
Quantum tunneling of semifluxons in a 0-�-0 long Josephson junction

E. Goldobin,1,* K. Vogel,2 O. Crasser,2 R. Walser,2 W. P. Schleich,2 D. Koelle,1 and R. Kleiner1

1Physikalisches Institut II, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
2Universität Ulm, Abteilung Quantenphysik, D-89069 Ulm, Germany

�Received 20 April 2005; published 30 August 2005�

We consider a system of two semifluxons of opposite polarity in a 0-�-0 long Josephson junction, which
classically can be in one of two degenerate states: ↑↓ or ↓↑. When the distance a between the 0-� boundaries
�semifluxon’s centers� is a bit larger than the crossover distance ac, the system can switch from one state to the
other due to thermal fluctuations or quantum tunneling. We map this problem to the dynamics of a single
particle in a double well potential and estimate parameters for which quantum effects emerge. We also deter-
mine the classical-to-quantum crossover temperature as well as the tunneling rate �energy level splitting�
between the states ↑↓ and ↓↑.
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I. INTRODUCTION

� Josephson junctions �� JJs�1 are intensively investi-
gated as they promise important advantages for Josephson-
junction-based electronics,2,3 and, in particular, for JJ-based
qubits.4 Nowadays a variety of technologies allow us to
manufacture such junctions.5–9

One can also fabricate so-called long Josephson 0-� junc-
tions �0-� LJJs�,10 i.e., LJJs some parts of which behave as 0
junctions and other parts as � junctions. The most interesting
fact about such junctions is that a vortex of supercurrent,
carrying one-half of the magnetic flux quantum �0�2.07
�10−15 Wb, can be formed at the boundaries between 0 and
� regions. Classically, this so-called semifluxon11,12 has a
degenerate ground state of either positive or negative polar-
ity. The difference between positive and negative polarity is
in the direction of the circulation of the supercurrent and,
therefore, in the direction of the resulting magnetic field. The
classical properties of semifluxons are under intense theoret-
ical and experimental investigations.13–24 While the classical
properties of semifluxons �at least for systems with few
semifluxons� are more or less understood, their quantum be-
havior and their possible applications in the quantum domain
still have to be studied.

When the energy barrier separating two degenerate clas-
sical states is very small, the system may spontaneously
switch from one state to the other due to thermal excitation
over the barrier or due to quantum tunneling through the
barrier. Thermally induced flipping of a single semifluxon
was already observed.15 The quantum tunneling in the sys-
tem of two coupled semifluxons was investigated theoreti-
cally by Kato and Imada25 for the case of a biased junction,
i.e., when the ground states are not degenerate and escape
takes place in a certain direction. In view of possible appli-
cations and fundamental studies, it is interesting to see how
degenerate semifluxon systems behave when the quantum
effects start to exhibit themselves.

In this paper, we study the two simplest systems: �a� one
semifluxon with degenerate states ↑ and ↓ and �b� two
coupled, antiferromagnetically �AFM� arranged semifluxons
with degenerate states ↑↓ and ↓↑. In the first case, we use
simple arguments to show that a single semifluxon is always

deep in the classical limit. For a system of two semifluxons,
we map the problem to the dynamics of a single particle in a
double well potential and estimate relevant parameters for
emergence of quantum effects. We also estimate the cross-
over temperature as well as the tunneling rate �energy level
splitting� between the states ↑↓ and ↓↑.

II. MODEL

We consider a long one-dimensional Josephson junction
where the Josephson phase ��x , t� is a continuous function of
the coordinate x along the LJJ and of time t. The dynamics of
such a system is described by a Lagrangian L=K−U, where

K = EJ�
−�

+�

�p
−2�t

2

2
dx �1�

represents the kinetic energy and

U = EJ�
−�

+� �	J
2�x

2

2
+ �1 − cos�� + 
�x��	
dx �2�

is a potential energy. The subscripts x and t denote the partial
derivatives with respect to coordinate and time, accordingly.
In the above equations the three physical parameters are the
Josephson energy per unit of junction length EJ, the Joseph-
son penetration depth 	J, and the Josephson plasma fre-
quency �p. The function 
�x� describes the position of 0 and
� regions along the junction. It is zero along 0 regions and is
equal to � along � regions.

