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Saturated absorption spectroscopy using diode-laser phase noise
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We have investigated theoretically the applicability of phase-fluctuating laser fields in saturated
absorption spectroscopy. The fluctuations of pump and probe fields are fully correlated if they are
derived from the same laser source. Inside the saturable medium, phase fluctuations are converted
into intensity noise. This nonlinear mixing modifies the statistics of the transmitted fields. By mea-
suring higher-order correlations one can deduce additional spectroscopic information. Apart from
the mean intensity, we have examined the intensity noise and intensity power spectrum of the weak
probe field. The resonances of these correlation functions are also unaffected by large inhomoge-
neous broadening since they are inherently related to the usual saturated absorption dip. We find
qualitative agreement with results of a recent experiment employing this technique [D.H. McIntyre
et al., Opt. Lett. 18, 1816 (1993)], which demonstrates the advantages of noise spectroscopy using
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spectrum analyzers.

PACS number(s): 42.62.Fi, 42.60.—v, 42.65.—k, 42.25.Bs

I. INTRODUCTION

Nonlinear optical phenomena have attracted attention
since the advent of laser technology, either as being fun-
damental to laser operation itself or by arising naturally
in all applications involving high intensity fields. Among
the many nonlinear effects that are employed in laser
spectroscopy [1], saturated absorption is one of the most
prominent. The ability to saturate selectively certain ve-
locity groups of atoms in an inhomogeneously broadened
ensemble is of major importance because it is the key
mechanism involved in hole-burning spectroscopy.

In this article we will present a variation of saturated
absorption spectroscopy which not only resolves spec-
tral resonances much better than the inhomogeneous
linewidth, but also has other attractive features. The
method is based on the inherent characteristics of diode
lasers, which have amplitudes that are, generally speak-
ing, stable compared with those of other laser types [2],
but phases that change erratically. Instead of eliminat-
ing this laser noise, we take advantage of it and extract
additional information from the transmitted signal by ex-
amining not only the mean value, but also its correlations
with respect to time or the power spectrum of the trans-
mitted intensity. These quantities may be conveniently
measured experimentally (e.g., by a spectrum analyzer).

The fact that higher-order correlation functions of
stochastic observables are very sensitive to the statistics
of the incident field has been studied thoroughly dur-
ing the past few years [3-7]. The method we describe
here has been used previously in saturated absorption
spectroscopy measurements [8,9]. However there have
been no detailed theoretical descriptions going beyond
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the weak saturation regime, which we rectify with this
article. In this context we have also investigated recently
the influence of different statistics of the incident field on
the transmitted intensity after passing through an ab-
sorption cell [10].

This article is organized as follows. In Sec. II we will
state the basic relations of saturated absorption spec-
troscopy. Starting from the Maxwell-Bloch equations we
calculate the transmitted fields within the appropriate
limits. The basic features of a phase diffusing, stochas-
tic field are introduced next. Finally, we define the ob-
servables that are discussed in Sec. III, i.e., the mean
probe intensity, the intensity noise, and the intensity
power spectrum. In this section we present the results of
the stochastic averaging and discuss the Doppler width
free resonance of the absorption coefficient. Numerical
Doppler averaging of intensity noise and power spectrum
then reveals similar Doppler width free structures.

II. SATURATED ABSORPTION
SPECTROSCOPY

A. Maxwell-Bloch equations

The most common geometry for saturation spec-
troscopy (shown in Fig. 1) uses an electric field which
consists of two frequency degenerate counterpropagating
waves. The positive frequency part of the field is thus
given by

EWM)(z,t) = e{eR(z,t) exp [—i(wt — kz)]

+er(z,t) exp [—i(wt + kz)]}. (1)

Here er(2,t) [eL(2,t)] is the slowly varying complex en-
velope of the field propagating to the right [left], € is a
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FIG. 1. Setup for saturated absorption spectroscopy with
two frequency degenerate counterpropagating waves. The ex-
amined medium is described by two-level atoms.

polarization vector, and w and |k| denote the frequency
and the magnitude of the wave vector, respectively. The
source term of Maxwell’s equation is proportional to the
atomic polarization density P(*)(z,¢). Since we are es-
pecially interested in the attenuation of the right- and
left-running electric fields components, we assume that
the polarization density is also of this form

P (z,t) = <'P§z+)(z,t;v)> exp [—i(wt — kz)]

+<’P(L+)(z,t;v)>v exp [—i(wt + kz)]. (2)

