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Abstract
We study the mean-field phase-space distribution of the ground state of an anisotropic,
harmonically trapped Bose–Einstein condensate at zero temperature. First, we derive the Fourier
transform of the ground-state wave function in the Thomas–Fermi limit in d dimensions. Second,
we obtain analytical approximations for the Thomas–Fermi Wigner function in one and three
dimensions with a factorization ansatz of the coherence function. These approximate expressions
are compared with exact numerical simulations of the Gross–Pitaevskii equation.
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1. Introduction

The wave nature of massive particles is one of the many
counter-intuitive phenomena in quantum mechanics that we
have to accept. In 1924, it was foreseen by LDe Broglie [1]
and two years later, observed in electron diffraction by
C Davisson and L Germer [2]. A century has passed and we
are still puzzled by the fact. However, we have learned sundry
clever means to utilize the interference of atomic matter
waves [3, 4] for technical purposes, for example, as high
precision acceleration sensors probing gravity on earth [5–9],
and in space [10, 11].

New states of matter were predicted by AEinstein
[12, 13] in 1924 and gaseous atomic Bose–Einstein con-
densates were created in 1995 by ECornell, C Wiemann and
W Ketterle [14–16]. Atomic Bose–Einstein condensates are
now routinely used as coherent sources for macroscopic
matter waves and are manipulated by mirrors, beam splitters,
atomic waveguides and lenses [17–21].

In 1932 E Wigner invented a quasi-distribution function
to represent thermal-, as well as quantum-fields in the
corresponding classical phase space [22]. All classical-,
thermal- or quantum-field theories can be described by the
symmetric ordered Wigner phase-space distribution [23–26].
Recently, interacting atomic quantum gases are simulated
successfully using a truncated Wigner approach to study

finite-temperature ensembles with stochastic classical fields
[27–29], or the quantum Boltzmann equation with interac-
tions [30, 31].

Here, we focus at temperatures well below the Bose–Einstein
phase-transition temperature, where one can use the Gross–
Pitaevskii mean-field equation [32, 33] to describe the coherent
mode of the condensate. In the Thomas–Fermi limit [34, 35],
when mean-field energies are much larger than the vacuum
energy, one can obtain many relevant physical observables like
position width, momentum spread, healing length or excitation
frequencies in closed from [36, 37].

A closed-form expression of the Wigner function for
trapped Bose–Einstein condensate provides a complementary
description of matter-wave experiments in phase space. In
particular, the scaling laws [38, 39] in the Thomas–Fermi
limit provide the correct time-dependence in quadratic
external potentials. Therefore, a classical phase-space propa-
gation of matter waves [40–42] benefits from a simple lookup
function that exhibits the correct physical properties.

1.1. Dedication

We dedicate this paper to Wolfgang Schleich on the occasion of
his 60th birthday. He is an avid promoter of the view on
quantum physics from phase space. Complex analysis of inter-
ference phenomena become untangled by a simple phase-space
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drawing and physical interpretation is feasible. His restless and
creative pursuit of nature to reveal its secrets is only surpassed
by his splendid humor supported by a treasure chest full of
anecdotes. It is a great pleasure to learn from him.

1.2. Outline

Our paper is organized as follows: in section 2, we briefly
recall the basics of the Gross–Pitaevskii mean-field theory. In
section 2.1, we focus on the Thomas–Fermi limit for repulsive
interactions and obtain the Fourier amplitude of the field in a
harmonic trap in d dimensions. In section 3, we obtain ana-
lytical approximations for the Thomas–Fermi Wigner func-
tion within the factorization ansatz of the coherence function
and compare these with exact numerical simulations. A
conclusion and outlook is given in section 4.

2. Classical field approximation for bosons

The physics of cold dilute atomic gases is determined by the
interplay of single-particle motion in an external potential

( )rv and the internal energy ( )rgn arising from the van der
Waals interaction [43]. In the s-wave limit, the latter can be
described by a contact interaction of strength p=g a m4 s

2 ,
with the atomic mass m and the scattering length as.

Assuming a three-dimensional harmonic trap with an
average frequency w̄ sets the Bose–Einstein phase transition
temperature at w= ¯T N kBBEC

1 3 for a gas of N atoms [44].
For temperatures T TBEC, essential physics can be descri-
bed by the classical Gross–Pitaevskii field approximation
y ( )r t, [45–47]
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Here, the atomic density yº( ) ∣ ( )∣r rn t t, , 2 is normalized to
the particle number N.

