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We examine a scheme for the optical creation of a superfluid vortex in a trapped Bose-Einstein condensate,
using the stimulated Raman adiabatic passage technique(STIRAP). By exposing an oblate, axis-symmetric
condensate to two copropagating laser pulses, one can transfer external angular momentum from the light field
to the matter wave, if one of the beams is the fundamental Gaussian mode and the other is a Gauss-Laguerre
mode of angular momentum 1". We demonstrate the complete transfer efficiency by numerical integration of
the multicomponent Gross-Pitaevskii equation and explain the results with an intuitive and accurate approxi-
mation within the Thomas-Fermi limit. In addition, we discuss residual excitations(breathing modes) which
occur in the two-dimensional regime and present the Bogoliubov excitation spectrum.
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I. INTRODUCTION

Ultracold atomic gases have provided us with novel
physical systems that exhibit all genuine many-body phe-
nomena known from traditional condensed matter physics
and, still, admit all the superior coherent control tools used in
quantum optics. After the experimental realization of a Bose
Einstein condensate(BEC) itself, tremendous efforts were
focused on the creation of topological and solitary excita-
tions of condensates(for a current review see Ref.[1]). Es-
pecially alternative methods for the creation of vortices have
stirred the minds, as the traditional “rotating-the-squeezed-
bucket” procedure was not successful, initially. Thus, the
first fruitful proposal to create a vortex involved a rapidly
rotating Gaussian laser beam entangling the external motion
with internal state Rabi oscillations[2,3]. Later, condensates
were stirred up mechanically[4–6] and evaporative spin-up
techniques created vorticity[7] and recently giant vortices
[8] could be created. Due to larger asymmetries in the trap-
ping potentials that can be achieved nowadays, vortices are
now predominantly created with the stirring method and fas-
cinating Abrikosov lattices containing up to 300 vortices
have been made[6,9,10]. Alternatively, prospects for creat-
ing vortices by optical phase imprinting[11] were investi-
gated(in analogy to the successful soliton experiment[12])
and applying magnetic interactions were considered[13].
Moreover, there have been ideas to create vorticity by
sweeping a laser beam on a spiraling trajectory across the
trap, inducing a Landau-Zener transition between the irrota-
tional and the rotational state[14].

On the other hand, the transfer of angular momentum
from an optical field to a macroscopic rigid body or an
atomic particle has also a long standing tradition in quantum
mechanics. The first proof that circularly polarized light car-
ries angular momentum dates back to Beth’s original experi-
ment of 1936[15]. More recently, due to the availability of
Gauss-Laguerre laser beams with well-defined external an-
gular momentum[16,17] it is possible to use them as optical

tweezers and twisters[18–20]. Surprisingly, even the transfer
of angular momentum to ultrasonic waves in fluids can be
achieved that way[21]. In the context of a BEC, using the
angular momentum of light to create a doubly charged vortex
has been proposed[22], p pulses in Raman type transitions
were examined[23] and an adiabatic passage to a vortex
state was investigated by changing the two-photon detuning
of an effective two-level system[24].

In this paper, we will examine the transfer of external
angular momentum of light to the matter wave with the help
of a stimulated Raman adiabatic passage(STIRAP) [25]. The
basic effect relies on a quantum mechanical interference be-
tween two ground states and gives rise to a multitude of
physical phenomena, e.g., dark resonances in optical spec-
troscopy [26], velocity selective coherent population trap-
ping (VSCPT) [27], a drastic modification of the optical in-
dex of refraction(EIT) of normal [28] and BE condensed
systems[29,30], as well as constructive procedures to pre-
pare [31] and readout quantum states of atomic beams and
optical cavities[32].

This paper is organized as follows: In the Sec. II we will
develop a scheme for creating a vortex in a BEC using the
STIRAP method. In analogy to single-particle physics, it is
possible to derive the relevant three-component Gross-
Pitaevskii equation. In Sec. III we will present the results of
numerical calculations that are in good agreement with a
simple analytical approximation within the Thomas-Fermi
limit. In addition, we will discuss the physics of the remain-
ing residual excitations in terms of the “breathing modes” of
a quasi-two-dimensional system. In particular, we will calcu-
late the radial Bogoliubov excitation spectrum of a conden-
sate in the vortex state with angular momentum 1". Finally,
we will summarize our results and conclude in Sec. IV.