For an inhomogeneously broadened medium we have to
average the polarization density over the Doppler distri-
bution; this is indicated by the velocity average (---), =
= (- ) K (v) dv with

K(v) = [k/(vnD)] exp[—(kv/D)? 3)

the Maxwell-Boltzmann distribution. The Doppler width
D is related to the temperature of the gas by D =

\/2kgT/m.

wig — 7Y 0 iQ‘({’t)
(11 +U£> 0 ey iR
ot 0z iQz,t) —iQ*(z,t) —K
0 0 0
with a Rabi frequency Q(z,t) =

Qr(z,t) exp [—i(wt — kz)] + Qp(z,t) exp[—i(wt + k2)],
where Qg(z,t) = 2€ - Dygegr(z,t)/h and Qp(z2,t) =
2€ - Dioer(z,t)/h. The atomic transition frequency
is denoted by w;o while x is the spontaneous emission
rate. The population inversion is called w(z,t;v) =
p11(z,t;v) — poo(z,t;v) and the trace tr(z, t;v) =
p11(2,t;v) + poo(z,t;v) = 1 is conserved.

Since we have already assumed that the medium is di-
lute we can further simplify the ensuing treatment by ap-
proximating the local Rabi frequency with the Rabi fre-
quency in the absence of absorption Qg(z,t) = Qg, (t —
z/c) ~ Qpg, (t). This will lead to results to lowest order
in the absorption coefficient {9, 10]. The second approx-
imate equivalence stems from the fact that the propa-
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By formally integrating Maxwell’s equation in one di-
mension and within the slowly varying envelope approx-
imation, we relate the output field of the right-running
component eg_,,(t) = er(z = L,t) and the input field
€R,, (t) = er(z = 0,t) through

i
ERout (t) =€R;, (tret) + %

z=L
X / dz'<e" .’Pg)(z',t,et + z’/c;v)> , (4)
0 v
and similarly for the field component propagating to the
left

ik 70,
o (®) = e, () = g [ 2
L

(e PL2 trer + (L = 2')/;0))u, (5)

with er_, (t) = er(z = 0,t), e, (t) = er(z = L,t), and
a retarded time t,e¢ =t — L/c.

In a semiclassical description the polarization density
P(+)(2,t) is proportional to the expectation value of the
induced dipole moment. For a medium of two-level
atoms with ground state |0) and excited state |1) the po-
larization density within a small volume dV containing
dN = ndV two-level atoms is

P (2,t)dV = 2(Do1 p1o(z, t;v)), dN, (6)

with Dg; the atomic dipole between ground and excited
states and pi1o(z,t;v) the atomic dipole coherence of a
single atom moving with velocity v.

If the probability of inelastic, velocity, or velocity-
direction changing collisions is low, as is the case in a
dilute gas, then the atoms will move along linear paths
with velocity v. However, the decay rate of the induced
dipole moment + is increased due to frequent elastic, but
dephasing, encounters with other atoms. Consequently,
we find for the time evolution of a single moving two-level
atom

0 po1(z,t;v)

0 pro(z,t;v) | _

K w(z, t;v) | 0 (7)
0 tr(z,t;v)

gation time through the medium is in general much less
than the correlation time of the field (L/c < 7.). An
analogous relation holds for the field propagating to the
left.

B. Stochastic laser fields

The laser fields eg, (t) and €, (t) incident at the left-
and right-hand sides of the vapor cell are derived from the
same laser source. The optical path lengths are adjusted
so that they will differ just in magnitude (|n| < 1) and
constant phase ez, (t) = neg,, (t). To observe saturated
absorption the field propagating to the right has to be
saturating while the counterpropagating field is just a
weak probe beam.
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The field intensity emitted by a single mode diode laser
is very stable compared to other laser types [2]. However,
the instantaneous phase is changing erratically. This can
be modeled by a field with a constant amplitude and a
stochastic phase €(t) = £ e **() | which implies that there
are no intensity fluctuations.

If the phase changes in a continuous way with a low
probability of large instantaneous phase changes, and if
the field spectrum is Lorentzian with a bandwidth b, i.e.,
{(ge™i#(t) gxeié(ta) ) = |g|2 e(~lt1=t2]) then this can be
described by a Wiener process [11] which has zero mean
{dé(t)) = 0 and variance of (([dp(t)]*)) = 2bdt. The
angular brackets (()) denote the stochastic average. This
is usually referred to as a “phase diffusing field” (PDF).

