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In current Bose-Einstein condensate experiments, the shot-to-shot variation of the atom number fluctuates up
to 10%. In here, we present a procedure to suppress such fluctuations by using a nonlinear p—7—p matter
wave interferometer for a Bose-Einstein condensate with two internal states and a high beam-splitter asym-
metry (p#0.5). We analyze the situation for an inhomogeneous trap within the Gross-Pitaevskii mean-field
theory, as well as a quantum mechanical Josephson model, which addresses complementary aspects of the

problem and agrees well otherwise.
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I. INTRODUCTION

Nonlinear optical wave propagation is known to give rise
to chaos, spectral and temporal distortion, or an amplification
of noise [1]. This fundamentally limits the signal-to-noise
ratio in state-preparation experiments or measurements. For
example, nonlinearity constrains the capacity of optical com-
munication systems [2], or the resolution of a gravitational-
wave interferometer [3], where the momentum transfer to the
mirror produces an intensity-dependent phase shift. How-
ever, optical nonlinearities are also capable of wave-packet
self-stabilization and of a phase-sensitive reduction of noise.
Second- and third-order nonlinearities, and especially the
Kerr effect in optical fibers, produce energy stabilization and
a noise reduction below the standard quantum limit [4—11] in
various experimental configurations [12].

The past decade of matter-wave physics has also shown
remarkable similarities with the development of quantum op-
tics in the 1960s. A lucent description of this parallelism of
quantum optics [13] and atomic matter waves is found in
[14]. Starting from the seminal measurement of spatial co-
herence in normal and degenerate gases [15-18], the field
has eventually progressed to study density fluctuations in
trapped, three-dimensional Bose-Einstein condensates (BEC)
[19-21] and fermionic gases [22]. By reducing dimensional-
ity via geometric confinement in planar traps, one-
dimensional traps, in optical lattices or on atomic chips [23],
the field has now been opened to a plethora of condensed
matter phenomena [24-31]. While the perfection of commu-
nication quality is the key issue for optics today, the main
application for cold atomic matter waves is quantum metrol-
ogy and sensing. Reaching the quantum limit and surpassing
it with matter waves is a major research direction [32-42]. In
this context, atoms or ions prove to be more flexible than
light, as we can control many-particle entanglement and ex-
ploit different quantum statistics [43-45].

The statistical ensembles that are generated in most of the
current experiments are never of the quality as theoretically
envisaged. In particular, most of the current BEC experi-
ments face a shot-to-shot variation of particle number N of
about 10%. This is primarily due to technical uncertainties in
the evaporation procedure [46]. If each individual BEC real-
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ization would be characterized by a pure Fock state |iy),
then the uncertainty Py in atom number will lead to an en-
semble in a mixed state represented by a density operator

P=E7DN|¢N><¢N|- (1)
N

Thus, each observable will lose contrast caused by this num-
ber uncertainty. In this paper, we will establish an atom num-
ber filter for matter waves that allows a number stabilization,
i.e., after passing each BEC through the filter the number
uncertainty is less than before.

This can be achieved by using a nonlinear matter wave
interferometer, cf. Figs. 1 and 3, which is in analogy to a
nonlinear fiber optics setup [7]. We will assume that the con-
densate consists of atoms with two internal states. Due to the
highly asymmetric splitting, which is crucial in this setup,
the condensate fraction in one arm of the interferometer ex-
periences a strong nonlinear phase evolution, while the other
part only undergoes a weak nonlinear phase shift.