It is straightforward to derive the equations of motion for
the Josephson phase from the Lagrangian using the Euler-
Lagrange prescription. Thus, on the classical level, one finds
that the dynamics of the Josephson phase is described by the
time-dependent sine-Gordon equation11

	J
2�xx − �p

−2�tt − sin�� + 
�x�� = 0. �3�

Here, damping and bias current are absent because dissipa-
tion and driving are not included in the initial Lagrangian.
For the present discussion these terms are not required as we
consider undriven dissipationless systems.
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III. A SINGLE SEMIFLUXON IN A 0-�-JUNCTION

Let us consider an infinite 0-� LJJ. In this case 
�x� is a
step function


�x� = �0, x � 0;

� , x � 0.
� �4�

Classically, the ground state of this system is a single
semifluxon.10–12,18 Such a semifluxon may have positive or
negative polarity that corresponds to two classical degener-
ated states ↑ and ↓.11,18

Each semifluxon’s ground state can be considered as a
string ��x� laying in the potential profile U�x ,��=1−cos��
+
�x�� �Josephson energy density�. This potential profile
looks like two sets of parallel valleys shifted relative to each
other along � direction by � at x=0 �see Fig. 1�. At x→
−� the semifluxon’s string is located in the valley �=0 and
at x→ +� it lays in the valley �= ±� for the states ↑ and ↓,
respectively. This is shown in Fig. 1 by two curves corre-
sponding to the states ↑ and ↓. It is obvious that for quantum
tunneling between ↑ and ↓ states the semi-infinite half of the
string x�0 should tunnel from one valley to the other over
the potential barrier with the height �per unit of junction
length� of the order of 2EJ. For finite LJJ, the energy barrier
scales proportionally to the LJJ’s length L, i.e., UEJL
and the probability of tunneling decreases exponentially for
increasing L. For typical parameters �see discussion in Sec.
IV D� the thermal escape exponent U /kBT�100L /	J at T
=4K and it becomes even larger at smaller T. The quantum
escape exponent U /��0400, where �0�p is the eigen-
frequency of a semifluxon.

The large barrier height results from the large length of
the LJJ. As a modification, one can consider a LJJ of finite,
rather small length L�	J. In this case the barrier height is
finite and approaches zero when the junction length L→0. In
this limit, one cannot really speak about a semifluxon. The
solution for the phase in such a short junction can be found

using the image technique �see Fig. 6 of Ref. 21�. It repre-
sents a fragment of an infinite chain of antiferromagnetically
�AFM� arranged semifluxons. The flux � present in the junc-
tion is much smaller than �0 /2. The possibility of quantum
tunneling in such a chain or in its fragments will be studied
elsewhere.

For L�	J, another option for flipping from state ↑ to ↓ is
the process of emitting a fluxon ⇑, i.e., ↑= ↓ +⇑. This process
takes place already on the classical level18,24 and one does
not need infinite energy to put the string from one valley to
the other. However, it still requires a rather high energy
8EJ	J to create a fluxon. Consequently, this scenario will
not be realized either.

If we consider the discontinuous Josephson phase
��x , t�=��x , t�+
�x�11 instead of the continuous phase �, the
problem outlined above remains, but the semi-infinite tail
should tunnel between ��+��=0 and ��+��=2�.

Thus, we have shown that a single semifluxon in a LJJ is
always in the classical limit if L�	J. Therefore, below we
consider the more complex system of two coupled semiflux-
ons, in which the barrier separating two classical states can
be made quite small and quantum effects may emerge.

IV. TWO COUPLED SEMIFLUXONS IN 0-�-0 JUNCTION

Let us consider an infinite 0-�-0 LJJ. In this case the
function 
�x� is a step function with +� and −� discontinui-
ties situated at x= ±a /2:


�x� = �0, �x� �
a

2
,

� , �x� �
a

2
,� �5�

where a is the length of the � region between 0-� bound-
aries. The ground state in such a junction crucially depends
on a. If the distance a is smaller than a crossover distance
ac= �� /2�	J, the ground state of the system is the so-called
flat phase state ��x��0, while for a�ac two antiferromag-
netically �AFM� ordered semifluxons form the ground
state.18,20,25 Due to symmetry reasons, there are two possible
semifluxon states ↑↓ and ↓↑ that have the same energy �see
Fig. 2�. We would like to calculate the tunneling probability
or the energy level splitting due to the coupling between
these two states.

