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Abstract

We analyze the statistics of photons originating from amplified spontaneous emission generated by a
quantum dot superluminescent diode. Experimentally detectable emission properties are taken into
account by parametrizing the corresponding quantum state as a multimode phase-randomized
Gaussian density operator. The validity of this model is proven in two subsequent experiments using
fast two-photon-absorption detection observing second-order equal-time and second-order fully
time-resolved intensity correlations on femtosecond timescales. In the first experiment, we study the
photon statistics when the number of contributing longitudinal modes is systematically reduced by
applying well-controlled optical feedback. In a second experiment, we add coherent light from a
single-mode laser diode to quantum dot superluminescent diode broadband radiation. Tuning the
power ratio, we realize tailored second-order correlations ranging from Gaussian to Poissonian
statistics. Both experiments are very well matched by theory, thus giving first insights into the
quantum properties of radiation from quantum dot superluminescent diodes.

1. Introduction

The intriguing mechanism of amplified spontaneous emission (ASE) results in broad radiation spectra, high
output intensities, and strong directionality of emission [1-3]. Since the invention of the laser in 1960, ASE has
been the subject of intense theoretical and experimental coherence studies, in particular due to the disturbing
influence of ASE at the gas-laser threshold [4—7]. In the 1970s, Allen and Peters were the first to address the ASE
phenomenon, putting it into context with Dicke’s superradiance [8]. They defined ASE as ‘highly directional
radiation emitted by an extended medium with a randomly prepared population inversion in the absence of a
laser cavity.” Supported by theoretical studies and He-Ne gas discharged tube-amplification experiments, they
established the ASE threshold condition, the pump-output-intensity behavior, saturation effects, and spatial
coherence properties [9-12].

Todays, well-developed and highly sophisticated semiconductor laser technology provides compact ASE
light sources realized with superluminescent diodes (SLD), which are semiconductor-based opto-electronic
emitters generating broadband light. The technological development of these high-performance devices with
wide-ranging material structure systems is boosting application areas such as telecommunications, medicine,
and industry [13—16]. When it comes to compact, miniaturized light sources with spectrally broad properties,
SLDs are the first choice. To foster technological progress, it is indispensable to develop theoretical models of
SLD emission in close adaption to specific material systems targeting specific device properties such as pulse
performance [17], amplification improvements [18], and noise behavior [19-21]. Sophisticated numerical
models based on rate equations and travelling wave approaches have been developed [22-24] and guide future
progress.

However, fundamental quantum optical studies on SLD light emission, particularly regarding higher-order
coherence properties have not—to the best of our knowledge—been addressed so far. The complex material
structures with predominantly application-driven objectives often lead to theoretical approaches that ignore the
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quantum aspect of the light state. In this context, photon statistics is the footprint of the quantum nature of light;
itis directly related to the emission process and quantified by the central degree of second-order coherence,

g% (z = 0) [25,26].Itis important to point out that experimental access to photon statistics via the
determination of the second-order intensity auto-correlation function, g?) (z), in this spectrally ultrabroadband
regime, was not possible until 2009. Then, Boitier et al [27] demonstrated (via two-photon absorption (TPA) in
asemiconductor-based photocathode of a photomultiplier) evidence of the photon-bunching effect on the
corresponding ultrashort timescales. Since then, the second-order correlations, g (z), of broadband light
states can be globally resolved, in the sense that all contributing spectral components are simultaneously
detected. A number of investigations have exploited this elegant TPA-detection technique so far, referring to
characterizations and applications of broadband semiconductor emitters regarding their photon statistical
characteristics [28-34].

Moreover, the exploitation of quantum dot (QD)-based gain material in SLD structures enables a strong
enhancement of the spectral broadening [35] and introduces a non-negligible quantum aspect for the carrier
dynamics in the semiconductor material, as well as for the generation of photons [36]. The quantized zero-
dimensional carrier systems of the inhomogeneously broadened QDs in SLD structures generate a strong
emission-state hierarchy [37], which has only recently been extensively investigated regarding its impact on
coherence properties [29]. Recent studies on QD-SLD light coherence [30] have revealed a temperature-
induced reduction of the intensity correlations, while the ultrabroadband spectral emission remains unchanged.
This novel hybrid light state exhibits very low first-order coherence, as it is spectrally broad in term of
wavelength A1 = 65 nm or angular frequency b = 2z - 12.41 THz, but it shows suppressed g'* (0) = 1.33
laser-like intensity correlations.