The underlying physical mechanism of the suppression of
number fluctuations is based on the repulsive interaction
among particles and has been used in the context of spin
squeezing [47,48] or the Josephson effect [49-51]. The ideas
presented here are also related to the work of Poulsen and
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FIG. 1. Setup for an asymmetric optical nonlinear interferometer
with a propagation length L and a splitting ratio p:(1-p), p#0.5.
Due to a Kerr nonlinearity (susceptibility o), one obtains a differ-
ential phase shift ¢y = @) — pr=0(2p—1)N,,, proportional to an in-
put photon intensity N;,. A subsequent self-interference of strong a,
and weak field a, stabilizes the output field intensity Noy=|dqy/>
and diverts the noise to the rejection port ay;.
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FIG. 2. (Color online) Schematic representation of the ampli-
tude stabilization mechanism of a;, in an asymmetric, nonlinear
interferometer in phase space with quadrature components (a,,d;).
After the first beam splitter (1), the stronger field a; experiences a
large nonlinear phase shift that translates amplitude fluctuations into
correlated phase delay. One can neglect the nonlinear phase shift of
the weaker field a,. In a second beam splitter (2), a, is coherently
added to the phase-shifted field a; to cause output in a,y. This
stabilizes the output fluctuations well below the input level Aa;,
> Aa,,, as indicated by the noise ellipses.

Mglmer [52], since their approach combines ideas for light
squeezing in a nonlinear optical interferometer with the idea
for spin squeezing of two spatial, initially identically occu-
pied, condensate modes, generated via Bragg scattering. Our
approach is different, as it explicitly requires a highly asym-
metric splitting p# 0.5 or it would disappear at all, and it
uses internal states of the atom.

This paper is organized as follows: First, we briefly re-
view the central idea of amplitude stabilization of a nonlinear
optical interferometer in Sec. II. Second, we introduce an
equivalent model for a bosonic matter wave in Sec. III. This
is studied within a mean-field picture to consider the effects
of inhomogeneous traps as well as a Josephson model of two
quantized plane wave modes, which address the quantum
aspects and effects of finite particle numbers. Finally, con-
clusions are drawn in Sec. I'V.

II. PRINCIPLE OF NONLINEAR INTERFEROMETERS
IN OPTICAL FIBERS

A very fundamental type of nonlinearity, which is present
in many systems, is the intensity-dependent phase shift. In
photon optics it is due to the optical Kerr effect [1] charac-
terized by a susceptibility o and in matter waves it is caused
by interatomic atom forces measured by the s-wave scatter-
ing length a,. This leads to a self- or cross-phase modulation
and possibly to a self-trapping potential in the nonlinear
Schrodinger equation of motion of wave packets.

In the context of nonlinear interferometry [7], the inten-
sity filtering property is best in a highly asymmetric, highly
transmissive configuration, depicted in Fig. 1. The interfer-
ence of a strong wave with a weak wave can eliminate a
major fraction of the input noise of a;, in the output port a.
A predominant part of the noise is channeled to the rejection
port a.j, consuming a small fraction of the input photon
number.

Its two-step nonlinear self-stabilization mechanism is very
simple and visualized in Fig. 2. After the first beam splitter,
the asymmetric splitting of an input beam causes an
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intensity-dependent differential phase shift between the two
arms a; and a, of the interferometer. The nonlinear phase
shift transforms intensity amplitude increase or reduction due
to field fluctuations into a correlated phase advance or delay.
Therefore, it causes a correlated phase spread relative to the
average nonlinear phase shift. The second beam splitter su-
perposes both interferometer beams coherently. It changes
the quadrature angle of the field amplitude relative to the
noise distribution so that the amplitude-phase correlation
eliminates the amplitude noise to a large degree. For perfect
stabilization, the phase advance or delay of the stronger
mode relative to the weaker, quasistationary, linearly propa-
gating mode reduces or increases the output transmission by
the right amount to eliminate the input intensity fluctuations.

It has been shown that the stabilization mechanism does
not only eliminate classical noise or work only with
continuous-wave coherent light. Instead, this method is also
applicable with broadband ultrashort solitons and in the
quantum regime of field fluctuations. The fiber-optic asym-
metric Sagnac interferometer has been used as a photon
number filter for optical solitons [7,10]. Some of the best
squeezing results have been obtained with this setup, which
did not require any active stabilization. The quantum noise
reduction below the shot-noise (Poisson) limit has been mod-
eled by the quantum nonlinear Schrodinger equation
(NLSE). It is in perfect agreement within the measurement
uncertainty and stability has been obtained. Again, the noise
reduction mechanism can be readily understood by modeling
the essentials of the asymmetric interferometer by linearized
fluctuations in a semiclassical approach where now the un-
correlated vacuum fluctuations are entering through the un-
used input port of the interferometer and where the associ-
ated phase is the soliton envelope phase. The corresponding
semiclassical picture is then well represented by Fig. 2,
where the noise ellipses are then the minimum uncertainty
regions.