II. STIRAP IN A BOSE-EINSTEIN CONDENSED
GAS

The STIRAP method is now applied to a trapped BEC of
three-level atoms in aL-type configuration shown in Fig. 1.
The two internal electronic ground states, e.g., the hyperfine
levels of an alkali atom[29,33,34], are denoted byubl and*Electronic address: gerrit.nandi@physik.uni-ulm.de
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ucl, and by absorbing an optical photon, one reaches the ex-
cited stateual, respectively. The condensate is confined spa-
tially by an oblate, axis-symmetric harmonic potential, which
reads in cylindrical coordinatessr ,f ,zd,

Vsr,zd = 1
2Msv2r2 + vz

2z2d, s1d

whereM denotes the single-particle mass. By choosing the
radial trapping frequency much less than the longitudinal
frequency, i. e.,v!vz, one can confine the motion effec-
tively to the radial component.

Now, we will expose the dilute atomic gas to two co-
propagating traveling “pump” and “dump” laser pulses,

Epsz,td = lp «pstde−isvpt−kpzd + c.c., s2d

Edsr,f,z,td = ld «dsr,f,tde−isvdt−kdzd + c.c., s3d

wherelp andld denote the corresponding polarization vec-
tors. The slowly varying laser beam envelopes«p, «d have a
nontrivial temporal and spatial structure,

«psr,td < «pstd = «p e−st − td2/2 d2
, s4d

«dsr,f,td < «d r eif e−t2/2 d2
. s5d

For the pump pulse, we choose the fundamental Gauss-
Laguerre(GL) laser mode[16] with a spatial width larger
than the BEC size and a temporal Gaussian turn-on shape
with the width d. Numerical simulations prove that in this
limit the spatial Gaussian envelope can be disregarded alto-
gether in Eqs.(4) and (5). This pulse reaches its maximum
intensity at some timet.0. In order to transfer orbital an-
gular momentum from the light beam to the matter wave, we
pick the first excited GL mode that carries external angular
momentum, the so-called “doughnut-mode,” for the dump
beam [17,18,22,23]. While spatial extension and temporal
durationd can be set equal in both pulses, it is crucial that
the dump beam reaches its maximum intensity att=0, first.
This “counter-intuitive” pulse sequence is the key of the STI-
RAP procedure and achieves an efficient adiabatic passage

for linear, dissipative quantum systems[25,27,32]. A full
population transfer can be reached if the field amplitudes
satisfy the conditions

lim
t→−`

«pstd
«dstd

= 0, s6d

lim
t→+`

«pstd
«dstd

= `, s7d

which is guaranteed by the pulse sequence given in Eqs.(4)
and (5).

Far below the transition temperatureT!TBEC, one can
describe a multicomponent BEC effectively within a simple
mean-field picture[35,36]. Thus, we introduce a three com-
ponent state vectorCsr ,td, that represents the components
of the macroscopic atomic matter wave. For the time evolu-
tion of this multilevel state vector, one can derive a general-
ized Gross-Pitaevskii(GP) mean-field equation[37]

Csr ,td = sCasr ,td,Cbsr ,td,Ccsr ,tddT, s8d

i" ]tCsr ,td = HstdCsr ,td. s9d

Csr ,td is normalized to the total particle number,

N =E d3rsuCasr ,tdu2 + uCbsr ,tdu2 + uCcsr ,tdu2d, s10d

in the BEC. Due to the unitarity of Eq.(9), this particle
number is conserved at all times. However, as we use explic-
itly time-dependent laser fields, the energy of the system can
change(see Sec. III B).

The internal structure of the Hamiltonian is quite easy to
understand, as it follows straight from the single-particle
physics that rules the dynamics of the dilute gas interacting
with light. In Fig. 1, we have depicted the optical dipole
transition scheme for aL-type atom. Within the standard
rotating-wave approximation of quantum optics,[39] one
finds for the internal state Hamiltonian