Classical fields are useful physical approximations in
dimensions d�3, when fundamental quantum fluctuation
are less important [48, 49]. However, in trapped gases these
approximations can also be extended to lower dimensions
d=1, 2, when the motion in other spatial directions is
‘frozen-out’, thus obtaining an effective lower dimensional
mean-field theory [50]. Therefore, we will consider the non-
linear Schrödinger equation (1) in d dimensions at fixed
coupling constant g and variable particle number N.

2.1. Thomas–Fermi approximation

In the stationary case the time-dependent field is governed by
y y= m-( ) ( )r rt, e ti , where μ(N) is the chemical potential

of the condensate. Thus, the Gross–Pitaevskii equation for
stationary field y ( )r reads
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In the limit of large repulsive interactions, one can neglect the
quantum pressure that arises from the localization energy of
the classical field and obtains the Thomas–Fermi approx-
imation

m y+ - =[ ( ) ( ) ] ( ) ( )r r rv gn 0. 4TF TF

This equation admits the algebraic solution
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for the density and the corresponding wave function
y = nTF TF . The classical field has a finite support within
the Thomas–Fermi volume VTF, which is bounded by the
oriented surface  m= Î ={ ∣ ( ) ( )}r rS N vd

TF . For many
purposes, the Thomas–Fermi approximation is very conve-
nient. However, caution is required due to the discontinuous
slope, which leads to unphysical divergences [51].

2.2. Thomas–Fermi approximation for anisotropic harmonic
oscillators in d dimensions

Atoms can be trapped with optical dipole potentials [52], or
by static magnetic fields created by atomic chips [53–57].
Expanding the potential around a minimum r0, conveniently
shifting the origin to this location, yields a good local
approximation

= + +( ) ( ) ( )r r rv v H r
1

2
. 6T

0
3

Finite anharmonicities do exist and have a detrimental impact
on high precision interferometry [11]. However, in many
experimental situations, a d-dimensional anisotropic harmo-
nic oscillator potential is a good approximation to start
with. For each atomic species with mass m, the positive
Hessian matrix H defines a harmonic frequency matrix

W = Î ´H m d d2 . In general, the principle axes of the
potential are not aligned with the coordinate system of the
atom chip. The two coordinates systems are connected by a
rotation matrix R defined by

wW = ( )R R . 72 2

The trap frequencies ωi>0 are the entries of the diagonal
eigenvalue matrix w Î ´d d. From the geometrical average
of the frequencies w w w= ¯ ( )d1 d

1
one can define the length

of the harmonic oscillator  w=¯ ¯a m as a primary length
scale.

2.2.1. Position representation of the Thomas–Fermi field. To
cope with the physical anisotropy of the potential in the
Cartesian lab-frame = ¼( )r x x, , d1 , it is useful to introduce a
rotated, scaled frame with new coordinates defined
¢ = ¢ ¼ ¢( )r x x, , d1 by

º ¢ ( )r rRS , 8

introducing the scaling transformation m w=S m2 2 .
For each direction, the scale factors are determined by the

Thomas–Fermi radii m wºr m2i iTF,
2 . It is also relevant to

2
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introduce the averaged radial condensate extent
m wº ¯r m2TF

2 as a secondary global length scale.
The particle normalization of the fields links the

dimensional lab-coordinates amplitude y ( )r to the dimen-
sionless amplitude y¢ ¢( )r in the scaled coordinates by

y y¢ ¢ º( ) ( ) ( )r rr . 9TF

d
2

In d-dimensional spherical coordinates [58], the hyper-radius
¢ = ¢rr 2 is given by the Euclidean norm. The differential
solid angle W-dd 1 , is obtained from the Cartesian volume
element ¢ = ¢ ¢ W- -x r rd d dd d d1 1 and encompasses a total solid

angle of pW = G( )2d
d

2

d
2 . With these definitions, one finds a

compact expression for the non-vanishing field

y e e
m¢ ¢ = - ¢ =( ) ( )r r

r

g
1 , , 10

d

TF
2 TF

within the Thomas–Fermi volume (5). Here, the parameter ε
denotes the ratio between chemical potential and internal
energy.

An ensemble with fixed particle number N defines the
chemical potential μ(N) implicitly by
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Evaluating the hyperradial integral, one obtain for the
chemical potential [44, 46] explicitly
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Thus, the chemical potential exhibits a characteristic algebraic
dependence on the geometric dimension, the potential shape
and the internal energy κ is given in energy units of the
harmonic oscillator w̄.