Thus, the question arises, how the analogy of the interfer-
ence of bosonic fields can be applied to matter waves. The
analogy is not trivial, because the quanta of the optical field
and the massive bosons of the matter field are described by
different ensembles. Also, on a practical side, it can be asked
how well the asymmetric interferometer can function as a
number filter for matter waves.

III. MODELING A NONLINEAR INTERFEROMETER
WITH BOSONIC MATTER WAVES

Let us consider a trapped BEC consisting of two-level
atoms labeled by o=e,g. The complete quantum states are
then denoted by |0, k) with the internal state o and momen-
tum component k,. The possibly time-dependent trapping
potentials for the two species are V(r,?). They are identical
V(r,t)=V,(r,/)+A up to a detuning A. The two states are
coupled by a classical traveling laser field ()e’*" with the
time-dependent Rabi frequency €)(¢) and the wave vector k.
This  configuration  represents a  Ramsey-Bordé-
interferometer (see Fig. 3) in the standard setup of atom in-
terferometry [53]. Initially, the BEC is prepared in the |g)
state and at an instant 7=0, a p pulse creates a superposition
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FIG. 3. (Color online) Setup for a matter-wave interferometer.
Absorption of a photon k implements an asymmetric beam splitter
with splitting ratio p:(1—p) . After a free time evolution of duration
T, an optional 7 pulse inverts the populations. The second beam
splitter with splitting ratio p:(1—p) mixes the states for the final
detection of one channel and the rejection of the other (compare
Fig. 1).

of |g) and |e) with a splitting ratio of the populations of
p:(1—=p). After a time delay T, a further 77 pulse gives rise to
an inversion of the populations. After another time interval 7,
a final beam splitter with splitting ratio p:(1-p) mixes the
populations again.

A. Theoretical description

In principle, the dynamics of this system is governed by

the Schrédinger equation i%d,|yA1))=H(r)|(1)) for a many-
particle state |¢(#)) in Fock space and with the Hamiltonian

H() = Hy(0) + V(1) + V,, (2)
where
Hy(1) = f &Er X ”(r){ o ]ag(r),
o=e.g

Vd(t) = f d3r[ﬁQ(t)e’k“'(r)a (r)+H.c.],

o1 AN AT A (1) A Ay AT
V=3 f 0130l (1)AL(0)a (1) (X) + g, (D))

Xaiy(1)d, (1) + 28,0} (1)a}(r)d, (r)d (r)].

In there, we introduced bosonic field operators

[G,(x),dl(y)]= 8(x~¥)5,,, 3)

and interatomic coupling constants g M,,=47Th2a uv/m be-
tween same and different species. a,, is the corresponding
scattering length and m is the mass of a single particle.

In order to get physical insight into this problem, we con-
sider two simplified scenarios. On the one hand, we study the
classical field approximation in Sec. III B, where operators
are replaced by complex amplitudes d,— «,, which yields
the Gross-Pitaevskii (GP) equation. Thus, the statistical char-
acter of the operator is neglected. Furthermore, we will con-
sider a quasi-one-dimensional, cigar-shaped configuration
with tight confinement in the radial direction [30]. The radial
part can then be integrated out directly, which results in
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modified coupling constants g,,— g,,. In the following, we
tacitly drop the bar. On the other hand, the operator character
is accounted for in the Josephson approximation of Sec.
IIC. In there, we neglect spatial inhomogeneity and con-
sider only the behavior of two plane-wave modes.