C. The weak probe absorption coeflicient

The left- and right-propagating waves cause a spa-
tial modulation of the population inversion due to the
position-dependent intensity. Multiple backward and for-
ward scattering is induced by this index grating so that
it is necessary to decompose the polarization and the in-
version into Fourier components:

pro(z,t;v) = Z nl'"'p(l'(;‘)(t; v)eilot-m+Dkz) - (g)
m

po1(z, t;v) = Z Tl'""p(()’ln)(t; v)ellt=@m+Dkz] - (g)
m

w(z,t;v) ZZ’rllm'w(m)(t;v)e“’"’“, (10)
m
tr(z,t;v) =1, (11)

where the weak probe Rabi frequency || is well below
the saturation limit Qg,4, so that n = |QL|/Qsat can serve
as an expansion parameter. Note that 7 is space and time
independent for a PDF [Qy gr(t) = |QL r| e ¢®)]. After
substituting this ansatz into the Bloch equation (7) and
discarding second-order contributions we find

[gg _ e—iﬂ¢(t)Aeiﬁ4’(t)] u(t;v) =0, (12)

i [ Aea(1])  Oa
4= (Q_:X‘f(nﬂfat) §6x64(|5R|)) ’
(13
o(t;v
u(t;v) = (Elgt; vg) ’

Sout(v) = (arL)? tl_i)m 2Re/ e—i"7<((IL,,,bs(t + 75v1), IL abs(t; vz)))>
had 0

No constant (arzL)? or linear contributions (ayL)* ap-
pear in Eqgs. (19) and (18). These terms vanish identi-
cally in the case of a phase fluctuating field. Note also
the double velocity average.
The stochastic averages
determine the mean

that are required to
intensity are ((gi(t;v))) with
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with uo(t;v) = [w®( v),pgi) (t;v), p(l?,)(t; v),tr]7 and
w (tv) = 06y " (50), pig ) (t50), W (0), WD (8 0),
o8 (t;v), p'8) (t;v)]T. The matrix Ay, and the Bloch
vector ug(t;v) describe the behavior of an atom in the
absence of a counterpropagating beam. The explicit def-
initions of the submatrices A, B,C and the diagonal ma-
trix N are given in the appendix.

Finally, we can calculate the weak probe field that is
emitted at the left-hand side at z = 0 as

ELgu (t) = €L;, (tret)
FilerL)y/(ennct,) (plo” treiv))

where we have defined a dimensionless attenuation pa-
rameter as (arL) = n(kL)e*Doin/(coy/{(eLcl, )
Within the weak absorption regime it is required to be
much smaller than unity.

The transmitted intensity measured by a detector at
z =0is IL out(t) = 2ce0 €L, (t) €L, (t)* and consists
mainly of the incident intensity I i, which is a constant
in the present model, and the absorbed intensity defined
as

I1, abs (t;0) = i 2cg04/ «ELanEL,, Wern (t)*pggl) (t;v)+c.c.,

(14)

1
v

(15)

so that
IL,out(t) = IL,in+(aLL)<IL,abs(tret;v)>u+o[(aLL)2]-
(16)

However, this is still a fluctuating quantity which has to
be averaged:

(Tz,00t(t)) = ILin + (L L){ {IL,abs (tret; v)) ),
+0((arL)?). (17)
The intensity fluctuations are measured by their variance
(using ((a,b)) = (ab)) — (a) (b))
AL ou(t)

= (aLL)2 <«IL,abs (tret; 'Ul), IL,abs (tret; '02)»),,1 vz
+0((erL)®) (18)

and the stationary power spectrum of the intensity fluc-
tuations of the transmitted field (as measured by, for
example, a spectrum analyzer)

dr + O((aL)?). (19)

v1,v2

[
gi(t;v) = e¥¢Mu(t;v) and the covariance matrix
ca(tv1,55v2) = (g, (601, £502)) — (@1 (t5v1) (1 (tv2))!

with g, (tv1,tv2) = gi(tv1)ga(t; vz).  The power
spectrum is derived from the Laplace transform
of the covariance matrix c,(s = w;v1,v2) =
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limy 00 L£4[cy (%5 v1,t;v2)]. These averages can be eval-
uated analytically and in closed form (for instance, see
[11] or Appendix B of [10]). We obtain, for the stationary
values,

= [A(v) ~ BN*){(g1 (£ ) s o (20)
= [A(v1) - bN?){(g, (i 01, tiv2) ))

+ <<§2(t;vl,t;vz)>>t_>oo[,_i*(vz) — bN?]