Hstd/" = 1 ha + D Vpstd Vdsr,f,td
Vp

* std hb + d 0

Vd
*sr,f,td 0 hc − d

2 . s11d

The Rabi frequenciesVpstd=«pstddba/" and analogously
Vdsr ,f ,td=«dsr ,f ,tddca/", measure how well the photon
field couples to the electronic transition and are proportional
to the atomic dipole momentsdba, dca. The remaining param-
eters are the Raman detuningD=sDp+Ddd /2 and the two-
photon detuningd=sDd−Dpd /2, which refer to the individual
detuningsDp, Dd of the laser frequency and the Doppler-
shifted electronic transition frequency. In order to achieve
the optimal STIRAP performance, we will assume a two-
photon resonance conditiond=0 later, and pick a nonvanish-
ing detuningD in order to avoid detrimental spontaneous
emissions, which would disrupt the coherent evolution. In
the preceding derivation of Eq.(11), we have also tacitly
adopted co-moving and co-rotating reference frames such
that

FIG. 1. A L-system exposed to two copropagating laser pulses
in two-photon resonance. The atomic transition frequencies are
Doppler-shifted with respect to the rest frame i.e.,v̄a=va

+"kp
2/2M, v̄b=vb, v̄c=va+"skp−kdd2/2M. Only one Gauss-

Laguerre laser beamsedd carries 1" of angular momentum. The
individual detunings from the excited state areDp=v̄a−v̄b−vp,
Dd=v̄a−v̄c−vd.
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C̄sr ,td = seifsv̄a−Ddt−kpzgCasr ,td,eisv̄b−ddtCbsr ,td,eifsv̄c+ddt−skp−kddzgCcsr ,tddT, s12d

in order to strip off the trivial plane wave character of the
beams, see Eqs.(2) and(3). To keep the notation simple, we
will drop the bar over the state vector in the following dis-
cussion.

For the external motion of the multicomponent gas, we
want to assume that all components are confined by the same
harmonic potential, cf. Eq.(1). This is not a stringent re-
quirement for the excited state componentCa, as particles
will only rarely occupy this level and move through it
quickly. Due to this low occupancy, it is also not necessary to
consider any mean-field shifts arising from self-interaction,
or the motion through the remaining components. Conse-
quently, we can simply use the bare trap Hamiltonian with a
Doppler shift

"ha =
p2

2M
+ Vsr,zd + "kp

pz

M
. s13d

For the ground state components, we will only consider
mean-field shifted energy contributions that arise from elas-
tic collisions and denote the interspecies and intraspecies
scattering lengths byhabb,abc,acb,accj. Hence, these compo-
nents read

"hb =
p2

2M
+ Vsr,zd +

4p"2

M
sabbuCbu2 + abcuCcu2d, s14d

"hc =
p2

2M
+ Vsr,zd + "skp − kdd

pz

M
+

4p"2

M
saccuCcu2

+ acbuCbu2d. s15d

The optical absorption-emission cycle imparts angular, as
well as linear momentum onto the final state matter-wave
Cc. However, linear momentum cannot be conserved in a
trapped system, and it would lead to a sloshing motion along
the z direction. This can be suppressed either, by choosing
equal laser frequencies and photon momenta, or by squeez-
ing the trapping potential into a very oblate configuration
such thatb=vz/v@1. This effectively “freezes” the longi-
tudinal motion due to an energy selection argument.

The later situation leads to a more stable configuration
and is favorable. Thus, we are able to approximate the state
vector

Csr ,td = scasr,td,cbsr,td,e−if ccsr,tddTw0sz,td, s16d

by factorizing it into a radial part, which is normalized to the
number of particles in the BEC, i.e.,

N = 2pE
0

`

dr rsucau2 + ucbu2 + uccu2d, s17d

and the ground state

w0sz,td = sb/pd1/4e−ibt/2e−bz2/2 s18d

of the one-dimensional harmonic oscillator in thez direction,
which is normalized to one, i.e.,

E
−`

`

dz uw0u2 = 1. s19d

Please note that the third component now carries the me-
chanical angular momentum of 1" per particle. After project-
ing the state vector along thez direction, we finally arrive at
an effective Hamiltonian in the radial direction. Using the
natural units of the transverse harmonic oscillator(time unit
THO=2p /v, length scaleaHO=Î" /Mv), one finds

i]tcsr,td = Hstdc, s20d

Hstd = 1hs0d + D Vpstd r Vdstd
Vp

* std hs0d + d + knsrd 0

r Vd
*std 0 hs1d − d + knsrd

2 ,

s21d

wherek=Î8pb a and all scattering lengths are equal toa.
This assumption holds well for87Rb (see below). The par-
ticle density is denoted bynsrd= ucbsrdu2+ uccsrdu2, and hsmd

represents a two-dimensional radial harmonic oscillator
Hamiltonian

hsmd = −
1

2
S]r

2 +
1

r
]r −

m2

r2 − r2D s22d

in an angular momentum manifold withm+0.