These latest experiments require the development of a quantum theory of ASE light states emitted by QD-
SLDs. In this paper, we propose a simple model in section 2 that allows us to include specific emission properties
ofa given QD-SLD device without considering specific structural characteristics. In particular, we surmise a
multimode, phase-randomized Gaussian (PRAG) quantum state and discuss the evaluation of moments, as well
as the correlation functions of the light field. To probe this hypothesis, we match it with observations in two
different types of experiments. The results of the first experiment are reported in section 3, where the number of
modes of the QD-SLD light is varied systematically via optical feedback, and we observe the response in the
photon statistics. A second experiment is presented in section 4, where we induce a transition in the photon
statistics by superimposing coherent light from a laser diode with the broadband emission of a QD-SLD. Our
conclusions and future perspectives are presented in section 5. We present the technical aspects of the
interpolating spectra and the Euler-Maclaurin formula in two appendices.

2. Emission from a QD-SLD

The emission of an edge-emitting QD-SLD is described by the quantized transversal electric field,

£ = £ + £ To model a broad radiation spectrum, we need to consider a superposition of numerous
longitudinal modes, N, for the positive-frequency part of the electric field

N
}:Z(Jr)(t, r) = I:Z(H(x, ¥,z —ct) = z&’juj(t, r)a; (1)
=1

atposition r = (x, y, z) and time t. The structural composition of QD-SLDs [38] enforces a linear y-polarization
upon the radiation field. As we are interested in the forward propagating field, we want to consider the
spatiotemporal modes of the field, u; = y (x, y) ellkiz—oile y- They are formed by a single transverse wave
function, y, as well as longitudinal plane waves with wave numbers k =27 / L. Here, Lis the length of the
optical system and A is the cross-section area. Then, the mode functions are normalized to the volume V=AL,

f &3r |uj(t, r)|2 =V. (2)
v

The quantized amplitude, 4, of the electromagnetic field annihilates photons of mode jand satisfies the bosonic
commutation relation [d;, 4 }L | = &j;. This field is an approximate solution of the free Maxwell equation with a

linear dispersion relation w; = ck;, with the velocity oflight, c. The field normalization, £; = i, //w; /26, V , of
equation (1) is chosen such that the energy of the transversal field is given by

N

j=1

where € is the vacuum permittivity.
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Figure 1. Measured optical power spectrum, S (w), in arbitrary units versus angular frequency @ of the QD-SLD with central
frequency @ = 2z - 242.6 THz and spectral width b = 27z - 13 THz. A three-term Gaussian fit (see appendix A) (red, solid line)
exhibits a dominant central emission line (green, dashed line), as well as a lower side-band (magenta, solid line) and an upper side-
band (blue, dashed dotted line).

2.1. Quantum state of the electromagnetic field

To parametrize the quantum state of the QD-SLD emission, we consider an observed optical spectrum, S (@),
shown in figure 1, as an input. Clearly, the diode emits on a central angular frequency, @ = 2z - 242.6 THz

(A = 1236 nm ), showing a Gaussian-shaped distribution with a very broad spectral width of b = 2z - 13 THz.
There are also upper and lower side-bands visible, whose strength can be quantified by a three-term Gaussian
interpolation of the data (cftable 3 of appendix A) [39].

This obviously demonstrates that the quantum state cannot be described by thermal Planck distribution and
that the broadband emission is strongly incoherent, as measured by the first-order correlation function, gV (z).
Regarding the intensity correlations, QD-SLD emission can exhibit significant deviations from ideal thermal
photon statistics, g(z) (0) = 2. Areduction down to laser-like values of g(z) (0) = 1.33 at temperatures around
T = 190 K has been measured [30]. This can be interpreted as a delicate balance between spontaneous and
stimulated emission in QD-SLDs.

These experimental facts about the amplified spontaneous emission of the device are captured by the
multimode PRAG state [40-43]

R 1 /275 . oAt
= d¥¢ D(y)prD' (y) (4)
A= 0o Jo ¢ D(y)prD (y
with the multimode displacement operator
N
D(y) = exp| 3 7;a 1 |- (5)

i=1

A natural choice for an equilibrium state p; is the canonical operator

e PH

s ) 6
Pr 7 (6)

where Z = Tr{e#H} is the canonical partition function and f = 1/kgT is proportional to the inverse
temperature.

A phase-space representation of this PRAG state is shown in figure 2. There, we consider a generic mode, i.
Starting from a Gaussian state centered at the origin, we shift it by a complex amplitude y. = |y;| e!? and
randomize the phases, ¢;.

Itis instructive to consider the limit of vanishing temperature T'— 0. There, one finds for the probability of
finding n photons in mode 7,

2n
p;(n) = <5(n - ﬁi)> = e_|7’i|z|yi—, (7)

n!

with7; = d;ﬁi. As usual, quantum averages (...) = Tr{.../} require tracing over the state. Clearly, this

coincides with the Poissonian distribution of a coherent state, |y) = D(y) |0}, even though we have completely
randomized the phases of this incoherent state of equation (4).
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Figure 2. Schematic phase-space representation of a phase-randomized Gaussian state, /. We depict the mode i, which is prepared in
a thermal state, displaced by y; = |y;| €!, and all phase angles are randomized according to equation (4).