+2b_1_\/'_<<§2(t;v1,t;u2)>>t_'ooﬂ, (21)

t—oo

and
— {iv — [A(v) - bN?)} !
X o (t; 01,8 U2)tm 00 - (22)

co(s = w51, v2)

III. DISCUSSION

The intensity that is absorbed from the Ileft
running probe field is proportional to the rate

Im{Q7}, (t)p10 1)(t v)} This rate consists of two distinct
contributions as given by

[
J
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. t
oo () = (2) / eftnme) [m(tl)w“”(tl;u)
—oo

+Qp(t)w ™ (tg; v)} , (23)

with Z(,) = —i(d — mkv) — . Their physical origin is
obviously the standing wave pattern of the two counter-
propagating fields. The first term is proportional to the
inversion of a spatially averaged intensity. It is an inco-
herent contribution since the inversion is only intensity
dependent; thus the coherence of the pump and probe
field is of no relevance. The second term, however, re-
flects the spatially periodic structure of the inversion.
This can be interpreted as an index grating. Hence mul-
tiple coherent scattering of pump and probe beam will
occur. All of these scattering processes, which give rise
to absorption of a wave propagating to the left, are con-
tained within this second contribution (within the weak
probe field limit).

To gain some insight into the processes involved, we
can approximate the phase-averaged absorption rate [us-
ing Eq. (20)] for a nonsaturating pump field. Thus

i Q
n{e d>(t) ( 1) (£:0)Dtmroo = (%) I L|— 5 (_1_

ez )

(_1) 2| 121 [S2R|
4 (Z( 1) —b) (k — 2ikv) (Z(—1) — b)
i 197 || 1§27 4
* ( 4) Zi_y) - b) (x - 2ik0) (25, — ) O U0RI/ D)) (24)

The first term corresponds to a depletion of the ground
state due to the pump field and a subsequent generation

P
of a left-running weak probe polarization (w(®) —§ p(()(i) 2z
w(© 2% p(lal)). The second term consists of a pump field
coherence which gives rise to a spatial modulation of the

inversion after absorption from the probe field. Finally,
the pump field is scattered into the backwards direction

(w(© 25 p((,(;) 2 (1) 2% p(lgl)). In the last term a left-
running polarization is created by the absorption from
the weak probe field. This and a pump photon spatially
modulate the inversion and again the pump field is scat-

tered backwards (w(®) 2y pggl) & w-D 2% pﬁS”)-

A. Weak probe intensity

It is well known (and the basis of saturated absorp-
tion spectroscopy) that the hole burned into the velocity
distribution by the pump field (at § = kv) and the reso-
nant absorption from the weak probe field (at § = — kv)
overlap at § = kv = 0 and cause a resonance (Lamb
dip) which is unaffected by a Doppler average. By inte-
grating Eq. (24) over a very broad Doppler distribution
[D > max(k,7,b,8, g L)] one finds that the weak probe
output intensity is given approximately by

[

(eonth?, = Wzsnd (1= (2 DI

« 1_19312 b+
2k 02+ (b+ )2

+O((1Q)/Quar)*)- (25)

This demonstrates the appearance of the Doppler width
free central structure.

In Fig. 2 we present the result of numerically Doppler
averaging the weak probe intensity vs laser detuning ¢
[using Eq. (20)]. The solid (b = 0.1k), dash-dotted
(b = 1K), and dashed (b = 5k) curves show the depen-
dence on the laser bandwidth. To facilitate a qualitative
comparison with the approximation discussed above [Eq.
(25)] we have included it (as the dotted line with b = 1x),
although it can be used with confidence only in the weak
field limit while here the Rabi frequency of the pump field
is already saturating |Q2g| = 1x. To avoid the rescaling
of all numerical results, we have set the weak probe ab-
sorption coefficient to (ar L) = 1, though, in principle, it
is limited to values (arL) < 1 . The central resonance
is smeared out by increasing the bandwidth (decreasing
saturation). This behavior is also to be expected for dif-
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FIG. 2. Scaled mean weak probe intensity ir,ou = FIG. 3. Scaled standard deviation of the weak probe in-

{{IL,0ut)))v/{IL,in)) vs laser detuning §. The solid (b =
0.1x), dash-dotted (b = 1k), and dashed (b = 5k) curves show
the dependence on the laser bandwidth. The dotted line rep-
resents the large Doppler width approximation [Eq. (25)] for
b = 1k. The other parameters are |Qr| = 1x, |Qz]| = 0.1k,
v = 0.5k, a Doppler width of D = 10k, and we have set the
attenuation parameter to (azL) = 1.

ferent collision rates since the dephasing rate b + v is
additive.