III. RESULTS AND DISCUSSION

In the following, we will be more specific and choose the
typical scattering parameters for87Rb [33,34]. To simplify
matters, we will also assume that the self-scattering and
cross-component scattering lengths are equal:abb=acc=abc
=a=110 Bohr radiisa0d. This turns out to be a very robust
approximation and we comment on this later. By implement-
ing a numerical algorithm for solving the three-component
Gross-Pitaevskii equation(20), we can show that a quantized
vortex sm=1d is building up. For the trap frequencies we
choosev=2p310 s−1 and vz=2p31000 s−1, respectively.
With an atomic mass ofM =86.91 amu, we find a harmonic
oscillator sizeaHO=Î" /Mv=3.41mm. In this spatial unit,
we get for the scaled coupling constantk=Î8pba=0.0855.
We will consider an atomic ensemble withN=10 000 par-
ticles. From a simple Thomas-Fermi approximation[see Eq.
(29)] one finds estimates for the condensate radiusRTF
=Î2mTF=5.7 with a chemical potentialmTF=16.5. The laser
parameters are chosen as follows:t=0.3, d=0.15,Vp=200,
Vd=200, D=30, andd=0 (two-photon resonance). In prac-
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tice, D will be of the order of at least 105, but for the simu-
lations much lower values are sufficient.

In Fig. 2 the transfer efficiency is demonstrated. Initially
the whole system is prepared in the ground stateubl. While
the excited stateual is not populated significantly at any in-
stant, the population of stateucl is rising up. An almost 100%
transfer to the vortex state is possible and the total number of
particles in the BEC is conserved as required by unitarity.
The time evolution of the vortex state density is shown in
Fig. 3. At some intermediate timest=0d high-frequency ex-
citations appear. After the transfer is completedst=1d, the
shape of a vortex with angular momentum 1" is matched
almost perfectly with the stationary single charged vortex
solution. Still, some minor excitations, i.e., the “breathing
mode” remains, which will be discussed in Sec. III B. In Fig.

4, we demonstrate the time evolution of the density of the
irrotational stateubl. Initially, the atoms of the condensate are
prepared in the ground statest=−1d. This population is de-
creasing during the STIRAP process and vanishes after-
wards.

While we have considered equal scattering lengths occur-
ring accidentally in87Rb, this is not exactly valid and also
not the generic situation applicable to other condensed ele-
ments. It could be imagined that the imbalance of mean-field
shifts deteriorates the transfer efficiency due to a violation of
the bare two-photon resonance condition. Still, one could
apply a time-dependent detuning that rectifies this effect in
order to achieve an optimal adiabatic passage. Such a strat-
egy has been proposed in Refs.[22,24].

However, we have studied numerically the situation of
unequal scattering lengths without modifying the detunings
and found no averse effects. First, we have examined the
efficiency of the transfer procedure using the real scattering
data of the JILA experiment[33,34] for the trapped hyperfine
statesubl;uF=1,mF=−1l and ucl;u2,1l. Using the scatter-
ing parameterssabb,abc,accd=104a0s1.03,1,0.97d, there is
an almost complete transfer to the rotational state possible,
yielding essentially identical curves as shown in Figs. 2–4.
However, there are slightly higher excitations than in the
idealized case. Second, we find that even a drastic variation
of the scattering lengths does not spoil the transfer efficiency.
It only leads to a further increase of the “breathing” of the
vortex. As an example, we depict the results of the simula-
tions for a vanishing cross-component scattering length
sabb,abc,accd=104a0s1.03,0,0.97d in Figs. 5 and 8. Once
more, these simulations confirm the remarkable robustness
of the STIRAP scheme.

A. The two-component Thomas-Fermi approximation

The Thomas-Fermi(TF) limit is an extremely useful ap-
proximation for the ground state of an interacting BEC.