2.2.Ensemble averages
The properties of the PRAG state are completely characterized by first- and second-order moments

. A A 2
(ar) =0, <a}ai> = <|7’,| + nT(wi))5ij- (8)
All higher-order moments can be determined by Wick’s theorem. Here, the mean thermal occupation number
(@) = ——— 9)
nr(w) = N (

is given by the Bose—Einstein distribution. For near-infrared (NIR) photons with a central angular frequency
@ = 2rr - 242.6 THz (1 = 1236 nm) at room temperature, the thermal occupation, ny (@) ~ 107", is
negligible. However, one has to keep in mind that the QD-SLD is a driven semiconductor system, so the photon
temperature does not have to agree with the ambient temperature.

Commonly, the stationary field intensity” of the radiation in units of W m™2 is given by [44]

I(x,y) = 2€0c<E(_)(t, r)ﬁ(+)(t, r) > (10)

Due to the stationarity of the state and the translational invariance of the traveling wave field in equation (1), the
intensity is also independent of t and z. The optical power, P, recorded by a typical single-photon detector at
position z, is proportional to the intensity, integrated over the detector area

N
_ _ s t — ps t 3
P‘fA dxdy I (x, y) —l;pi +pl =P 4P with (11)
Jiw;ic fwic
pi=pw) ==l pf = (@) = = (o). (12)

The power is distributed over a bandwidth of frequencies, as shown in figure 1. Therefore, it is relevant to
define frequency averages and variances

Y L (- ey
(b)) =§§pi, Kp= Y (13)

i=1

Consequently, the total power (11) can be expressed in terms of the average values as

P=P 4+ P =N () + (), (14)

given by the sum of the average powers of the incoherent field, {(p*)), as well as the thermal field, {(p*)), times the
number of modes, N.

The physical quantities introduced in this section, become important in the following when studying first-
and second-order correlation functions, as they provide information about spectra and photon statistics of the
considered light states.

A common definition of an ‘intensity’ misses the appropriate factor of 2¢yc [69] in disagreement with the radiometric definition of
intensity Wm? [70]
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2.3. First-order temporal correlations
According to Glauber’s coherence theory [25, 45], the first-order correlation function is defined as the
expectation value

G (xy, x3) = <E“’(x1>ﬁ‘+>(x2>> (15)

with space-time event x = (¢, r). To assess scale-invariant properties of the correlations, one considers
normalized correlation functions usually given by the fraction

G(l)(xl) xZ)

\/G“)(xb x1) G (x2, x2)

g (x1, x2) = (16)

Using a spectrum analyzer, we can obtain an experimentally accessible signal that is proportional to the spatially
averaged temporal correlation function

G () = / dxdy GO(t, 13t + 7, 1). (17)
A

Applying the normalization condition (2) and using the moments defined in equation (8), we obtain for the
temporal first-order correlation function

N

Z:e‘i“"’<piS + p[). (18)

i=1

GW(r) =
2e 0C
For vanishing time delay 7 = 0, the first-order correlation function reduces to G (z = 0) = P/2¢yc.
In evaluating the spatially averaged, normalized first-order temporal correlation function at an equal
position, we assume that for two different space-time events, GV (x,, x,) changes slowly compared to equal
events, GV (x, x), and therefore it can be approximated by

2e0cGV(z)  1n . s
gV (1) ~ o b = FZG_I“"T(pi + pl.t). (19)
i=1

Its modulus fulfills a Cauchy-Schwarz inequality
0< gV @] < [P = 1. (20)

In the experiments, we evaluate field correlation spectra at the position r; they are defined in the stationary
limit as [46,47]
. €oC © ;i (1)
S(r, a))=hm—f dr " GY(t, r;t+ 7, 1). (21)
t—oo T —00
From this definition, we derive by integration over the cross section of the detector area the power spectrum at
the detector position z

S@) = [ dxdy S(r, ) = ﬁ(ps(w) +p' (@), (22)

with continuous expressions of the powers described by equation (12). In the derivation of this result, we have
approximated the sum in (18) by the first term of the Euler-Maclaurin series (cf. equation (B1)) by using the
frequency separation between adjacent modes Aw = (wy — w;)/(N — 1). Furthermore, we have also assumed
that the frequency spectrum has a finite support in the frequency band [, @y ]and the spectral width is much
less than this bandwidth (i.e., 6 < |on — @1]).

Obviously, the spectrum is also position independent and it consists of a superposition of the continuous
distribution, |y (@) |?, as well as a thermal occupation number 77 (). These shapes can be extracted from the
measured power spectrum (see figure 1).