In figure 1, we depict the density of the Gross–Pitaevskii
state ¢n , as well as the Thomas–Fermi density ¢nTF at equal
chemical potential m w= ¯14.12 . This implies different
coupling constants κ for each dimension d according to
(12). The inset magnifies the region around rTF, where
the approximation exhibits the characteristic first order
discontinuity.

2.2.2. Fourier transform of the Thomas–Fermi field. In order
to calculate the k space distribution of the Thomas–Fermi
field (10), one has to evaluate the Fourier transform
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2

According to (9), one can define a dimensionless Fourier
amplitude and density

y y= ¢ ¢˜ ( ) ˜ ( ) ( )k kr , 14TF

d
2

y¢ ¢ = ¢ ¢˜ ( ) ∣ ˜ ( )∣ ( )k kn , 152

with scaled Cartesian wave vectors
¢ = ( )k kS R . 16

All things considered, the dimensionless Fourier transform to
the Thomas–Fermi field reads
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In hyper-spherical coordinates, the integral over the hyper-
angles factorizes and evaluates to
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with Jd being the Bessel function of the first kind of order d
[59]. The remaining radial integral also admits a closed-form
solution
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It is interesting to present this result with the original physical
Cartesian wave-vectors

y e
p m

=
W

+

⎛
⎝⎜

⎞
⎠⎟

˜ ( ) ( )k k kr o
m2

2
, 20dTF 3 2

d
2

which demonstrates that the diagonalization (7) is not required
to obtain the Fourier amplitude of the Thomas–Fermi field in
the anisotropic oscillator in d dimensions. In particular, for the
most relevant three-dimensional case, our result agrees with
[36]. In figure 2, we show the momentum spectra of the
numerical Gross–Pitaevskii field and the analytical Thomas–
Fermi solution (19). As a guide to the eye, we have added
algebraic ¢- -k d 2 and exponential - ¢e k 2 envelopes to match the
asymptotic behavior.

To foster physical interpretation and to choose suitable
numerical grids in simulations of the Gross–Pitaevskii
equation, it is important to understand the high energy

Figure 1. Ground-state position density versus Cartesian coordinate
¢x in a d-dimensional harmonic potential in dimensionless units:

Gross–Pitaevskii solution with = ¢ ¢( )d n x1, (red ——),
= ¢ ¢( )d n x2, , 0 (green ——), = ¢ ¢( )d n x3, , 0, 0 (blue ——) and

Thomas–Fermi density with = ¢ ¢( )d n x1, TF (- - - -),
= ¢ ¢( )d n x2, , 0TF (– · –), = ¢ ¢( )d n x3, , 0, 0TF (LL). We have

chosen different coupling constants k = 100 (d= 1), k = 625.96
(d= 2) and k = 3 547.62 (d= 3) in each dimension to obtain the
same chemical potential m w= ¯14.12TF . The inset shows a close-
up view of the Thomas–Fermi region.
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behavior of the Fourier amplitude. From the asymptotic
representation of the Bessel functions, one finds a periodic
oscillation with algebraic decay

y e¢ ¢  ¥ ~
¢ -

¢

p

+

( )˜ ( ) ( )k
k d

k

sin
. 21TF

4
d 2

2

For small wave vectors, the Fourier amplitude stays regular
and approaches

y
e¢ ¢  ~

G ++ ( )
˜ ( ) ( )k 0

2
. 22

dTF 3

2

d 2
2

The Heisenberg uncertainty principle of quantum-physics
and the uncertainity relation of harmonic analysis [60]

D D ( )r k
d

2
, 23

are connected by the de Broglie relation p=ÿk [1]. It
provides the basis for the rule-of-thumb estimate of a minimal
width, i.e., the standard deviation of the Thomas–Fermi field

in k space

D ( )k
d

r2
, 24TF

H

TF

if the Thomas–Fermi radius is a measure of the position
width D =r rTF.

Alternatively, we can specify a width of the Thomas–
Fermi field (19) according to the Rayleigh criterion

D =
¢

( )k
k

r
, 25TF

R 1

TF

by the first root of the Bessel function ¢ =+ ( )J k 01d 1
2

. Then, the
fraction of atoms

òb q yº ¢ ¢ - ¢ ¢-
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¥
( )∣ ˜ ( )∣ ( )qN q k qd , 26d1

1 TF
2

measures the localization of the spectrum for wave numbers
¢ ¢q k1 . In table 1 we have summarized these parameters as a

function of dimension.