B. Classical field approximation

Within the classical field approximation, the correspond-
ing scaled quasi-one-dimensional GP equation reads

&'(aez’g> P(I)(ae )
g% g
Q(t)e”‘z

Vo(z,1) + v, ) @

V(z,0) + v,

1
HGP(I) = 2&3 + ( Q*(t)e—ikz
where the mean-field energies are v,=g,,n,
u#vele gt and ny=|a,(z,0]%

In the general case of time-dependent pulses and spatially
inhomogeneous traps, it is only possible to solve this equa-
tion numerically. Results of such a calculation are presented
in Sec. III B 2. However, if the system size is large and time-
dependent pulses happen on short times, then one can solve
this simplified situation analytically and gain qualitative un-
derstanding.

+8 M with

1. Bulk BEC in the Raman-Nath approximation

The beam splitter is realized by a quasi-instantaneous (7
<T,1/A) p pulse in the form of a traveling laser wave with
a Rabi frequency (). Mathematically, this is described via the
unitary S matrix

e +Ho) ( cos @  —isin geikz>
Sp:e +THC) — o "
—isin fe cos 6
01 Qr
U+=<o o)’ p=sin® 6, =", (5)

where the scattering phase shift 6 translates into a reflection
and transmission coefficient p and 1-p, respectively.

In the following, we have propagated the mean-field state
with flat potentials V,(z,7)=0, V,(z,7)=A for a total time 2T
in Eq. (4). The free nonlinear evolution was interrupted by
the interferometer pulse sequence p—7—p depicted in Fig. 3.
We assume that all the population 7 is 1n1t1a11y in the ground-
state component {«,(0), a,(0)}={0,\n e’kgz} moving with a
generic momentum k,. The general solution for the free
propagation is obtained easily by making the plane-wave an-
satz

{au(z.0), a,(z,0} = {a e %), a et 90}, (6)
€ 8 € 8

with time-dependent phases ¢,(7) and a recoil-shifted mo-
mentum k,=k,+k. We are interested in the particle density of
the output channel n®"=n,(2T)=|a,(2T)|* of the interferom-
eter. After some 51mple algebra, one finds for the transmitted
channels
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FIG. 4. (Color online) Response of a highly asymmetric p=p
=0.9, nonlinear p—7—p matter-wave interferometer: (a) Mean-field
result: outgoing particles in the e channel N‘e’”t vs the incoming
number Ny’ in the g channel: homogeneous mean-field (dashed-
dotted), inhomogeneous mean-field (dotted), and two-mode Joseph-
son approximation (solid) from Eq. (20). The line marked with [J is
the trivial response of a 0—7—0 interferometer, i.e., N‘g‘":Ni“ and
can be used to gauge the particle loss in the unobserved channel. (b)
Two-mode Josephson model: normalized number fluctuations 59" as
in Eq. (21) in a semilogarithmic representation. The optimal work-
ing point for the interferometer as a number-filter device is N'gn
=940 (see Fig. 6). There, one finds a strong, sub-shot noise suppres-
sion of number fluctuations in the output channel sgu‘< 1.

ngm=n<§— 7cos[2Tn52<p - %)D,

(1-p), (7

E=pp+(1=p)(1-p), y=2\pp(l-p)(1-p

with &6,=g,,—28,,+8,, a central difference of scattering
lengths. The population in the other channel n"'=n—n" fol-
lows from number conservation. A frequency shift of such a
structure has been observed already in [54].

A simplified but less efficient form of the nonlinear inter-
ferometer is found from a symmetric mixing p =% at the final
output beam-splitter

n;’“‘:n(%—v}?(l—p) COS{ZT’Z@(P_%)D' (8)

The most salient features of Egs. (7) and (8) are the absence
of linear phase shifts due to the intermediate 7 pulse, and the
nonlinear phase shift. It is proportional to the total interac-
tion time 27, to the density n, the central difference &, of
scattering lengths, as well as the asymmetry p # 0.5 of initial
beam splitting. The oscillatory response of the interferometer
with respect to a varying input particle number n stabilizes
the output particle number n", if operated in the vicinity of
a local minimum. This suppression of number fluctuations
represents a nonlinear number filter for matter waves and is
depicted in Fig. 4. It is also important to note that a symmet-
ric splitting p:%, or vanishing central difference 5,=0 of
scattering lengths lead to no effect at all.