Integration of the frequency spectrum over the bandwidth

[ dosw) =P (23)
adds up to the total power in equation (11).

2.4. Second-order temporal correlations

In general, two-photon correlations can be measured by two single-photon detectors [48], or a single two-
photon detector [40]. The present experiments realize a two-photon measurement with a two-photon detector
at position z. The relevant observable, the second-order correlation function, is defined as

5
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GO (x, x3) = <E“‘)(x»E“‘)(m)é”)(xz)ﬁ”(xl)> (24)

and the normalized correlation can be written as

G(xy, x2)
GOy, %) GV (x5 x7)

g (x1, x2) = (25)

For slowly varying G (x;, x,) compared to G'") (x,, x,), the normalized temporal second-order correlation
function measured by the two-photon detector reads

(2€0C>2
f dxdy GOt 13t + 7, 1). (26)
p? A

Evaluating the spatial integral leads to the expression

g(z) (7) ~

N
2 1 s
@ =1+ [0 - ¥ (27)
i=1

depending on the modulus of the temporal first-order correlation function, gV’ (z), calculated in equation (19).
For the considered PRAG state, we find that ¢g'¥) (z) is bounded from below and above by

0<gP(r) €2, (28)

which can be verified by considering the single terms in equation (27): the last term takes values only between 0
and 1, and the modulus of g(l) (7) is limited by (20). Furthermore, the normalized second-order correlation
function obeys the inequalities

¢ (z) < g¥(0), g?(0) > 1, (29)

which also holds in the special case of treating the electrical field purely classically.
In the special case of a temporal second-order auto-correlation function at vanishing time difference 7 = 0,
equation (27) reduces to
Azps
1+ -2
1 Up* 2
g(z)(()) =2 — R

) (30)
" 2
N(1 {p >>>

(P

with mean values ((p*)), ((p')), and variance A%p* already introduced in equation (13). Itis interesting to note
that the photon statistics of the PRAG state depends on the number of modes and their distribution i.e., g'¥ (z) is
coined by the characteristics of each individual QD-SLD.

For negligible thermal contribution and limiting the electric field to a single mode, N = 1, the intensity
correlations ¢g'? (0) = 1 are Poissonian again, as demonstrated in equation (7). In the complementary case of a
perfect thermal light source, the second term in equation (30) vanishes, and consequently g (0) = 2.

3. Tuning mode numbers via optical feedback

On the one hand, the number of active modes, N, in the emission spectrum of the QD-SLD represents a
significant parameter for the PRAG state (equation (4)). On the other hand, the contribution of thermal photons
in the NIR sy (@) is marginal for room temperature and will be neglected in the following. The inverse
proportionality to N in equation (30) suggests that for a high number of modes, the intensity correlations should
be very close to g (0) = 2, whereas for alow number of modes, g» (0) — 1 continuously. Figure 3 visualizes
the dependence of ¢'¥) (0) as a function of N for different values of A2p*/{{p*)) %: They all show steep trajectories
from ¢'¥(0) = 1to g (0) = 2, where with increasing ratio A%p*/{(p*)) 2, g (0) functions are shifted towards
higher values of N.

We put these theoretical predictions to an experimental trial with a QD-SLD. Therefore, we must measure
second-order correlation functions, g'¥ (7), of light emitted in the NIR with spectral widths up to more than
A2 = 100 nm correspondingto b = 2z - 19.9 THz in terms of angular frequency, which sets challenging
requirements on the time resolution of the measurement system. Standard coincidence counting techniques
such as Hanbury-Brown Twiss (HBT) setups are fundamentally limited by the bandwidth of the implemented
detectors, and they fail in time resolution by more than 4 orders of magnitude (see, e.g., [49]). In 2009, Boitier
et al developed a method to experimentally access sub-femtosecond time-resolution for second-order
correlation functions, g (z) [27]. The technique is based on TPA inside a semiconductor-based photocathode

6
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Figure 3. Intensity correlations, g (0), versus number of modes, N (equation (30)). We depict the influence of the parameter
A2p/((p*))* for aPRAG state on g (0) for characteristic values.

AL (@)
PMT LS
BS 1 I+ N € A
LPF
BS 2
Y" - e
SMF QD-SLD

ISO

Figure 4. (Left) Schematic TPA-detection setup for second-order correlation measurement: photomultiplier (Hamamatsu R928,
multialkali photocathode) in TPA operation (TPA-PMT), long pass filter blocking fundamental absorption (LPF), achromatic lenses
(AL), broadband 50:50 beam splitter (BS 1), motorized translation stage (TLS), and single mode fiber (SMF). (Right) Schematics of
the optical feedback setup: broadband 50:50 beam splitter (BS 2), variable attenuator (ATTN), and optical isolator (ISO).

of a photomultiplier tube (PMT). TPA is an absorption process, which relies on a virtual state inside the bandgap
of the semiconductor material exhibiting a lifetime resulting from energy-time uncertainty, thus enabling
ultrafast and ultrabroadband detection of G? (z = 0) [40]. Implementing the TPA-PMT in a Michelson-
Interferometer, which introduces a time delay, 7, via a high-precision, motorized translation stage, second-order
autocorrelation functions, G® (1), can be extracted from the measured TPA-interferograms via low-pass
filtering (figure 4, left) [27, 50].