3. Thomas–Fermi Wigner function

The spatial extent rTF and width DkTF of the Thomas–Fermi
field are very important quantities and can be found from the
position, or Fourier distribution, as discussed in the previous
section. However, complete information on the field is only
encompassed by the Wigner function in phase space [22, 26]
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which is defined by the Fourier transform of the coherence
function

*x x x
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Position and Fourier densities are the marginal distributions
of the Wigner function
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The Wigner function is only a quasi-probability distribution,
as it can acquire negative values. This is not a bug but the
central feature of interference of waves in phase-space [61].

Figure 2. (a) Ground-state Fourier density versus scaled Cartesian
wave-number ¢kx in a d-dimensional harmonic potential in
dimensionless units: Gross–Pitaevskii density for = ¢ ¢˜ ( )d n k1, x

(red ——), = ¢ ¢˜ ( )d n k2, , 0x (green ——), = ¢ ¢˜ ( )d n k3, , 0, 0x

(blue ——) and Thomas–Fermi density for d=1, ¢ ¢˜ ( )n kxTF (- - - -),
= ¢ ¢˜ ( )d n k2, , 0xTF (– · –), = ¢ ¢˜ ( )d n k3, , 0, 0xTF (LL). (b) The

double logarithmic plot shows the high energy algebraic decay
~ ¢- -k d 2 (gray ——) of ¢ ¢˜ ( )n kTF , and an exponential ~ - ¢e k 2 decay
(magenta ——) for the numerical Gross–Pitaevskii density. All
parameters are chosen as in figure 1.

Table 1.Widths in k space according to the Rayleigh and Heisenberg
criterion for a Thomas–Fermi radius of m=r 10 mTF .

Solid Bessel Rayleigh Heisenberg %
angle zero width width

d Wd ¢k1 DkTF
R DkTF

H β

1 2 3.83 m -0.38 m 1 m -0.05 m 1 0.98
2 p2 4.49 m -0.45 m 1 m -0.10 m 1 0.95
3 4π 5.14 m -0.51 m 1 m -0.15 m 1 0.93
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3.1. Thomas–Fermi Wigner function in a one-dimensional
harmonic oscillator

For the one-dimensional harmonic oscillator potential

w=( ) ( )v x m x
1

2
, 312 2

the Thomas–Fermi coherence function (10), (28) evaluates to

r x e
x x¢ ¢ ¢ = - ¢ - + ¢
¢

+
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⎦⎥( ) ( ) ( ) ( )x x x, 1 1

2 16
, 32TF

2 2 2 2
2 4

1
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when ¢ <∣ ∣x 1 and x x¢ < ¢ ¢ º - ¢+∣ ∣ ( ) ( ∣ ∣)x x2 1 . It vanishes
otherwise. This leads to
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Now, this Wigner function depends on dimensionless
phase-space coordinates ¢ ¢ =( ) ( )x k x x k x, ,TF TF , and =xTF

m wm2 2 denotes the Thomas–Fermi size of the one-
dimensional harmonic oscillator.

The Fourier-integral (33) can be evaluated easily by
numerical quadrature and is shown in figure 3. In the
Thomas–Fermi regime m w , the mean-field pressure
increases the spatial size beyond the harmonic oscillator size
 ¯r aTF , but squeezes in the k-direction reciprocally. The

negative domains of the Wigner function can be seen clearly
by dark blue stripes.

We have already compared the numerical exact Gross–
Pitaevskii field with the Thomas–Fermi approximation in
position space in figure 1 and reciprocal space in figure 2. In
figure 4, we depict the full phase-space representation of the
numerical Gross–Pitaevskii field (3) with strong interactions
in subfigure (a). Indeed, the two-dimensional phase-space
density plot exhibits the same qualitative appearance as in
figure 3. However, the more detailed cross-section plots of
figures 5 and 6 highlights the deviations. In subfigure (b), we
recover the positive Gaussian phase-space distribution of a
coherent state for weak interaction.