For a�ac appreciable tunneling takes place, if the energy
barrier between the states ↑↓ and ↓↑ is small. It is the case
when the distance a is a bit larger than the crossover distance
ac, i.e., a=ac+�a, �a�	J. The energy of the unstable flat
phase state plays a role of a potential barrier. When the dis-
tance a→ac, the barrier disappears and both states turn into
a flat phase state.18,20,25

A. Collective coordinate

In this subsection, we analyze the static solutions of the
sine-Gordon equations corresponding to the ↑↓ or ↓↑ state
and derive a simple analytic approximation for them in the
limit �a�	J. This analytic solution has an amplitude param-

FIG. 1. �Color online� Two solutions �↑�x� and �↓�x� corre-
sponding to the two different states ↑ and ↓ of a single semifluxon
in a 0-� LJJ. The background color shows the corresponding Jo-
sephson potential energy density U=1−cos��+
�, black corre-
sponds to the valleys U=0, while white corresponds to the summits
U=2.
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eter B, which can be used as a collective coordinate to map
our problem onto the dynamics of a fictitious single particle
in an effective potential.

To analyze the static solutions we assume that � does not
depend on t, i.e., the second term in Eq. �3� vanishes. In the
limit �ã=�a /	J�1, i.e., when the states ↑↓ and ↓↑ are very
similar to the flat phase state �=0, we solve the stationary
sine-Gordon equation in the regions 1 �x�−a /2�, 2 �−a /2
�x�a /2�, and 3 �x�a /2�, assuming that the phase ��x�
�1. In regions 1 and 3 we find �1,3�x�=A1,3e−�x�/	J �A1,3

�1�, while in region 2 we have �2�x�=B cos�x /	J� �B�1�.
By matching the boundary conditions �1�−a /2�=�2�−a /2�
and �2�a /2�=�3�a /2�, we can express A1,3 in terms of B,
namely A1,3=B cos�a /2	J�exp�a /2	J�. Thus we finally ar-
rive at

��x� = B�cos� a

2	J

exp�a/2	J�exp�− �x�/	J� , �x� �

a

2
,

cos� x

	J

 , �x� �

a

2
.�

�6�

Note that solution �6� does not satisfy the condition for con-
tinuity of the derivative �x�±a /2�. The mismatch in deriva-
tives is rather small �B�ã� and is beyond the order of our
approximation.

In Fig. 2 we compare the exact numerical solution with
��x� given by formula �6� for a=1.7	J ��ã�0.13�. We see
that they are almost indistinguishable. In principle, Eq. �6�
satisfies the linearized sine-Gordon equation for any B�1.
However, as we show later, only two values B= ±B0 mini-
mize the energy of the system. By changing the parameter B,
we can make a smooth transition between the ground states
↑↓ and ↓↑. Thus, we can use B as a collective coordinate.
One can think about a fictitious particle with an effective

mass M, which moves along the coordinate B in an effective
potential U�B� derived below in Sec. IV B.

To describe the dynamics of this particle, we let the B
become a dynamic variable B�t�. Thus, the shape of the so-
lution ��x� is fixed, but its amplitude depends on time. In
this way B�t� approximately describes the dynamics of our
system and, in particular, transition between states.

One can view the derivation of the approximate solution
and the following introduction of the collective coordinate
from different angle. For a�ac, the flat phase state ��x�
�0 is a stable solution of the static sine-Gordon equation
and all linear response eigenmodes of the time-dependent
sine-Gordon equation �3� are stable. For a�ac the lowest
eigenmode becomes unstable. Therefore, within a linear ap-
proximation this mode would grow exponentially. Since the
sine-Gordon equation is a nonlinear equation, the mode am-
plitude B would not become arbitrarily large, but saturates at
some value B=B0. Basically, this represents a new solution
�6� for a�ac. Then we assume that the amplitude B of this
mode is large in comparison with amplitudes of all other
modes, but still small enough so that we only have to take
into account terms up to the order B4 when we will calculate
the energy in Sec. IV B. All other modes are neglected. A
similar approach was used by Kato and Imada.25 This as-
sumption essentially means that Eq. �6� is a good approxi-
mation for ��x� for �ã�1. Consequently, we use the lowest
mode amplitude B as a collective coordinate. Such an ap-
proximation is justified because this lowest mode, according
to the Sturm-Liouville theorem, has no zeros.