FIG. 2. Time evolution of the individual level populations vs
time measured in natural units ofTHO. The dotted line depicts the
populationNastd of the excited state, the dashed-dotted and the solid
lines representNbstd and Ncstd, respectively, and the dashed line
corresponds to the total number of particles in the system, which is
conserved, i.e.,Nstd=Nastd+Nbstd+Ncstd.

FIG. 3. Time evolution of the vortex state densityuccsr ,tdu2 vs
radiusr measured in units ofaHO. The solid lines depict the vortex
state at an intermediate instantst=0d and after the STIRAP process
is completedst=1d. In general, the instantaneous Thomas-Fermi
approximation(dashed line) compares well with the exact results
apart from minor excitations.

FIG. 4. Time evolution of the irrotational state densityucbsrdu2
vs radiusr measured in units ofaHO. The solid lines depict the
position density at the initialst=−1d and at some intermediate time
st=0d. The instantaneous Thomas-Fermi approximation(dashed
lines) matches the exact solution after the transfer of particles starts
effectively stù0d.
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Where applicable, it simply disregards the kinetic energy
contribution to the total system energy. This is also possible
for an excited vortex state. We will now consider this TF
approximation for the two ground-state components, after
adiabatically eliminating theca component,

casr,td < −
Vpstd

D
cb −

r Vdstd
D

cc, s23d

in order to obtain a simple estimate. During the adiabatic
passage, the irrotational statecb shall be transformed coher-
ently into the vortex statecc. Thus, the relevant Hamiltonian
in the reduced two-state manifold reads

HTFstd =
r2

2
+ knsrd −1

uVpstdu2

D

Vdsr,tdVp
* std

D

Vd
*sr,tdVpstd

D

uVdsr,tdu2

D
−

1

2r2
2 .

s24d

Once more, we want to assume an adiabatic following
condition to obtain a stationary solution ofcsr ,td
=expf−ie−`

t dt mTFstdg(cbsrd ,ccsrd)T. By solving the simple
ensuing eigenvalue problem of Eq.(24), we find for the
chemical potential in the vortex branch that

mTF =
r2

2
+ k nTF + dm, s25d

dm =
1

2D
F D

2 r2 − uVdu2 − uVpu2

+ÎuVdu4 − 2uVdu2S D

2 r2 − uVpu2D + S D

2 r2 + uVpu2D2G .

s26d

To keep the notation simple, we have dropped all the spatial
and temporal arguments. Vice versa, one has to determine the
chemical potentialmTF such thatN=2pe0

`dr r nTF is satis-
fied at each instant of the adiabatic passage. For the vortex
component of the corresponding eigenvector, one finds

Scb

cc
D = ÎnTFScosu

sin u
D , s27d

tan u =
RsVp

*Vdd

DS 1

2r2 − uVdu2 − dmD . s28d

It turns out that the chemical potential is almost constant
during the transfer process. Hence, we can choose the value
of mTF for the TF solution of the vortex state, i.e.,

mTF = mTFsVp,d = 0d <
r2

2
+

1

2r2 + knTF = const. s29d

As shown in Fig. 3, the adiabatic evolution of these
simple approximations matches the exact numerical results
for the vortex state well. It should be pointed out that in our
TF approximation we did not neglect the centrifugal term
1/2r2 in Eq. (24), which is actually also part of the kinetic
energy. It is responsible for the vanishing density in the cen-
ter of the vortex core. This turns out to be the better approxi-
mation for tù0, while for t,0, dropping the centrifugal
potential provides the more accurate approximation because
of the irrotational nature of the initial state.

B. Total energy of the system

The total energy of a BE condensed system can be ob-
tained from the expectation value of the microscopic Hamil-
tonian with respect to a symmetry-broken ensemble[37,38],
thereby discarding higher order correlation functions. Unless
time-translational symmetry is broken due to explicit time
dependencies of external fields, the total energy of the sys-
tem must be conserved. Within these assumptions, the energy
functional is given by

E = Ekin + ETF + Edip, s30d

where the individual contributions are as follows:

Ekin = pE
0

`

dr r fu]r cau2 + u]r cbu2 + u]r ccu2g, s31d

FIG. 5. Time evolution of the vortex state densityuccsr ,tdu2 vs
radius r measured in units ofaHO. In this simulation the self-
scattering lengths of87Rb were chosen, butabc was deliberately set
to zero. This change gives rise to an increase of the residual exci-
tations of the final vortex state while the transfer efficiency again is
higher than 99%. The dashed and dotted lines show the “breathing”
of the vortex state at different timest. As a reference, the solid line
depicts the stationary vortex state.
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ETF = pE
0