In the following, we will use the notation gt(hz) (0)and ge(f; (0) to differentiate between theoretically predicted
and experimentally determined values, respectively.

It turns out that one of our earlier studies [28] demonstrates the tailoring of first- and second-order
coherence properties of pure QD-SLD emission by applying optical feedback (OFB) onto the semiconductor
emitter (figure 4, right). The essence of this investigation was the observation of a simultaneous, continuous
reduction of i) the spectral width, A4, from 120 nm to subnanometer values, and ii) the second-order coherence
degree, ge(;r)) (0), from 1.85 to 1.0, for the light emitted by the QD-SLD (InAs/InGaAs, dot-in-well structure)
under increased OFB. However, this observed transition in coherence, induced at relatively low spectral widths,
still lacks a theoretical explanation. This published experimental investigation is therefore perfectly suited to be
compared to the theoretical investigation performed in this paper, especially because narrowing the spectral
width is synonymous with reducing the number of modes, N.

The OFB was realized straightforwardly by splitting the collimated light emission from the QD-SLD by a
broadband 50:50 beamsplitter and reflecting the light back into the waveguide with a mirror, forming a total
feedback distance of 600 mm (figure 4, right). For optimized and controlled OFB coupling, the polarization of
the backfed light has been analyzed preliminarily using the Stokes parameter formalism [51]. The polarization
was found to be preserved during propagation in the OFB arm, revealing an expectedly high degree of

7
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¥ x  OFB experiment
1.0 #R o PRAG model -
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Figure 5. Results of the second-order coherence degree, g (0), from the optical feedback experiment as a function of the number of

modes, N, in comparison with values calculated according to our theoretical model (equation (30)). Additionally, a guide-to-the-eye
trajectory is depicted, with A>p*/((p*))? = 0.8 reflecting the predicted behavior of figure 3.

Table 1. Representative values taken from
figure 5 with experimentally determined
parameters Nand A%p*/{(p*)) ? for calcula-
tion using equation (30).

Azps

A @
N «p*) Sexp © gt<l12) (©)
3 1.31 1.18 1.23
10 1.12 1.78 1.74
30 1.08 1.83 1.931
1945 0.57 1.84 1.999

polarization (>0.95) above the ASE threshold with a dominant linear polarization component whose
orientation coincides well with the horizontal structure of the QD layers. A small feedback strength below 5%
resulted in a smooth narrowing of the ultrabroadband optical spectra down to 15 nm spectral widths in terms of
wavelength, with ASE ripples becoming more and more significant (Optical Spectrum Analyzer ADVANTEST
Q8384). A high feedback strength up to 25% induced strong spectral narrowing with multimode emission
operation. There, the frequency spacing of the modes clearly corresponded to the QD-SLD waveguide length of
3 mm. We want to emphasize that we avoided any system dynamics caused by OFB operation by delicately
choosing OFB adjustments where the permanently monitored optical spectrum showed stabilized and
controlled emission during the measurement. In this study, we are explicitly not interested in any dynamical
regimes where OFB on QD-based emitters can lead to highly nonlinear and chaotic behavior [52, 53], especially
when one deals with low-gain regimes [54, 55].

The continuous transition of the second-order coherence degree, ge(f; (0), taken from [28], is now depicted

in figure 5 as a function of the number of emitted modes N, calculated from the measured optical spectra, p;.
Note that it is essential to exclude nonrelevant spectral contributions, which can falsify the statistics of pj; thus we
choose to take into account only those peaks that are no more than 13 dB below the maximum power value,

Dy - We calculate the corresponding theoretical values, gt(hz) (0), according to equation (30) with the

experimentally obtained parameters N, ((p*)), and A?p*, in order to reproduce the experimental conditions of
the observed coherence transition. Figure 5 matches experimental data with theoretical prediction. Numerical
values are tabulated in table 1 for reference.