Thus, instead of treating ��x , t� as a classical �quantum�
field we can restrict ourselves to single particle classical
�quantum� dynamics in a one-dimensional potential.

B. Effective mass and potential

To determine the effective mass M associated with the
collective coordinate B�t� we substitute our solution �6� into
the kinetic energy Eq. �1�. After integration we obtain

K�Ḃ� =
EJ	J

4�p
2 �1 + ã + cos�ã� + sin�ã��Ḃ2�t�

�
EJ	J

8�p
2 �4 + ��Ḃ2�t� , �7�

where ã=a /	J. When we compare this result to the standard

expression K�Ḃ�=MḂ2 /2 for the kinetic energy, we find that
the inertial mass of a particle is given by

M �
EJ	J

4�p
2 �4 + �� . �8�

Similarly, we find the effective potential U�B� by substi-
tuting the solution �6� into Eq. �2�. To calculate the integral
in terms of elementary functions, we assume that B is small
and expand the integrand up to terms B4.

For small �ã, we obtain the following expression

FIG. 2. �Color online� Two solutions �↑↓�x� and �↓↑�x� corre-
sponding to the two different states ↑↓ and ↓↑ of two semifluxons in
0-�-0 LJJ. The background color shows the corresponding Joseph-
son potential energy U=1−cos��+
�, black corresponds to the val-
leys U=0, while white to the summits U=2. The solid line shows
the exact numerical solution of sine-Gordon Eq. �3�, while the
dashed line almost undistinguishable from the solid line, shows the
approximate solution �6� for a=1.7	J for B= +B0 �state ↑↓�.
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U�B,�ã� � EJ	J�� + 2

128
B4 −

1

2
�ãB2 + 2�ã + �
 . �9�

One can see that for a given distance �ã, the potential energy
U�B� is a double well potential with walls �B4 and an energy
barrier in the middle �−B2 �see Fig. 3�. The potential energy
has two minima at B= ±B0, where

B0 =� 32

� + 2
��ã . �10�

A similar result was obtained earlier.25,26 Thus, the two clas-
sically stable solutions ↑↓ and ↓↑ correspond to B= ±B0 and
can be seen on x-� plane in Fig. 3. The corresponding po-
tential U�B� is shown on U-B plane.

After we have determined the mass M and the effective
potential U�B� we can calculate two parameters which are
important for the behavior of the system: the height U of
the energy barrier in U�B� and the frequency �0 associated
with small harmonic oscillations around B= ±B0. The height
of the energy barrier is given by

U��ã� = U�0,�ã� − U�B0,�ã� =
8

� + 2
EJ	J�ã2. �11�

The harmonic oscillator frequency will be the same for
small oscillations around B0 and −B0 since the potential
U�B� is symmetric. It is therefore sufficient to consider small
oscillations around B0. In order to find the harmonic oscilla-
tor frequency �0 we expand the potential U�B� around B0

and find

�12�

where we have neglected terms proportional to �ã3 and �ã4.
Therefore, �0 is given by

�0 =�2EJ	J

M
��ã =� 8

� + 4
�p

��ã . �13�

To check our analytical expressions derived above, we
have compared the stationary numerical solution of the full
sine-Gordon Eq. �3� to the solution �6� with B=B0 from Eq.
�10� �see Fig. 2�. We have also used the stationary solution of
the full sine-Gordon equation to calculate the energy differ-
ence U��ã� between the flat phase state and the state ↑↓
and compared it to the energy barrier U��ã� given in Eq.
�11�. Furthermore, we have calculated the lowest eigenfre-
quency �0��ã� of the state ↑↓ and compared it with Eq. �13�.
These simulations were done for a in the range
1.57	J–2.00	J ��ã=0, . . . ,0.43�. For all three quantities we
found excellent agreement between analytical expressions
and numerical results in the limit �ã→0. Even for a=2	J
��ã=0.43� the discrepancy between analytics and numerics
is 9% for ��0�, 31% for U, and 21% for �0. Thus,
our analytical approximation �6� with the collective coordi-
nate B describes the classical dynamics of our system in the
limit �ã�1 quite well. This suggests that we can also suc-
cessfully use this collective coordinate approach for a quan-
tum mechanical description.