Alternatively, if one considers a simplified interferometer
setup in Fig. 3, i.e., without the intermediate 7 pulse and

chooses a symmetric final beam splitting p =%, one obtains
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[ —
ngt = n(g +\p(1 = p) cos[{Ap + (5 +p52)n}T]>, )

with a total propagation time 7. This interferometer is sensi-
tive to single particle phase shifts, here, in particular, to the
Doppler-shifted detuning A,=A+k>/2 and also the differ-
ence of scattering lengths &,=g,,—g,,. For example, this
setup is used for atom gravitometry [53], but it is also more
susceptible to experimental noise (frequency jigger), which
deteriorates visibility.

2. Weakly inhomogeneous BEC in a square well trap

In order to study the reduction of the filter performance
caused by the inherent inhomogeneity of trapped atomic
BECs, we have examined two scenarios. In the present sec-
tion, we will consider a square-well potential

V,<0, 1<0, |z|<L

Vi(zf) =
s 0. =0

. (10)

for a confinement, while we will study a harmonically
trapped system in Sec. III B 3.

After the preparation of the ground state in the trap and
the first p pulse, the trap is switched off permanently. This
happens identically for both trapped states, whose energy
levels are detuned from the laser, i.e., V,(z,1)=V,(z,0)+A. If
the system length 2L is much larger than the healing length
{, one can expect results that are very similar a homogeneous
system of Sec. III B 1.

In the numerical simulations for the homogeneous and
inhomogeneous condensates, we have used generic param-
eters for a quasi-1D elongated *Rb BEC with an atomic
mass m=87 amu. In a prolate harmonic oscillator with a
trapping frequency w,=4 s~!, the basic length unit would be
apo=\h/mw,=13.2 um. We have used a multiple of this
scale for the length of the square-well trap L=132 um. Po-
tential depths V,=-%60 Hz and detunings A=0 are mea-
sured in natural energy units fw,. In a copropagating Raman
laser configuration, one can have a vanishing momentum
transfer k=0 and we assumed that the condensate is initially
at rest k,=0. Short laser pulses were used such that the beam
splitters were highly asymmetric p=p=0.9 and the propaga-
tion time between the pulses was 7=20 ms. We have delib-
erately modified the s-wave scattering lengths for *’Rb
slightly to obtain dimensionless quasi-1D coupling constants
80.=0.034, ¢,,=0.10, and g,,=0.068. Thus, the superior p
—m—p interferometer scheme remains applicable. In prin-
ciple, this can be achieved via Feshbach resonances or using
other elements such as Rb or **Na altogether.

For this situation, we have numerically solved the time-
dependent inhomogeneous GP Eq. (4) and find a similar be-
havior as for the homogeneous limit in Fig. 4. As expected,
we obtain a number stabilization of the nonlinear filter, but at
a slightly reduced performance due to the inhomogeneous
averaging. We have also verified that the best number stabi-
lization is achieved for highly asymmetric splitting, and that
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FIG. 5. (Color online) Output particle number No vs the input
particle number N;' in a harmonically trapped, two-component BEC
after passing through the interferometer. The solid (red) line repre-
sents the full numerical solution of the GP equation, while the
dashed (blue) line represents (N")1g, i.e., the local density approxi-
mation of the homogeneous result Eq. (11). The gray shaded areas
illustrate the compression of the number fluctuations. As in Fig. 4,
the dotted line (green) marked with [J is the trivial response of a
0—-0 interferometer.

the effect does not occur for equal scattering lengths, or lin-
ear matter-wave interferometers at all.

3. Harmonically trapped BEC with a recoiless two-photon
transition between hyperfine ground states

In the previous section, we have explored the number
filtering properties of this interferometer primarily in quasi-
homogeneous situations. However, a very common and im-
portant realization of a two-component BEC is harmonically
trapped ¥'Rb [54]. There, a two-photon microwave-rf field
couples trapped hyperfine states |g)=|F=1,mz=-1) and |e)
=|F=2,mp=1). Due to the low frequency of the
microwave-rf fields, one can also ignore the recoil momen-
tum imparted on the BEC.