For ultrabroadband QD-SLD emission, N takes very high values. Here, the number of modes could not be
enumerated straightforwardly by counting spectral peaks because smooth Gaussian-like spectral shapes
dominate, and therefore N remains experimentally undeterminable. However, a lower bound estimate is given
by the number of Fabry-Pérot modes matching the length, L = 3 mm, of the QD-SLD waveguide, similar to a
multimode laser but here with strongly broadened and overlapping longitudinal modes. In practice, N has been
determined by fitting modes with spacing according to the free spectral range (FSR) in terms of angular
frequency, Aw = 27c/2nGaas L = 27 - 1.465 - 10'° Hz (ngas & 3.41), to the optical spectra, taking into
account the previously mentioned 13 dB cutoff, resulting in mode numbers N > 1000. In this regime, we

observe experimental values, ge(j; (0), fluctuating around 1.85 and theoretical values around gt(hz) (0) = 1.999

(i.e.,very close to the limit value of 2 for pure thermal states). Again, the specified mode numbers, N, are lower,

8
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bound estimates, but regarding figure 3, we can deduce that, considering the experimentally determined values

of A2ps/{{p*))* (see table 1) of about 0.6, gt(hz) (0), (N > 1000) is clearly restricted to values above 1.99, which

limits the uncertainties, A gt(hz) (0), to below 1%.

The observed discrepancy, Ag? (0) = | ge(f; (0)- gt(lf) (0)] ~ 0.15, between experiment and theory in this
ultrabroadband regime can have various causes. First, the frequency-dependent TPA detection efficiency
described by the TPA absorption parameter, f (@), of the detecting photomultiplier might engender an unequal
balance between photons of different frequencies contributing to the total intensity correlation signal, and thus
lead to a slight reduction in gef; (0) [56]. Second, chromatic and sherical abberation is an important challenge
when one deals with spectrally ultrabroadband light beams. We manage to minimize these effects by
incorporating NIR-optimized achromatic doublet lenses (Thorlabs) with high-quality abberation control. And
third, chromatic dispersion of the beamsplitter from the Michelson apparatus may affect the central degree of
second-order coherence [27, 33, 56]. In addition to all those experimental effects, the SLD itself might exhibit
nonideal thermal photon bunching [30, 31, 57] and thus intrinsically provide reduced values of g‘* (0).
Entering the regime of directly countable mode numbers of N =30 down to N = 15, we still observe high
second-order coherence degrees above ge(fg (0) = 1.8, butalready with a slightly decreasing tendency. This is in

agreement with the calculated values, gt(hz) (0), which show a less-fluctuating trajectory. It is only for small mode

numbers, N < 15, that a steep transition from ¢? (0) = 1.8to ¢'¥(0) = 1.0 is recorded, both for experimental
and for calculated values. Strongly deviating ge(f; (0) values are due to challenging experimental conditions
concerning the stabilization of the QD-SLD emission under OFB during the measurement. Nevertheless, the
agreement between experiment and theory is more than obvious, and therefore we can confirm that the
coherence transition is indeed triggered by the strongly reduced number of existing emission modes, N, and the
slightly enhanced ratio of A%p*/{{p*)) 2. Hence, this result supports the assumed PRAG state for describing ASE
light states from QD-SLDs.

Unfortunately, the coherence transition is observed for a very low number of modes where the QD-SLD no
longer exhibits smooth broadband spectra. The reason for significant second order coherence changes only for
N < 15lies in the small values of A%p*/{{p*))? (see table 1) in the range between 1 and 2. For broadband
emission with tens of nanometer spectral widths and Gaussian-like spectral shapes, we find even lower values,
A2ps/{{p*))? < 1, which fix second-order coherence degrees quickly to ¢ (0) = 2 byincreasing N (figure 3).
The drawback of these results is therefore the loss of the broadband emission property of the QD-SLD, and
hence the accuracy of the PRAG model in the broadband ASE regime of the QD-SLD still requires more
evidence.

Consequently, we choose to implement a second experimental approach with priority on the conservation
of the broadband ASE regime of QD-SLD operation: a fully coherent light state from a single-mode laser
emission is superimposed on broadband ASE from a QD-SLD with an implemented variability of the intensity
ratio between both light components influencing the second-order correlation properties. The coherent light
state thereby probes the accuracy of the assumed PRAG state via the combined photon statistical behavior. This
approach is based on the concept of ‘mixed-light,” which has been subject to extensive experimental and
theoretical studies starting shortly after the invention of the laser in the 1960s, in connection with photon-
counting methods and the newly developed HBT experiment [5, 6, 58—61]. Recently, mixed-light state analysis
with pseudothermal light [62] has been investigated, demonstrating the continuous tunability of photon
statistics [63] regarding polarization dependencies related to possible applications such as ghost imaging
schemes [64]. Here, we extend the mixed-light phenomenon to highly first-order incoherent light sources, and
we exploit it for the verification of our theoretical model.

4. Mixing light from two sources

In this section, we present the theoretical analysis of the superposition of a coherent light state with the already
introduced PRAG state, focusing on the proper quantum optical definition of the superimposed state of light
and the resulting combined second-order correlation behavior. In a second step, we will show results of the
realization of a mixed-light experiment.