Before we introduce the Schrödinger equation for the sys-
tem, we briefly summarize the classical dynamics of the sys-
tem: The two stationary solutions ±B0 correspond to the ↑↓
state and the ↓↑ state �see Fig. 3�. The position dependence is
taken into account by Eq. �6�. These two solutions with B
= ±B0 minimize the energy of the system. For energies
smaller than the barrier height U ,B is restricted to one of
the potential wells of U�B�, Eq. �9�, and will move between
two turning points. For sufficiently small energies B�t� de-
scribes harmonic oscillations with a frequency �0 given by
Eq. �13�.

C. Schrödinger equation

According to the classical picture, our system has two
stable states ↑↓ and ↓↑ corresponding to B= ±B0, i.e., a
single particle in one of the wells of the potential U�B� �9�.
Now, we consider the problem quantum mechanically and
ask what is the probability that the particle tunnels, e.g.,
between the state corresponding to the classical positions
−B0 and B0. In “position” representation �or B representa-
tion� the stationary Schrödinger equation reads

�−
�2

2M

�2

�B2 + U�B�
��B� = E��B� , �14�

where M is the effective mass defined by Eq. �8� and U�B� is
the effective potential given by Eq. �9�.

To gain more insight, we measure the energy E in units of
EJ	J. Using the expression for the mass M, Eq. �8�, we can
write the Schrödinger equation �14� in the form

�−
2

� + 4
� ��p

EJ	J

2 �2

�B2 + u�B����B� = ���B� , �15�

where the energy eigenvalue � is defined by �=E / �EJ	J� and

FIG. 3. �Color online� Schematic view on two classically stable
states ↑↓ and ↓↑ and the corresponding mapping to a single particle
moving along coordinate B in a one-dimensional potential U�B�.
Quantum mechanically one should speak about probability density
���B��2 to find the particle at different locations �area plot�.
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u�B� =
U�B�
EJ	J

� �� + 2

128
B4 −

1

2
�ãB2 + 2�ã + �
 �16�

is the scaled effective potential. There are only two dimen-
sionless parameters in the scaled Schrödinger equation �15�:
the distance between semifluxons �ã and the dimensionless
factor ��p / �EJ	J�. This factor plays the role of a scaled �
and quantum effects will vanish in the limit ��p / �EJ	J�
→0.

In Sec. V, we will investigate quantum tunneling based on
the Schrödinger equation �14�. Before we start with these
calculations we would like to make some simple estimations
to see whether we can expect to observe quantum effects in
our system.

D. Estimation of quantum-to-classical crossover

For a harmonic oscillator with mass M and frequency �0
the width of the ground state is determined by

�x2� =
�

M�0
. �17�

Our potential U�B�, Eq. �9�, is not harmonic, but for suffi-
ciently large energy barriers we may approximate each po-
tential well by an harmonic oscillator �see Eq. �12��. We can
then use Eq. �17� to estimate the spread of a wave function in
each of the potential wells. Using our expressions for the
mass M �8� and the frequency �0 �13�, we find

��B2� =
2

�4 + �

��p

EJ	J

1
��ã

. �18�

Quantum effects are noticeable when the wave function in
the left well overlaps with the wave function of the right
well. This overlap should be appreciable, but not too large
since otherwise two states will not be distinguishable any-
more. For rough estimation we take ��B2��0.1B0

2 as crite-
rion for quantum behavior. Thus quantum effects will domi-
nate if �we use B0 from Eq. �10��

��B2�
B0

2 =
� + 2

16�4 + �

��p

EJ	J

1

�ã3/2 =
�2�� + 2�
4�4 + �

�

�0
2�2�0	L

Cw2

1

�ã3/2

� 0.1, �19�

where we took into account the definitions

	J =� �0

2��0d�jc
, �p =�2�jc

�0C
, EJ =

jcw�0

2�
.