`

dr r F2Ducau2 + r2sucau2 + ucbu2 + uccu2d +
1

r2uccu2

+ ksucbu2 + uccu2d2G , s32d

and

Edip = 2pE
0

`

dr r fca
* Vp cb + ca

* r Vd cc + c.c.g.

s33d

Equation(31) denotes the radial kinetic energyEkin, while
Eq. (32) represents all the energy arising from the detuning,
the trap potential, and the mean-field shifts, respectively. The
dipole energy, which is caused by the dipole coupling of the
laser fields to the atoms, is given by the expression in Eq.
(33).

The evolution of the total energy and its individual con-
tributions is shown during the nonequilibrium transfer in Fig.
6. As expected, the total energy is constant before and after
the STIRAP process. However, due to an excitation of the
breathing mode, the kinetic as well as the potential energy
exhibit complementary oscillations. The dipole energy is
negative, which is well known from the interaction of a two-
level atom with a laser field. This is due to the fact that the
polarization of the atom is counteracting the external electro-
magnetic field.

C. Linear response of the system and breathing modes

The numerical simulations show that a transfer of almost
100% of the particles into a vortex state is possible. Still,
residual radial excitations of the vortex state remain. As the
frequency of these radial excitation is exactly twice the radial
harmonic trapping frequency,«=2 v, it must be related to
the scaling symmetry of the two-dimensional system. These

“breathing modes” have been studied first theoretically in
Refs.[43,44] and experimentally in Ref.[45].

The mechanism for exciting these modes arises from
squeezing the harmonic potential in time. In the present con-
text of the STIRAP configuration, the origin of such an ad-
ditional potential can be understood from considering Eq.
(24). During the turn-on of the laser fields, we induce an
ac-Stark-shift potentialuVdsr ,tdu2/D, which is proportional to
r2. While this effect is interesting by itself, it could be elimi-
nated easily by an appropriate control of the trapping poten-
tial, thus reducing the amount of excitations.

Moreover, a completely adiabatic transfer is limited by
two factors: On the one hand a standard STIRAP process in
a homogeneous gas requires an adiabaticity conditionVt
@1, i.e., the time delayt must be sufficiently large. On the
other handt cannot be chosen arbitrarily large because here
we deal with a STIRAP process in a trap. Therefore, cou-
pling to external motion has to be taken into consideration
for large time delayst.

The residual radial excitations can be visualized by evalu-
ating the mean squared radius

krc
2lt =

2p

N
E

0

`

dr r ccsr,td* r2ccsr,td, s34d

which is proportional to the potential energy of the vortex
component. As shown in Fig. 7, this quantity is oscillating
with the frequency«=2 v, which corresponds to the breath-
ing mode(see Fig. 8).

In addition, small radial excitations(i.e., the linear re-
sponse) of a BEC can be understood from Bogoliubov theory
[40,41]. Therefore, we now consider the radial one-
component GP equation for the vortex state with angular
momentum 1" that reads

i]tcsr,td = shs1d + kucsr,tdu2dcsr,td, s35d

with hs1d defined in Eq.(22). With the ansatz

FIG. 6. Total energyE (measured in units of"v) as a function
of the time t (in natural unitsTHO). The different contributions to
the total energy are shown in the plot.Em=1 denotes the energy of
the condensate in the stationary vortex state. Because of remaining
excitations the potential and kinetic energy oscillate. However, the
total energy is conserved before and after the transfer process.

FIG. 7. Mean squared radiuskrc
2lt of the vortex state vs time

(measured in units ofaHO andTHO, respectively). Before the trans-
fer process this state is not occupied. Afterwards the mean squared
radius oscillates around the equilibrium valuekrc,eq

2 l (dashed line).
The frequency of the excitation is exactly 2v.