3.2. Factorizing the coherence function

Despite the functional simplicity of the Thomas–Fermi
Wigner function, we have not succeeded in finding a closed
form expression. Therefore, we consider the physical factor-
ization ansatz for the coherence function (33)

r x c
x

h
¢ ¢ ¢ = ¢ ¢

¢
¢

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
( )x n x

x
, , 34TFf TF

e¢ ¢ = - ¢( ) ( ) ( )n x x1 , 35TF
2 2

c x
x

¢ = -
¢( ) ( )1
4

, 36
2

including an unspecified x-dependent scale η(x). With a sui-
table scale, the factorized coherence function r x¢ ¢ ¢( )x ,TFf has
the same support in phase-space as the full coherence function
(32). By choosing the scale h x¢ = ¢ ¢+( ) ( )x x 2, one obtains the
Wigner function as

x

p
¢ ¢ ¢ = ¢ ¢

¢ ¢ ¢

¢
+( ) ( )

[ ( )]
( )W x k n x

j k x

k
,

2
, 37TFf TF

1

where j1 is the spherical Bessel function of order one.
Equation (37) matches the numerical simulations quite well
for various values of x and k as regarded in figures 5 and 6.

Figure 3. Color-coded density plot of the numerically calculated
Thomas–Fermi Wigner function ¢ ¢ ¢( )W x k,TF for a one-dimensional
harmonic oscillator in phase-space. Cross-sections along the phase-
space coordinates ¢ = { }x 0.1, 0.5 and =¢ { }k 1.0, 3.0 are marked by
the gray lines (——, - - - -) and are depicted in figures 5 and 6. The
parameters are k = 100 and m w= ¯14.12TF .

Figure 4. Color-coded density plot of the Gross–Pitaevskii Wigner
function ¢ ¢ ¢( )W x k, for the ground state in an one-dimensional
harmonic potential. In subfigure (a), we have strong interaction

k m w= =100, 14.11 and weak interaction κ=0.1, μ=0.54 ÿ ω

in subfigure (b).
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Further, the factorized Wigner function (37) features the
correct marginal distribution (30)

¢ ¢ = ¢ ¢( ) ( ) ( )n x n x 0, 38TFf TF



e
p

¢ ¢ =
¢

¢ ¢ + ¢

- ¢ ¢ -

˜ ( ) [ ( )

] ( )

n k
k

k k k

k k

2 Si 2 cos 2

sin 2 1 0, 39

TFf

2

4

where Si denotes the sine-integral [59].
The Fourier density ¢ ¢˜ ( )n kTF is shown in figure 7. In

contrast to the analytical result (19), it lacks the nodal
structure and shows small k deviations. Nevertheless, it
is positive and exhibits the same algebraic asymptotics

e ¥ ~¢ ¢ ¢- ( )n k kTFf
2 3, as (21).

3.3. Thomas–Fermi Wigner function of an anisotropic oscillator

In section 2.2.1, we have considered an anisotropic tilted
harmonic oscillator and defined the coordinate transformation
(8) between lab- and body-fixed scaled coordinates. In turn,
this induces a relation between the field amplitudes in the two
frames (9). For the Wigner representation this transformation
reads

¢ ¢ ¢ º( ) ( ) ( )r k r kW W, , . 40

In the body-fixed scaled coordinates, the Thomas–Fermi field
(10) is an isotropic s-wave. Thus, the Wigner function
¢ ¢ ¢ = ¢ ¢ ¢ ¢ ¢( ) ( · )r k r kW W r k, , ,TF TF must depend only on the

three rotation invariant scalars [62], denoting the enclosed
angle as q =  ¢ ¢( )r k,k . This rotation invariance can be also
seen directly in the coherence function
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4
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In figure 8, we have depicted a two-dimensional cross-section
( ¢ ¢x k, x) of the six-dimensional Thomas–Fermi Wigner func-
tion using numerical quadrature.

3.3.1. Spherical coordinates. If the integration variable x¢ is
expressed in spherical coordinates x q f¢( ), , with ¢r aligned
with the ¢z -direction and ¢Îk x’-z’ plane, then xq =  ¢ ¢( )r ,
denotes the polar angle. The coherence function r x q¢ ¢ ¢( )r , ,TF

r e
x

x q¢ = - ¢ -
¢

- ¢ ¢
⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( )r r1

4
cos , 43TF

2 2
2 2

2

1
2

x q q q¢ ¢ º - ¢ - ¢( ) ( ∣ ∣) ( )r r r, 2 1 sin cos 442 2

Figure 6. Cross-section of the Wigner function versus ¢k for fixed
position ¢x for the one-dimensional harmonic oscillator. Comparison
of Thomas–Fermi approximation ¢ ¢ ¢( )W x k,TF (gray ——), with the
Gross–Pitaevskii Wigner function ¢ ¢ ¢( )W x k, (blue – · –) and the
factorizing approach ¢ ¢ ¢( )W x k,TFf (37) (black - - - -). We have chosen
the same parameters as in figure 3: (a) ¢ =x 0.1, (b) ¢ =x 0.5.