�20�

In Eq. �20�, �0d� is the inductance per square of the super-
conducting electrodes ��0 is the permeability of vacuum,
d��2	L, 	L is the London penetration depth�, jc is the criti-
cal current density of the LJJ, C is the capacitance of the LJJ
per unit of area, and w is the LJJ’s width.

For typical parameters 	L=100 nm, w=1 �m, and C
=4.1 �F cm−2 �HYPRES27 technology with jc=100 A cm−2�
we get

��B2�
B0

2 � 3 � 10−4�ã−3/2 � 0.1. �21�

Thus, quantum effects start to play a role for �ã�0.02.
Using definitions �20� in terms of physical parameters of

LJJ, we can express inertial mass M �8� as

M �
�4 + ��wC

4��0d�jc
��0

2�

5/2

� 2.4 � 10−4me	J
2. �22�

To estimate the crossover temperature, we compare the
barrier height U �11� with kBT, i.e.,

T� =
U

kB
=

EJ	J

kB

8

� + 2
�ã2. �23�

For �ã=0.01, we obtain T��130 mK, which is a reasonable
value for observation using modern 3He/ 4He dilution refrig-
erators. This value is also typical for other types of qubits
based on JJs.28–31 We would like to point out that T��w via
EJ. This is natural since it is rather difficult to thermally
activate a “heavy” vortex.

V. QUANTUM TUNNELING

Quantum mechanics tells us that if we start with a wave
function which is localized at one of the two minima of the
potential U�B� it will tunnel through the barrier and therefore
also populate the other minimum. We could follow this pic-
ture by using a wave function which is localized in one of
the minima as an initial condition and solve the time-
dependent version of the Schrödinger equation �14� numeri-
cally. Obviously, in this approach the answer is not a single
number since details will depend on the exact form of the
initial wave function.

We use a different approach which is based on the follow-
ing picture: Let us assume for the moment that the two wells
of U�B� are separated by a sufficiently high energy barrier.
Then two lowest energy eigenvalues E0 and E1 differ by the
tunnel splitting �0=E1−E0 which is small compared to
��0. The corresponding eigenfunctions are �0�B� and �1�B�.
The ground state �0�B� is symmetric whereas the first ex-
cited state �1�B� is antisymmetric. We now use the sum and
the difference to define �±,

�±�B� =
1
�2

��0�B� ± �1�B�� ,

of the two eigenfunctions as an initial condition. These two
wave functions are well localized in one of the wells of U�B�
�see Fig. 4�. The time evolution of �±�B� is given by

�±�B,t� =
1
�2

��0�B�exp�− �i/��E0t� ± �1�B�exp�− �i/��E1t��

=
1
�2

exp�− �i/��E0t���0�B� ± �1�B�e−i0t� . �24�

As we can see, �±�B , t� coherently oscillates between �+�B�
and �−�B� �apart from an overall phase factor�. The oscilla-
tion frequency is given by 0.
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Our calculations are still correct if the energy barrier be-
comes smaller �or even disappears�. However, the wave
functions �+�B� and �−�B� are not well localized in one of
the wells of U�B� anymore. Instead they will significantly
extend into the other well. Nevertheless, the oscillation fre-
quency between the states �+�B� and �−�B� is still given by
0, although the interpretation that the oscillations between
these two states describe a tunneling process through a bar-
rier may become questionable at some point. In the rest of
this section we will calculate the energy splitting �0.

A. Semiclassical limit

In the semiclassical limit the tunnel splitting �0 can be
calculated using standard methods like WKB �Ref. 32� or the
instanton technique33,34 to obtain analytical results. In the
latter the problem of finding �0 is essentially reduced to
determine the classical path which connects the two maxima
of the inverted potential −U�B� �the minima of U�B�� and
calculate the corresponding action. For a quartic double-well
potential of the form �9� these calculations can be performed
analytically. We find34

0 = 8�0� 2U

���0
exp�−

16U

3��0

 . �25�

As we might have expected, 0 decreases exponentially with
the barrier height U.