We have studied this setup and used parameters that can
be achieved experimentally by producing a cigar-shaped
BEC with axial and radial trapping frequencies w,=1 s7!,
o, =270 s~', a beam splitter ratio of p=0.055, p=0.5, a
vanishing detuning A=0, and quasi-1D scaled coupling pa-
rameter g,,=0.0998, g,,=0.1036, g,,=0.1062. The dimen-
sional reduction and derivation of a one-dimensional cou-
pling parameter is achieved by a projection onto the radial
ground state of the transverse oscillator [30].

It is a peculiarity of the scattering lengths of ¥'Rb in this
two-state configuration [55] that leads to a very small, yet
nonvanishing value of the parameter 6,=-0.0012. But if one
can achieve a reasonably long interaction time of 7=2 s in
the interferometer, one can still use the setup as a number
filter. This is demonstrated in Fig. 5. Alternatively, one can
turn the argument around and use this device to measure the
scattering length difference &, very sensitively.

To assess the validity of the numerical solution of the GP
equation, we have made a simple estimate with the local
density approximations (LDA). In particular, we have used
the Thomas-Fermi (TF) approximation for the ground-state
density nyg(z) in the initial harmonic oscillator mode charac-
terized by a TF-length zyp [30], which agrees well with the
numerical solution as seen in Fig. 5.

PHYSICAL REVIEW A 78, 013605 (2008)

ut 1 “r
<N(e) )TF = 2_ dz n1p(z)
T —zqp
1 — 1
X{E —\p(1-p) cos[2TnTF(z)52<p - E) ] } .

(11)

C. Quantum mechanical two-mode approximation

In the classical field approximation for a homogeneous
bulk system of Sec. Il B 1, we have examined the static
number filter response of the interferometer. The macro-
scopically occupied amplitudes were described as two coher-
ently coupled nonlinear oscillators. They exhibited a noise
suppression that is analogously used in many other physical
systems ranging from electrical circuits to coupled Josephson
junctions [56-58].

In order to probe the quantum aspects of such a system,
we will now assume that the atomic fields d,(z) are domi-
nated by two plane-wave modes labeled with bosonic field
amplitudes ¢ and g,

AN ik sA AN ok -
4,(z) = e + 8d,, a,(z)=ge"s*+ od,. (12)

Their residual coupling to other modes dd,, is small at the
relevant time scales and will be disregarded altogether.
Within this Josephson approximation and in the quasi-1D
configuration, we can simplify the Hamiltonian of Eq. (2)

further to H~H ; with

. K e o
H;=Apii, + —2‘gng+Q(t)eTg+Q (ng'ée+—g,n,(i,—1)

1

2
| A oA

+ Egggng(ng = 1) + 8ot A, (13)

where 71,={é¢7¢,$"g} denotes the particle number operator for
the two modes and AD=A+k§/ 2 is the Doppler-shifted de-
tuning as in Eq. (9). The consistency of the limit can be
checked quickly by replacing the mode operators again by
complex numbers, just to recover Eq. (4).

Clearly, the Josephson Hamiltonian conserves the particle
number,

N=i,+h, [H,N]=0. (14)
Thus, a general state in the N-particle sector of Fock space is
given by a superposition of the states |ne,ng) with N=n,

+I’lg,

N
() = 2 YR(0)IN = n,m). (15)

n=0

The time evolution of such a state leads to a simple one-
dimensional difference equation for the time-dependent am-
plitudes

013605-5



NANDI et al.

i) =w" P+ @ OW + O (16)

S
w'=Ap(N—n)+ —Zg*n + Egggn(n -1)

bRV =N == )+ g V=), (1)

7" =QO\Vn(N-n+1), (18)

which can be solved easily on a computer or approximated
analytically [59].

