a harmonic

oscillator sizeao=\A/Mw=3.41um. In this spatial unit,

by factorizing it into a radial part, which is normalized to the we get for the scaled coupling constant V873a=0.0855.

In the following, we will be more specific and choose the

number of particles in the BEC, i.e., We will consider an atomic ensemble witfi=10 000 par-
. ticles. From a simple Thomas-Fermi approximatjsae Eq.

- 2 (24 2 (29)] one finds estimates for the condensate radiys
N wao dr (ol + [yl + [, (7 =\2urr=5.7 with a chemical potentigk;r=16.5. The laser

parameters are chosen as follows:0.3,d=0.15,,=200,
and the ground state 04=200,A=30, andé=0 (two-photon resonangeln prac-
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FIG. 2. Time evolution of the individual level populations vs ) _ _ _ _
time measured in natural units f,o. The dotted line depicts the FIG. 4. Time evolution of the irrotational state densiiis(r)|*

populationN,(t) of the excited state, the dashed-dotted and the solivs radiusr measured in units oéo. The solid lines depict the
lines represenN,(t) and Ng(t), respectively, and the dashed line position density at the initialt=-1) and at some intermediate time

corresponds to the total number of particles in the system, which i§t=0). The instantaneous Thomas-Fermi approximatidashed
conserved, i.eN(t)=N(t)+Np(t) + Ng(t). lines) matches the exact solution after the transfer of particles starts

effectively (t=0).
tice, A will be of the order of at least £pbut for the simu-
lations much lower values are sufficient. 4, we demonstrate the time evolution of the density of the
In Fig. 2 the transfer efficiency is demonstrated. Initially irrotational statgb). Initially, the atoms of the condensate are
the whole system is prepared in the ground sfiateWhile ~ prepared in the ground state=-1). This population is de-
the excited statéa) is not populated significantly at any in- creasing during the STIRAP process and vanishes after-
stant, the population of stale) is rising up. An almost 100% Wwards.
transfer to the vortex state is possible and the total number of While we have considered equal scattering lengths occur-
particles in the BEC is conserved as required by unitarityring accidentally in®’Rb, this is not exactly valid and also
The time evolution of the vortex state density is shown innot the generic situation applicable to other condensed ele-
Fig. 3. At some intermediate tim@=0) high-frequency ex- ments. It could be imagined that the imbalance of mean-field
citations appear. After the transfer is completéd1), the  shifts deteriorates the transfer efficiency due to a violation of

shape of a vortex with angular momentur & matched the bare two-photon resonance condition. Still, one could
almost perfectly with the stationary single charged vortex@PPly a time-dependent detuning that rectifies this effect in
solution. Still, some minor excitations, i.e., the “breathingorder to achieve an optimal adiabatic passage. Such a strat-

mode” remains, which will be discussed in Sec. Il B. In Fig. €9y has been proposed in Reff82,24. o
However, we have studied numerically the situation of

200 , ' ' ' unequal scattering lengths without modifying the detunings
and found no averse effects. First, we have examined the
efficiency of the transfer procedure using the real scattering
data of the JILA experimenB83,34 for the trapped hyperfine
statedby=|F=1,mg=-1) and|c)=|2, 1). Using the scatter-
ing parametergayy, ayc, 8.0 =104 a,5(1.03,1,0.97, there is
an almost complete transfer to the rotational state possible,
yielding essentially identical curves as shown in Figs. 2—4.
However, there are slightly higher excitations than in the
idealized case. Second, we find that even a drastic variation
of the scattering lengths does not spoil the transfer efficiency.
It only leads to a further increase of the “breathing” of the
vortex. As an example, we depict the results of the simula-
0 . . . tions for a vanishing cross-component scattering length
1 8 5 7 (App, Ape, 3c) =10485(1.03,0,0.97 in Figs. 5 and 8. Once
more, these simulations confirm the remarkable robustness

FIG. 3. Time evolution of the vortex state densiti(r,t)[> vs  of the STIRAP scheme.

radiusr measured in units ddiyo. The solid lines depict the vortex
state at an intermediate instgint0) and after the STIRAP process A. The two-component Thomas-Fermi approximation

is completed(t=1). In general, the instantaneous Thomas-Fermi
The Thomas-Ferm(TF) limit is an extremely useful ap-

approximation(dashed ling compares well with the exact results
apart from minor excitations. proximation for the ground state of an interacting BEC.

150

100

50
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200} 5M_£|:ﬁ_|ﬂd| _‘Qp|
. A A 2
) Nt -20( 2+ (2 10 |
2
| (26)
100}
To keep the notation simple, we have dropped all the spatial
and temporal arguments. Vice versa, one has to determine the
50f chemical potentiajurr such thatN=2=[jdr r ny¢ is satis-
fied at each instant of the adiabatic passage. For the vortex
component of the corresponding eigenvector, one finds
0 7
—(cos @
) . ) =\nge| . , (27)
FIG. 5. Time evolution of the vortex state densji(r,t)|? vs /A sin 6

radius r measured in units ofo. In this simulation the self-
scattering lengths dt’Rb were chosen, b, was deliberately set

to zero. This change gives rise to an increase of the residual exci-
tations of the final vortex state while the transfer efficiency again is

higher than 99%. The dashed and dotted lines show the “breathing” A(? - |Qd|2 - 5#)
of the vortex state at different timeésAs a reference, the solid line

depicts the stationary vortex state.