Figure 5. Cross-section of the Wigner function versus ¢x for fixed
wave-number ¢k for the one-dimensional harmonic oscillator.
Comparison of Thomas–Fermi approximation ¢ ¢ ¢( )W x k,TF
(gray ——), with the Gross–Pitaevskii Wigner function ¢ ¢ ¢( )W x k,
(blue – · –) and the factorizing approach ¢ ¢ ¢( )W x k,TFf (37)
(black - - - -). We have chosen the same parameters as in figure 3:
(a) =¢k 1.0, (b) =¢k 3.0.
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is finite only, when ¢ <r 1 and x x q¢ < ¢ ¢( )r , . Exploiting the
axial-symmetry of the coherence function yields the Wigner
function as

ò òq q q x x

x
p

r x q

¢ ¢ ¢ = ¢ ¢

´ ¢ ¢ ¢ ¢ ¢

p x q

x

¢ ¢

- ¢ ¢

( )

( )
( )

( ) ( )

( )
W r k

J k r

, , d sin d

e

2
, , , 45

k

r

x x

k

TF
0 0

,
2

0

i

2 TF

z z

where q q¢ = ¢ ¢ = ¢k k k ksin , cosx k z k and x x q¢ = ¢ sinx , x¢ =z

x q¢ cos . Unfortunately, no further simplification of the two-
dimensional integral was found.

3.3.2. Cylinder coordinates. If the integration variable x¢ is
expressed in cylindrical coordinates x f z¢( ), , , aligning the
cylinder axis on ¢r and ¢Îk x′-z′ plane, then the coherence

function r x z¢ ¢ ¢ ¢( )r , ,TF

r e
x z

z¢ = - ¢ -
¢ + ¢
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x¢ ¢ º - ¢( ) ( )r r2 1 , 482

is non-vanishing only, when ¢ <∣ ∣r 1, x x¢ < ¢ ¢∣ ∣ ( )r , and
z z x¢ < ¢ ¢ ¢∣ ∣ ( )r , . Then, the Wigner function reads

ò òq x x x z

p
r x z

¢ ¢ ¢ = ¢ ¢ ¢ ¢ ¢
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with q¢ = ¢k k sinx k and q¢ = ¢k k cosz k. No further simplification
was found.

3.4. Factorizing the three-dimensional coherence function

The analytical evaluation of the Fourier-transformation of the
coherence function did not lead to simple closed form
expressions for the Wigner function. Therefore, we have
resorted to the factorization ansatz of the coherence function

xr c
x

h q
¢ ¢ ¢ = ¢ ¢

¢
¢

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
( )r n r

r
,

,
, 50TFf TF

e¢ ¢ = - ¢( ) ( ) ( )n r r1 , 51TF
2 2

c x
x

¢ = -
¢( ) ( )1
4

. 52
2

As in the one-dimensional case, one can choose a scale
h q x q¢ = ¢ ¢( ) ( )r r, , 2 such that the support of the factorized
coherence function (50) matches the full coherence function
(43) and (44).

In general, the shape of the support of the coherence
function changes continuously with ¢r from a sphere to a len-
ticular form of decreasing volume. If one considers only the
inscribed sphere with radius x¢ ¢ = - ¢( ) ( )r r2 1 , then the scale
also simplifies to h ¢ = - ¢( )r r1 , being independent of θ. All

Figure 8. Color-coded two-dimensional cross-section of the six-
dimensional Cartesian Thomas–Fermi Wigner function
¢ ¢ ¢( )W x k, 0, 0, , 0, 0xTF for the isotropic three-dimensional harmonic

oscillator in phase space. Cross-sections along the phase-space
coordinates ¢ = { }x 0.0, 0.5 and =¢ { }k 0.0, 3.0x are marked by the
gray lines (—— , - - - -) and are depicted in figures 10 and 11. The
parameters are κ=100 and m w= 3.38TF .

Figure 9. Color-coded two-dimensional cross-section of the relative
deviation D ¢ ¢( )x k, 0, 0, , 0, 0x of the exact evaluation and the
analytical approximation of the Thomas–Fermi Wigner function (54)
for the isotropic three-dimensional harmonic oscillator.