4.1. Mixing light theoretically

According to the implemented mixed-light experiment (see figure 6), light from a QD-SLD is superimposed
with light generated by an independent single-mode laser source with a fixed frequency, @y, combined in a fiber-
based beam splitter. From there on, the state of the electric field reads
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TPA setup
QD-SLDE{ g®(1)

ISO  ATTN (Fig. 4)

- >

Figure 6. Schematic of the setup for the mixed-light experiment. All semiconductor-based free-space emitting devices (QD-SLD and
single-mode laser), optical isolator (ISO), variable attenuators (ATTN), and single-mode fiber-based beam splitter (FBS). For second-
order correlation analysis, the fibercoupled mixed-light is guided to the TPA-detection setup in figure 4.

A 0|28 (o — o)

nr(m)
' r@)?

~ L,

o o

Figure 7. Schematic representation of the single components of the spectral distribution for mixed-light. The depicted curves are a
delta distribution (green) for the laser light, a Gaussian distribution (red) for the QD-SLD light, and a thermal Planck distribution
(blue) for reference.

f = D (@) pD' (), (31)

with the single-mode displacement operator, D (a;) = exp (ad; — aj d;),and /A given by equation (4). In
other words, we add a coherent amplitude a; in mode k to the state of the QD-SLD light as a result of the beam
splitter, mixing the two independent sources.

The normalized temporal first- and second-order autocorrelation functions for mixed-light can be
determined the same way as the case of a single source. For the temporal second-order correlation function
G (z) and the total power P" of light states characterized by the density operator of equation (31), one gets

N
GV(z) = Y@ (p! +p; +p}), (32)
i=1
N
Pm=3p! +p’ +p/ =P+ P+ P, (33)

i=1

showing the same results as for the QD-SLD, but with additional terms considering contributions from the laser.
Here, the laser power is defined as

N
fw;
P'=Yp! with p! =" |a;Psy (34)
i=1
Now, we can specify the spectrum of the mixed-light state,
1
S(@) = Pls(w — wp) + —(p* (@) + p (), (35)
Aw

with three contributing terms (i.e., three single spectral distributions), as illustrated in figure 7. The green line
indicates a delta function at frequency wy, which occurs due to the laser light description of a pure coherent
state. The other two distributions originate from the assumed nature of the PRAG states: the blue curve reflects
the thermal contribution, described by an ordinary Planck distribution, and the red curve is a Gaussian,
representing its incoherent character.

The temporal normalized second-order correlation function in the case of mixed-light with density
operator p, reads
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2 N B
g2 =1+ [ - Y1 +P§?1p"2- (36)
As in the previous discussion in section 2, the time-dependence only arises from the modulus of
N 2 N 2
‘g(l)(r) |2 _ ﬁ P24 Zpise—iwir + Zpite—iw,’f
i=1 i=1
N N
+2 Zp;pit cos A;iT + 2p! Z (p: + p;)cos At (37)

ij=1 i=1

with frequency difference 4;; = w; — @ ;. Thelast term in (37) oscillates with the beat frequency of the laser and

the ith mode of the QD-SLD, Ay = w; — wy, leading to side-bands in the spectrum and in g (7).

Itis instructive to discuss different limiting cases of the light-state assumptions. For a pure thermal state (i.e.,
ay and y, are zero), the last term in (36) vanishes and the temporal second-order correlation function reduces to
the well-known Siegert relation [65]

gP@ =1+]gV@, (38)

where ¢! (z) is the normalized first-order correlation function for thermal light sources. For a single coherent
state, the correlation function of the second order takes the expected constant value of one, g(z) (r) = 1,for
arbitrary time delay, 7. Certainly, for vanishing amplitude ay, the expression of the second-order correlation
function, as already studied, reduces to equation (30). Specifically, in the case of identical space-time events,

7 = 0,weget

2 N
PE+ Y p?
g?(0) =2 - Pimzl—ll (39)
Rewriting ¢'? (0) in terms of variance and mean values, as already introduced, yields
Azps P12
1+ +
1 s\ 2 s\y2

g(Z)(O) —2_ — {p*n N{(p*) (40)

N why , P )2'
(1 e T N

4.2. Example of a Gaussian spectrum
Motivated by the experimentally obtained optical spectra of figure 1, we study analytically the case of a single
Gaussian spectrum, that is,

wAw (‘"*"”)Z

S(@) = Pi—229 o5, 41
p (CU) Omd@e ( )

with mean value @, frequency width Aw = (wy — w;)/(N — 1), and standard deviation ¢. The normalization
constant, Pg, is determined by the discrete summation of the powers