B. Induced intensity noise

In Fig. 3 we show the standard deviation of the inten-
sity fluctuations corresponding to the situation depicted
in Fig. 2. In general, the noise level rises with increas-
ing bandwidth. The structure of the induced intensity
noise can be understood easily in the limiting situation
of small bandwidth. If the atoms can reach an equi-
librium state before the instantaneous detuning §(t) =
8+ ¢(t) has altered significantly, then the transmitted in-
tensity will change according to d(((I L,out (0 (t);v))))v =
dé(t) %(({IL,out(J(t);v)»)v. On resonance, or where
the derivative vanishes, the intensity noise is also low,
whereas it is maximal at the turning points. Larger band-
widths erase the Doppler width free structure and only
the noise maxima at the turning points of the convolving
Gaussian (§ ~ £D/+/2) remain.

C. The power spectrum of the probe fleld

The intensity correlation spectrum [Eq. (19)] deter-
mines the characteristic frequencies of the time evolution
of the transmitted intensity. Since Iy, abs(t;v) is propor-
tional to the absorption rate Im{QZ(t)pSl) (t;v)} one
can expect resonances around v = %(§ + kv), at least

J

iva={0,-T%, -T°+ iQ4a(v)} + O(Qr/Ruat)?),

tensity Aipout (8) = \/(A%ILout),, 4,/ €IL,n)) vs detuning
for three different bandwidths: b = 0.1 (solid), b = 1x (dash-
dotted), and b = 5x (dashed). The other parameters are the
same as in Fig. 2.

in the limit of a very weak pump field. In general, one
has to invert Eq. (22), which yields

«gil(s = w;vy, 'uz)»

= {iv — [B(v1) — BNI]} (b (&5 v1, 65 v2) )y
+C{iv — [A(v1) — bNZ]}
x (S (G v1, t02) ), ) (26)

where the submatrices ¢3! and c}' contain the covariance
between the Bloch-vector components of order (0,1) and
(1,1), respectively.

In the absence of Doppler broadening (kv = 0) the
eigenvalues i vp of (B(v = 0) —bN?) are degenerate with
the eigenvalues iv4 of (A(v = 0) —bN32) (with the excep-
tion of the eigenvalue v4 = 0, which reflects the conserva-
tion of the trace). A finite kv removes the degeneracy of
the eigenvalues, i.e., the eigenfrequencies 24 = Re{v4},
Q2 = Re{vp} split up while the widths I'* = Im{v§,vg}
of coherence components {p((,Il),pgi),p((,ll)} on one side
and the widths T = Im{vY%,v5} of the inversion com-
ponents {w(~1 w(® w1} on the other side remain de-
generate. Though it is possible to determine the roots of
the characteristic polynomials analytically, the resulting
expressions are not instructive and an approximation in
the case of a weak pump field reveals the facts mentioned
before more clearly. Thus we find approximately

(27)

ivg ={-T" £ 2ikv,-T°+i[Qa(v) + 2kv],-T° £ i[Qa(v) — 2kv]} + O((Vr/Rsat)?), (28)
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with a generalized Rabi frequency Q4(v) = (6§ — kv) +
%:iD(J—kv), ¥ = k— Q%L —kv), T° = b+~ +
%& L(6 — kv), and L(0) —iD() =[(k—b—7v) +id]" L.

The results of numerically Doppler averaging the weak
probe power spectrum by means of Eq. (22) can be seen
in Fig. 4. There we show the intensity power spectrum
Sout (v, 8) vs spectral frequency v and keep the detuning
fixed at § = 5k. The solid, dash-dotted, and dashed
lines correspond to bandwidths of b = 0.1k, b = 1k,
and b = 5k, respectively. All other parameters are the
same as in Figs. 2 and 3. The dotted curve is the power
spectrum in the absence of Doppler broadening (D = 0
and kv = 0) for a bandwidth of b = 0.1x and scaled
by a factor 1/100. Its spectral resonance occurs around
the generalized Rabi frequency v =~ Q4(v = 0) =~ 5.098k.
Comparison with the numerical result for a finite Doppler
width of D = 10k (solid line) suggests a separation of the
single resonance into a dip and a peak according to the
splitting of the eigenfrequencies as given by Eq. (28).
But due to the complexity of the involved expressions we
have not succeeded in locating them more precisely by
means of a perturbative calculation as has been done for
the mean absorbed intensity.