NANDI, WALSER, AND SCHLEICH PHYSICAL REVIEW A69, 063606(2004)

063606-6



csr,td = e−imtsc0srd + usrde−i«t + v*srdei«td, s36d

wherec0srd is the wave function of the stationary vortex, the
time evolution of which is determined by the chemical po-
tentialm, andusrd andvsrd denote the excitation modes with
the normalizations«.0d

2pE
0

`

dr r fuusrdu2 − uvsrdu2g = 1. s37d

The spectrum can be calculated from the linear response ei-
genvalue problem

S h k c0
2

− k c0
* 2 − h* DSusrd

vsrd
D = «Susrd

vsrd
D , s38d

where

h = hs1d − m + 2kuc0srdu2. s39d

The results of our numerical calculations are shown in
Figs. 9 and 10, being in agreement with earlier work[42].
The lowest modesp=0d corresponds to the condensate wave
function itself (Goldstone mode). The frequency spectrum
can be compared to spectrum of the well-known two-
dimensional quantum-mechanical harmonic oscillator, which
is given by

«HO = 2p + umu + 1, s40d

where pPN denotes the principal quantum number,mPZ
denotes the angular momentum, and in our case,umu=1 is
fixed.

IV. CONCLUSIONS

In this paper, we have developed a novel scheme for the
optical creation of vortices in a trapped Bose-Einstein con-
densate, using the technique of stimulated Raman adiabatic

passage(STIRAP). In our model, we considered a BEC of
three-level atoms in aL-configuration of the electronic
states, which are coupled by two copropagating laser pulses.
The aim was the transfer of angular momentum, carried by
one of the beams(Gauss-Laguerre mode), to the BEC. The
underlying mechanism of STIRAP is analogous to single-
particle physics. In contrast to the latter case, we derived a
multicomponent nonlinear Schrödinger equation(Gross-
Pitaevskii equation), using the mean-field approximation. We
presented results of numerical simulations that apply to a
BEC of 87Rb atoms. For a suitable set of laser parameters an
almost 100% transfer to the vortex state can be achieved.
These results can be understood with an intuitive and accu-
rate approximation within the Thomas-Fermi limit. The oc-
currence of residual radial excitations in the vortex state can
be explained by so-called breathing modes, which are spe-

FIG. 8. Mean squared radiuskrc
2lt of the vortex state vs time

(measured in units ofaHO andTHO, respectively). In this simulation
the self-scattering lengths of87Rb were chosen, butabc was delib-
erately set to zero. This change corresponds to an increase of the
“breathing” of the final vortex state.

FIG. 9. Excitation frequencies« relative to the ground state
frequency of a quasi-two-dimensional BEC in the vortex state
sumu=1d measured in units ofv, in comparison to the two-
dimensional harmonic oscillator with fixedumu=1. For p=0 andp
=1 the linear and nonlinear energies are identical. Forpù2 they
split, and the excitation energies of the BEC lie below those of the
noninteracting gas.

FIG. 10. Excitation modes obtained by Bogoliubov theory. The
first three modes ofusrd andvsrd are plotted. The lowest modesp
=0d corresponds to the condensate wave function itself(Goldstone
mode).

VORTEX CREATION IN A TRAPPED BOSE-EINSTEIN… PHYSICAL REVIEW A 69, 063606(2004)

063606-7



cific for the two-dimensional regime and can be eliminated
by an appropriate control of the trap frequency. To confirm
these explanation, we have calculated the Bogoliubov exci-
tation spectrum numerically.

ACKNOWLEDGMENTS

We would like to acknowledge fruitful discussions with
Bruce W. Shore and Karl-Peter Marzlin.

[1] A. Fetter, J. Low Temp. Phys.129, 263(2002), and references
therein.

[2] J. Williams and M. Holland, Nature(London) 401, 568
(1999).

[3] M. Matthews, B. Anderson, P. Haljan, D. Hall, C. Wieman,
and E. A. Cornell, Phys. Rev. Lett.83, 2498(1999).

[4] K. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys.
Rev. Lett. 84, 806 (2000).

[5] K. Madison, F. Chevy, V. Bretin, and J. Dalibard, Phys. Rev.
Lett. 86, 4443(2001).

[6] J. Abo-Shaeer, C. Raman, J. Vogels, and W. Ketterle, Science
292, 476 (2001).

[7] P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell, Phys.
Rev. Lett. 87, 210403(2001).

[8] P. Engels, I. Coddington, P. C. Haljan, V. Schweikhard, and E.
A. Cornell, Phys. Rev. Lett.90, 170405(2003).