Figure 7. Fourier density ¢ ¢˜ ( )n kTF of the Thomas–Fermi approx-
imation versus wave-number ¢k in an one-dimensional oscillator (19)
(—— line) and ¢ ¢˜ ( )n kTFf of the factorized Wigner function (39)
(- - - line). The double logarithmic inset displays the algebraic decay
for large ¢k .
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things considered, this leads to the isotropic contribution of the
Wigner function with the factorization assumption

x
x

p
¢ ¢ ¢ = ¢ ¢ ¢ ¢

¢ ¢
¢

( ) ( ) ( )
[ ( )]

( )W r k n r r
j k r

k
, . 53TFf TF

2
2 2

In figure 9, we plot the relative deviation

p
D ¢ ¢ = ¢ ¢ ¢ - ¢ ¢ ¢( ) ∣ ( ) ( )∣ ( )r k r k r k

N
W W, , , , 54

3

TFf TF

of the numerical and the factorized Thomas–Fermi Wigner
function with respect to the maximal attainable value [26].
Significant deviations are noticeable at the flanks of the
distribution. This behavior can be studied in greater detail
analyzing cross-sections of the Wigner function at a fixed wave-
number in figure 10 and fixed position in figure 11.

The marginal distributions of (53) read

¢ ¢ = ¢ ¢( ) ( ) ( )n r n r 0, 55TFf TF



e
p

= + +

- -

¢ ¢
¢

¢ ¢ ¢ ¢

¢ ¢

( ) [ ( ) ( ) ( )

( ) ]
( )

n k
k

k k k k

k k

6 Si 2 2 2 cos 2

3 sin 2 4 0,

56TFf

2

6
2

where one recovers the correct positive Thomas–Fermi

density. Due to approximate scaling factor, some integration
volume is lost and one misses some contributions to the
Fourier density such that the strict positivity is marginally
violated. This is depicted in figure 12.

Figure 11. Cross-section of the Wigner function versus ¢kx for fixed
position ¢x for the isotropic three-dimensional harmonic oscillator.
Comparison of Thomas–Fermi approximation ¢ ¢ ¢( )W x k, 0, 0, , 0, 0xTF

(gray ——), with the Gross–Pitaevskii Wigner function
¢ ¢ ¢( )W x k, 0, 0, , 0, 0x (blue – · –) and the factorizing approach
¢ ¢ ¢( )W x k, 0, 0, , 0, 0xTFf (53) (black - - - -). We have chosen the same

parameters as in figure 8: (a) ¢ =x 0, (b) ¢ =x 0.5.

Figure 12. Fourier density ¢ ¢˜ ( )n kTF of the Thomas–Fermi approx-
imation (19) versus wave-number ¢k in an isotropic three-dimen-
sional harmonic oscillator (—— line) and ¢ ¢˜ ( )n kTFf of the factorized
Wigner function (56) (- - - line). The double logarithmic inset
displays the algebraic decay for large ¢k .

Figure 10. Cross-section of the Wigner function versus ¢x for fixed
wave-number ¢kx for the isotropic three-dimensional harmonic
oscillator. Comparison of Thomas–Fermi approximation
¢ ¢ ¢( )W x k, 0, 0, , 0, 0xTF (gray ——), with the Gross–Pitaevskii

Wigner function ¢ ¢ ¢( )W x k, 0, 0, , 0, 0x (blue – · –) and the factorizing
approach ¢ ¢ ¢( )W x k, 0, 0, , 0, 0xTFf (53) (black - - - -). We have chosen

the same parameters as in figure 8: (a) =¢k 0.0x , (b) =¢k 3.0x .
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4. Conclusion and outlook

The Wigner phase-space description is a central concept in
classical optics, signal processing and matter-wave optics.
In the case of interaction dominated Bose-condensed
gases, one can use the Thomas–Fermi approximation of the
Gross–Pitaevskii equation. For physical interpretations and
applications in ray tracing simulations, it is of relevance to
have reliable and simple parametrizations of the Thomas–
Fermi Wigner phase-space distribution. We present some
simple approximations within the additional factorization
approach and analyze their deviations. However, a systematic
expansion procedure in the spirit of a multi-pole expansion, or
more generally for partially coherent fields as in the Gaussian
Schell model of classical beam-optics [63] is still lacking.
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