The role of detuning § and spectral frequency v is re-
versed in Fig. 5. Here we scan the laser detuning over the
resonance and fix the spectral frequency at v = 5«. This
provides an alternative form for obtaining the spectrum,
which may sometimes have practical advantages. The ob-
tained curves closely resemble the intensity noise (Fig. 3)
which is approached when v — 0. All other parameters
are the same as in Fig. 4. In addition to the central noise
maxima and the maxima at the location of the steepest
slopes of the convolving Gaussian, resonances appear at
the spectral frequency é ~ v = 5k.

1x10-5 -
PN N
8x106 | e N AN
/ N
/ \
/ \
/ AN
6x10-6 Vi N
/
S 4 Va ’r ~ \
\ ; \
L,out J/ P VAN I\ \
5 A N A
4x10°6 | ) \_- Ny,
/ . ) \
/ \
AR PN
2x10-6 / *I' ! .

-20.0 -10.0 0.0 10.0 20.0

v/x
FIG. 4. The intensity power spectrum of the weak probe

field Si out(v,d) vs spectral frequency v. The laser detuning
is fixed at § = 5 k. The solid, dash-dotted, and dashed lines
correspond to bandwidths of b = 0.1k, b = 1k, and b = 5«.
The Doppler width is D = 10x. In the absence of Doppler
broadening D = 0 and b = 0.1k, the dotted line is obtained
(scaled by 1/100). The other parameters are the same as in
Fig. 2.
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1.5x10°5
1.0x105
L,out
5.0x106 }
!
i
0 . J
-20.0 -10.0 0.0 10.0 20.0
o/x
FIG. 5. The intensity power spectrum of the weak probe

field Sy out(v,d) vs. laser detuning §. The spectral frequency
is fixed at v = 5k. The solid, dashed—dotted, and dashed lines
correspond to bandwidths of b = 0.1k, b = 1k, and b = 5«.
The Doppler width is D = 10x. In the absence of Doppler
broadening D = 0 and b = 0.1k, the dotted line is obtained
(scaled by 1/100). The other parameters are the same as in
Fig. 2.

In Fig. 6 we also present the power spectrum vs de-
tuning §, but decrease the spectral frequency to v = 1x.
This spectrum (especially b = 0.1x) then corresponds to
the experimental setup described in Ref. [9] and is in
qualitative agreement with Fig. 3 of that Letter.

IV. CONCLUSIONS

We have examined the influence of phase fluctuations
on the standard configuration for saturated absorption

3.0x10-5
2.0x10-5 |
L,out
—
1.0x10-5 AN
7N AN
\\
\u
\\
\\
o " .
-20.0 -10.0 0.0 10.0 20.0
d/x
FIG. 6. The intensity power spectrum of the weak probe

field S out(v, d) vs. laser detuning § for three different band-
widths: & = 0.1« (solid), b = 1x (dashed—dotted), and b = 5«
(dashed). The spectrum analyzer frequency is fixed to v = 1x.
All other parameters remain the same as in Fig. 2. In the ab-
sence of Doppler broadening D = 0 and b = 0.1k, the dotted
line is obtained (scaled by 1/3).
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spectroscopy. The two counterpropagating laser beams
are frequency degenerate and their phase fluctuations are
fully correlated since they are derived from the same
source. It is well known that the weak probe absorp-
tion coefficient is reduced by a saturating pump field and
gives rise to the Lamb dip. This resonance is unaffected
by Doppler broadening. In addition, by analyzing the
laser-induced intensity fluctuations or their power spec-
trum we have found that they also have these Doppler
width free resonances. They can be used to determine
the homogeneous width or the location of the transi-
tion more precisely by exploiting the intrinsic frequency
fluctuations of diode lasers rather than by attempting to
eliminate them.
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APPENDIX: DEFINITIONS OF
MATRIX COEFFICIENTS

The definitions of the matrix coeflicients appearing in
Eq. (12) are the following:

(A1)

: (A2)

(A3)

with N, = diag(0,-1,1,0), N, = diag(-1,1,0,0,—1,1) and Z,, = —i (§ — mkv) — .
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