[9] K. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, J. Mod.
Opt. 47, 2715(2000).

[10] P. Engels, I. Coddington, V. Schweikhard, and E. A. Cornell, J.
Low Temp. Phys.134, 683 (2004).

[11] L. Dobrek, M. Gajda, M. Lewenstein, K. Sengstock, G. Birkl,
and W. Ertmer, Phys. Rev. A60, R3381(1999).

[12] J. Denschlaget al., Science287, 97 (2000).
[13] H. Pu, S. Raghavan, and N. Bigelow, Phys. Rev. A63, 063603

(2001).
[14] B. Damski, Z. P. Karkuszewski, K. Sacha, and J. Zakrzewski,

Phys. Rev. A65, 013604(2002).
[15] R. A. Beth, Phys. Rev.50, 115 (1936).
[16] Lasers, edited by P. Miloni and J. Ebery(Wiley-Interscience,

New York, 1988).
[17] S. J. van Enk and G. Nienhuis, Europhys. Lett.25, 497(1994).
[18] L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman,

Phys. Rev. A45, 8185(1992).
[19] H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop,

Phys. Rev. Lett.75, 826 (1995).
[20] S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, W. Ertmer,

F. van Dorsselaer, and G. Nienhuis, Phys. Rev. A58, 3068
(1998).

[21] S. Gspann, A. Meyer, S. Bernet, and M. Ritsch-Marte, J.
Acoust. Soc. Am.115, 1142(2004).

[22] K.-P. Marzlin, W. Zhang, and E. M. Wright, Phys. Rev. Lett.
79, 4728(1997).

[23] E. Bolda and D. Walls, Phys. Lett. A246, 32 (1998).
[24] R. Dum, J. I. Cirac, M. Lewenstein, and P. Zoller, Phys. Rev.

Lett. 80, 2972(1998).
[25] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys.

70, 1003(1998).
[26] E. Arimondo and G. Orriols, Nuovo Cimento Soc. Ital. Fis., A

17A, 333 (1976).
[27] E. Arimondo, Prog. Opt.35, 259 (1996), and references

therein.
[28] S. Harris, J. Field, and A. Imamoglu, Phys. Rev. Lett.64, 1107

(1990).
[29] L. Hau, S. Harris, Z. Dutton, and C. Behroozi, Nature

(London) 397, 594 (1999).
[30] G. Juzeliunas, M. Masalas, and M. Fleischhauer, Phys. Rev. A

67, 023809(2003).
[31] A. Parkins, P. Marte, P. Zoller, and J. Kimble, Phys. Rev. Lett.

71, 3095(1993).
[32] R. Walser, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.77, 2658

(1996).
[33] M. R. Matthews, D. S. Hall, D. S. Jin, J. R. Ensher, C. E.

Wieman, and E. A. Cornell, Phys. Rev. Lett.81, 243 (1998).
[34] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and

E. A. Cornell, Phys. Rev. Lett.81, 1539(1998).
[35] Th. Busch, J. I. Cirac, V. M. Pérez-García, and P. Zoller, Phys.

Rev. A 56, 2978(1997).
[36] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev.

Mod. Phys.71, 463 (1999).
[37] R. Walser, J. Cooper, and M. Holland, Phys. Rev. A63,

013607(2001).
[38] Quantum Theory of Finite Systems, edited by J.-P. Blaizot and

G. Ripka(MIT Press, Cambridge, MA, 1986).
[39] Quantum Optics in Phase Space, edited by W. P. Schleich

(Wiley-VCH, Berlin, 2001).
[40] N. Bogoliubov, J. Phys.(Moscow) 11, 23 (1947).
[41] A. L. Fetter, Ann. Phys.(N.Y.) 70, 67 (1972).
[42] T. Isoshima and K. Machida, Phys. Rev. A59, 2203(1999).
[43] L. P. Pitaevskii, Phys. Lett. A221, 14 (1996).
[44] Yu. Kagan, E. L. Surkov, and G. V. Shlyapnikov, Phys. Rev. A

54, R1753(1996).
[45] F. Chevy, V. Bretin, P. Rosenbusch, K. W. Madison, and J.

Dalibard, Phys. Rev. Lett.88, 250402(2002).

NANDI, WALSER, AND SCHLEICH PHYSICAL REVIEW A69, 063606(2004)

063606-8