R(Q Q)

tan 6= (28)

It turns out that the chemical potential is almost constant
Where applicable, it simply disregards the kinetic energyg?”ng ftgftggr_]rs;esroﬁa?i%?; ;insg;tgfsig?ec?gose the value
contribution to the total system energy. This is also possible" *TF P
for an excited vortex state. We will nhow consider this TF
approximation for the two ground-state components, after

adiabatically eliminating they, component,

2
e = prp(Qpg=0) = % + % + ke = const.  (29)
As shown in Fig. 3, the adiabatic evolution of these
r Qyt) simple approximations matches the exact numerical results
d . .
- e, (23 for the vortex state well. It should be pointed out that in our
A TF approximation we did not neglect the centrifugal term
1/2r% in Eq. (24), which is actually also part of the kinetic
. . energy. It is responsible for the vanishing density in the cen-
Ser of the vortex core. This turns out to be the better approxi-
mation for t=0, while for t<0, dropping the centrifugal
potential provides the more accurate approximation because
of the irrotational nature of the initial state.

Q)
A

¢a(r!t) == lpb

passage, the irrotational statg shall be transformed coher-
ently into the vortex statg.. Thus, the relevant Hamiltonian
in the reduced two-state manifold reads

Q1) Qy(r,HQ(1) B. Total energy of the system

_ r_z A A The total energy of a BE condensed system can be ob-
HTF(t) - + Kn(r) - * 2 . . . : . "
2 Qq(r,H Q1) |Qq(r, )] 1 tained from the expectation value of the microscopic Hamil
A A o2 tonian with respect to a symmetry-broken ensenjBig3g,
thereby discarding higher order correlation functions. Unless
(24) time-translational symmetry is broken due to explicit time
dependencies of external fields, the total energy of the sys-

. ) _tem must be conserved. Within these assumptions, the energy
Once more, we want to assume an adiabatic following,ctional is given by

condition to obtain a stationary solution off(r,t)
=exd—if', dr ure(D]((r), ¥e(r)". By solving the simple e _

ensuing eigenvalue problem of E(R4), we find for the E=Eiin + Ere + Eap, (30)
chemical potential in the vortex branch that

where the individual contributions are as follows:

r? ”
HTE= 2+ K Mrpt ou, (25) Eqin= . drr [ al®+ 10, gul®+ 16 ve?],  (30)

063606-5



NANDI, WALSER, AND SCHLEICH PHYSICAL REVIEW A69, 063606(2004)

20000 v v T 12

15000

10000}

5000} Ekin 1 et
. 10.5} — <
Edip
50005 5 10 15 10— 5 10 15
t
. D .
FIG. 6. Total energyE (measured in units oiw) as a function FIG. 7. Mean squared radiusg), of the vortex state vs time

of the timet (in natural unitsTyc). The different contributions to ~ (Measured in units oo and Ty, respectively. Before the trans-
the total energy are shown in the pl&,., denotes the energy of fer process this state is not occupied. Afterwards the mean squared
the condensate in the stationary vortex state. Because of remainirigdius oscillates around the equilibrium vaisé .y (dashed ling
excitations the potential and kinetic energy oscillate. However, thel he frequency of the excitation is exactiy2
total energy is conserved before and after the transfer process.
“breathing modes” have been studied first theoretically in
o 1 Refs.[43,44 and experimentally in Ref45].
ETF:TFJ drr [2A|l/fa|2+r2(|¢a|2+|l//b|2+|¢c|2)+—2|¢c|2 The mechanism for exciting these modes arises from
0 ' squeezing the harmonic potential in time. In the present con-
text of the STIRAP configuration, the origin of such an ad-
+K(|¢b|2+|¢c|2)2], (32)  ditional potential can be understood from considering Eq.
(24). During the turn-on of the laser fields, we induce an
and ac-Stark-shift potential)y(r,t)|2/ A, which is proportional to
- r2. While this effect is interesting by itself, it could be elimi-
Edip= zwf drr [¢, Qp t+ Yo T Qg e+ c.cl. nated easily by an appropriate control of the trapping poten-
0 tial, thus reducing the amount of excitations.
(33) Moreover, a completely adiabatic transfer is limited by
two factors: On the one hand a standard STIRAP process in
Equation(31) denotes the radial kinetic enerdy,, while  a homogeneous gas requires an adiabaticity conditlon
Eq. (32 represents all the energy arising from the detuning> 1, i.e., the time delay must be sufficiently large. On the
the trap potential, and the mean-field shifts, respectively. Thether handr cannot be chosen arbitrarily large because here
dipole energy, which is caused by the dipole coupling of thewe deal with a STIRAP process in a trap. Therefore, cou-
laser fields to the atoms, is given by the expression in Eopling to external motion has to be taken into consideration
(33). for large time delays..
The evolution of the total energy and its individual con-  The residual radial excitations can be visualized by evalu-
tributions is shown during the nonequilibrium transfer in Fig. ating the mean squared radius
6. As expected, the total energy is constant before and after
the STIRAP process. However, due to an excitation of the o 2w (7 .
breathing mode, the kinetic as well as the potential energy <r0>t:ﬁfo dr 1 go(r, 0" r2ye(r ), (34
exhibit complementary oscillations. The dipole energy is
negative, which is well known from the interaction of a two- which is proportional to the potential energy of the vortex
level atom with a laser field. This is due to the fact that thecomponent_ As shown in Fig. 7, this quantity is oscillating
polarization of the atom is counteracting the external electrowith the frequency =2 w, which corresponds to the breath-