From a pure quantum state |#(¢)), one can derive expec-
tation values of relevant observables, like the particle output
in the e-channel of the interferometer 7,(r). However, the
experimental reality is usually plagued with technical imper-
fections, day-to-day variations, or finite temperatures en-
sembles. Thus, one should include the possible total number
uncertainty with a statistical ensemble [13] and use the time-
evolved density operator p(r), as defined in Eq. (1), to obtain
observable averages. This information loss is described theo-
retically by a trace (...)=Tr{...p(¢)} over Fock space. In par-
ticular, this defines an output particle distribution p(n,,?)
from a convolution of probabilities

L (19

p(ne.1) = (A1) = n > = 2 Pyluly ()
N=0

and moments thereof in the form of expectation values, vari-
ances, and a volatility of the particle number

o]

(i (D)= 2 np(ne.t), (20)
n,=0
/a2 _ 2 out _ O'e(ZT)
ao(1) = (g (1) = (A (1), 0 = D) (21)

Now, we are in a position to discuss the practical aspects of
the number stabilization scheme on a quantum mechanical
level. First, let us consider an ideal situation where BEC’s
are prepared with a sharp total particle number N, such that
all atoms are in the ground state |¢(1=0))= 0,n,=N), ini-
tially. Obviously, such a perfect laboratory has no need for an
extra number filtering device and the interaction with the
interferometer will even be detrimental to the number uncer-
tainty due to the generation of shot noise. Second, if number
fluctuations are present and we operate the device at the op-
timal working point, one should obtain a reduced number
uncertainty. To illustrate this effect, we will consider a
Gaussian distribution

Py=Nexp[- (N -N)*25], (22)

which is characterized by a mean total particle number N and
a width o.

With this uncertainty model, we have evaluated the time-
dependent difference Schrodinger equation, Eq. (16), for the
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FIG. 6. (Color online) Evolution of the particle number distri-
butions p(n,,27T) (solid line) from two different initial distributions
pi.s (N,&)=(940,20) and (N,5)=(1720,15) (dashed dotted line).
While both distributions lose particles, the first distribution is sharp-
ened, while the second increases its spread.

p——p interferometer for a range of initial particle numbers

0=N=2500 and two widths &=(15,20). We have also re-
laxed the Raman-Nath approximation for the p—7—p beam-
splitter sequence and used extended rectangular pulses with
duration 7=1.31 ms<<T and total pulse areas {17 such that
p=p=0.9, as before. All other parameters are as specified in
Sec. III B 2.

For pure initial states (¢—0), we have depicted the re-
sults of this quantum mechanical simulation, i.e., the mean
output number {#,(27)) and normalized number uncertainty

s%" already in Fig. 4. It can be seen that this model also

e
agrees well with the homogeneous and inhomogeneous
mean-field calculations.

Finally, we can demonstrate the number filtering by

choosing two different ensembles py 5: one that corresponds
to the optimal input number (N,&)=(940,20) and one at

(N,3)=(1720,15), which leads to a further increase in the
number dispersion after passing through the interferometer.
In Fig. 6, we present the probability distributions p(n,,2T) of
particles leaving the e channel. The solid lines represent the
final distribution and the dashed lines represent the initial
distribution of particles in the g channel. The Gaussian na-
ture of the final distribution can be understood from a semi-
classical analysis of the difference equation [59]. By a fur-
ther convolution with a Gaussian noise source this property
remains invariant. It can be seen clearly that the first state,

which is prepared at (N,&)=(940,20), is further reduced in
width despite the overall loss of the particle number, while

the second state at (N,d)=(1720,15) simply loses particles
while spreading out further.

IV. CONCLUSION

In conclusion, we have analyzed the performance of a
nonlinear number filter for matter waves. This addresses the
problem of technical shot-to-shot variation of the particle
number in current Bose-Einstein condensate experiments. A
highly asymmetric p—7—p beam-splitter sequence is re-
quired to achieve optimal filtering performance. In the case
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of symmetric splitting or the absence of nonlinearity, no fil-
tering is seen at all. This method is in direct analogy to a
nonlinear fiber optics setup studied in [6,7,10]. In detail, we
have analyzed the situation for an homogeneous system and
an inhomogeneous trapped gas within the Gross-Pitaevskii
mean-field theory, as well as a quantum mechanical Joseph-
son model, which addresses complementary aspects and
agrees well otherwise.
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