Using our expressions for U �11� and �0 �13�, we arrive
at

�� =
�0

EJ	J
= K1�ã5/4� ��p

EJ	J
exp�− K2

EJ	J

��p
�ã3/2
 ,

�26�

where the two numerical factors K1 and K2 are given by

K1 =
32

���� + 2�
� 8

� + 4

1/4

� 8.2, �27�

K2 =
32�2�� + 4�

3�� + 2�
� 7.84. �28�

Since the factor EJ	J / ���p��ã3/2 appears in the exponent,
the energy splitting �0 is very sensitive to this number.
Please note that the inverse of this factor appears in Eq. �19�.

B. Numerical results

Our numerical calculations are based on the scaled
Schrödinger equation �15�. In Fig. 5 we have plotted the
energy splitting �� as a function of �ã for a fixed value of
��p / �EJ	J�=2.4�10−3 which corresponds to the parameters
used in our estimations in Sec. IV D. According to Fig. 5,
our semiclassical expression �26� describes the energy split-
ting reasonably well for �ã�0.01. For the parameters used
in Sec. IV D our numerical calculations predict 0 /2�
�0.61 GHz whereas the semiclassical formula �26� gives
0 /2��0.88 GHz.

The two lowest eigenfunctions of the Schrödinger equa-
tion �15� are shown in Fig. 6 for three values of �ã. For
�ã=0 the two lowest states represent the ground and the first
excited states of the particle in a B4 potential with a rela-
tively large spacing between the energy levels �see Fig. 6�a��.
For �ã=0.02, in Fig. 6�c� one can see clearly that the wave
functions become strongly localized in the potential minima.
Therefore, the quantum tunneling is suppressed �see also Fig.
5�. Finally, for the case �ã=0.01 shown in Fig. 6�b�, we have
rather strong coupling and appreciable energy level splitting
due to the wave functions’ overlap. The energy level splitting
�� as function of �ã is plotted in Fig. 5.

FIG. 4. The two lowest energy eigenvalues in a double well
potential and the corresponding eigenfunctions. The ground state
�0�B� is symmetric whereas the first excited state �1�B� is antisym-
metric. The sum �+�B� and the difference �−�B� of these two energy
eigenfunctions are localized in the right or in the left well,
respectively.

FIG. 5. The energy splitting �� as a function of �ã for
��p / �EJ	J�=2.4�10−3. The gray line is the energy splitting ac-
cording to the semiclassical approximation Eq. �26�, while symbols
show �� obtained by numerical solution of Eq. �15�.
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VI. CONCLUSION

In conclusion, we have tried to map the problem of quan-
tum evolution of the Josephson phase �quantum field theory�
to the motion of a point-like particle in a double well poten-
tial. For the case of two coupled semifluxons arranged anti-
ferromagnetically, we have estimated that the quantum ef-
fects start dominating when the length a of the � region
exceeds ac= �� /2�	J by less then 0.02	J �see Eq. �21��. Cor-
responding frequency 0 of the wave function oscillation
between the two states is 1 GHz, which is a good value to
detect experimentally. The estimated classical-to-quantum
crossover temperature T*130 mK �23� lays in a range ac-
cessible for modern 3He/ 4He dilution refrigerators and also
represents the typical crossover temperature for flux and
fluxon qubits.28–31

We would like to mention that technology is advanced
enough to fabricate huge arrays of 0−� junctions carrying
thousands of semifluxons.16 Thus, in the future it will be
interesting to extend the results obtained here to larger sys-
tems, e.g., to one- or two-dimensional fractional vortex crys-
tals.

On the other hand, it is also interesting to consider a
single semifluxon squeezed into a rather short junction. In
this case, the system is very similar to a flux qubit with zero
loop area and flux conservation does not prevent flipping
between the states ↑ and ↓.

Not all problems can be so easily mapped to the single
particle dynamics. For example, the experimentally relevant
problem of quantum escape ↑→ ↓ +⇑ at the semifluxon’s
depinning current I→ �� /2�Ic probably will need more
elaborate approaches.
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�thick line�, the two lowest eigenfunctions �0,1

�solid and dashed lines�, and the two correspond-
ing lowest energy eigenvalues E0,1 �thin horizon-
tal solid and dashed lines� for �a� �ã=0, �b� �ã
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