magnetic field. ing mode(see Fig. §.
In addition, small radial excitation@.e., the linear re-
C. Linear response of the system and breathing modes sponsgof a BEC can be understood from Bogoliubov theory

40,47. Therefore, we now consider the radial one-

The numerical simulations show that a transfer of almos omponent GP equation for the vortex state with angular
100% of the particles into a vortex state is possible. Still, ;o mentum % that reads

residual radial excitations of the vortex state remain. As the

frequency of these radial excitation is exactly twice the radial iaa(r,t) = ("D + k| glr )P (r 1), (35)
harmonic trapping frequency,=2 w, it must be related to

the scaling symmetry of the two-dimensional system. Thesaith h® defined in Eq(22). With the ansatz
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FIG. 9. Excitation frequencies relative to the ground state

di its G dT tively. In this simulati frequency of a quasi-two-dimensional BEC in the vortex state
(measured in units @yo and Tyo, respectively. In this simulation (jm/=1) measured in units ofw, in comparison to the two-

thetslelf-sctattterlng Ie_|r_1rg]j_ths Sbe were chose;, ?Lﬂ‘” was delib- ‘ trgiimensional harmonic oscillator with fixdech=1. Forp=0 andp
eralely set 1o zero. This change corresponds to an Increase ot the .o inear and nonlinear energies are identical. [Far2 they

breathing” of the final vortex state. split, and the excitation energies of the BEC lie below those of the
noninteracting gas.

FIG. 8. Mean squared radit(sﬁ)I of the vortex state vs time

Pr,t) = e M (y(r) +u(r)e e+ 07 (r)eh), (36)  passag&STIRAP). In our model, we considered a BEC of
three-level atoms in aA-configuration of the electronic
states, which are coupled by two copropagating laser pulses.
The aim was the transfer of angular momentum, carried by
one of the beamgGauss-Laguerre mogleto the BEC. The
underlying mechanism of STIRAP is analogous to single-

% particle physics. In contrast to the latter case, we derived a

27rf drr [Ju(n?-Jv(r)]=1. (37 multicomponent nonlinear Schrodinger equatioBross-

0 Pitaevskii equatiop using the mean-field approximation. We

The spectrum can be calculated from the linear response girésented results of numerical simulations that apply to a

whereyy(r) is the wave function of the stationary vortex, the
time evolution of which is determined by the chemical po-
tential u, andu(r) andv(r) denote the excitation modes with
the normalizatione > 0)

genvalue problem BEC of 8Rb atoms. For a suitable set of laser parametgrs an
almost 100% transfer to the vortex state can be achieved.
h K zpé u(r) u(r) These results can be understood with an intuitive and accu-
—x % 2 _n J\u(n) =€ o(r))’ (38) rate approximaftion within the Th(_)mas_—Fermi limit. The oc-
currence of residual radial excitations in the vortex state can
where be explained by so-called breathing modes, which are spe-
h=h® = s+ 2 go(r)[*. (39
The results of our numerical calculations are shown in %8 'i .'""«.,\\. -1 u()
Figs. 9 and 10, being in agreement with earlier wp4R]. ¢
The lowest modép=0) corresponds to the condensate wave 02 f
function itself (Goldstone mode The frequency spectrum
can be compared to spectrum of the well-known two- —0-2[ .
dimensional quantum-mechanical harmonic oscillator, which 1
is given by 0.4
eno=2p+[ml+1, (40) o |
where p e N denotes the principal quantum numbserg Z ‘K
denotes the angular momentum, and in our césgs1 is ‘0'4'\‘ -
fixed. _osh “-..—"-"-‘:"" p=1 v(r)

1 3 5 7
IV. CONCLUSIONS
FIG. 10. Excitation modes obtained by Bogoliubov theory. The
In this paper, we have developed a novel scheme for therst three modes ofi(r) andu(r) are plotted. The lowest mode
optical creation of vortices in a trapped Bose-Einstein con=0) corresponds to the condensate wave function i{&tfidstone
densate, using the technique of stimulated Raman adiabaticode.
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