N
Pr= Y p(wi) » P, (42)
i=1
which is satisfied by equation (41), assuming the applicability of the Euler-Maclaurin formula (see appendix B).
For the sake of simplicity we neglect thermal contributions to the spectrum of the SLD, (i.e., p’ (w;) = 0). After
utilization of the Euler-Maclaurin formula and introduction of dimensionless variables ¥ = o7, ® = @/0,
A® = Aw/o,and 6@y = dwi/oc = (@ — wy)/o, we obtain the scaled second-order correlation function

g(z)(f>=1 + ﬁ X {e—ﬁ(l + (f/a:))z) -+ Ze‘%ze[cos(&bkf) - %sin(éd)kf)]}, (43)

Ad 1 P!
with 7= —w(l + —) €= —. (44)
2T 23? Ps

For an increasing time delay, the first term in the brackets exhibits an exponential decreasing behavior that is
subtracted by a small offset depending on the frequency distance, A@®, and the mean value, @, of the QD-SLD;
the last term shows a damped oscillation with beat frequency 6@y, depicted in figure 8. Here, the blue line
corresponds to the scaled second-order correlation function of mixed-light for varying time delay 7, with the
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Figure 8. Scaled temporal second order correlation function g(2> (%) versus dimensionless delay time 7 (equation (43)) for Gaussian
distributed photon number |y, [>with € = 3/2, A@ = 1073, @ = 100,and 6@ = 4 (blueline). The black dotted (dashed) line
represents the correlation in absence of the light-emitting QD-SLD (single-mode laser).

chosen values € = 3/2, A@ = 1073, & = 100, and 8@, = 4. The dashed (dotted) black line depicts the limiting
case of vanishing laser (QD-SLD) light. Evaluating equation (43) for time delay 7 = 0 results in
n+ e?

¢@(0) =2 - Tr o (45)

depending on the frequency width Aw, standard deviation o and on the ratio of the powers of the laser and the
QD-SLD.

4.3. Mixing light experimentally

The superposition of the coherent light state with broadband QD-SLD light is experimentally realized by the
exclusive use of semiconductor-based opto-electronic emitters, namely a single-mode quantum-well ridge-
waveguide Fabry-Pérot laser (Eblana Photonics) and a QD-SLD (Innolume GmbH).

The 4 mm long waveguide QD-SLD consists of a triple-chirped epitaxial structure (InAs/InGaAs, dot-in-
well structure with 10 active QD layers) in order to realize ultrabroadband ASE when operated above the ASE
threshold with a spectral width A4 = 67 nm centered at approximately 4 = 1236 nm (figure 1). The
combination of a high reflective facet on the backside and an antireflective facet on the front side, allows i) high
intensities and efficient light-outcoupling, and ii) efficient suppression of reflections back into the waveguide at
the output facet, in order to prevent spectral narrowing. This extreme first-order incoherence is accompanied by
enhanced second-order correlations within the ultrashort coherence time, visible solely on the scale of
approximatively 100 fs on the recorded TPA interferogram (figure 9 (bottom left)).

Figure 9 (top left) depicts the extracted second-order correlation function g(z) (7) (redline), together with its
theoretical counterpart (blue line), calculated according to the PRAG state model (equation (27)) with
experimentally determined parameters taken from the corresponding optical spectra: N, p;, P, and |g'V(z)
using equation (19). Just as for the OFB experiment, N is estimated by taking the lower bound of possibly
contributing modes, namely the number of Fabry-Pérot modes fitting into the recorded optical spectrum, with
spacing corresponding to the FSR with respect to the 4-mm-long waveguide of the QD-SLD. One can recognize
coinciding functions, revealing i) an ultrashort coherence time of 70 fs, and ii) strongly enhanced correlations
with a central second-order coherence degree of ge(f; (0) = 1.91 % 0.05, close to the limit value of 2 for pure

thermal states, which is nicely reproduced by theory ( gt(hz) (0) = 1.999), revealing a fully incoherent light state for
the QD-SLD emission.

On the other hand, the single-mode laser, operated above laser threshold, exhibits a central wavelength of
1 = 1300 nm in combination with a spectral bandwidth, b < 2z - 1.75 - 10° Hz as well as a side-mode
suppression ratio of 37 dB. Ideal coherent laser light exhibits constant correlation functions gt(lf) (r) = 1,for

every order n, and thus gt(hz)

approximate constant value of ge(f; (r) = 1.01 % 0.04 (figure 9, right), which reveals a high coherent light source
character, not only showing high-quality monochromaticity reflected by the fully modulated interference

fringes (figure 9, bottom right), but also a central second-order coherence degree of ge(f; (0) = 1.00 + 0.01

() = lisexpected. Measuring the second-order correlation function, delivers an

(figure 9, top right), reflecting Poissonian photon statistics behavior”.

Because of the limited range of the translation stage moving the mirror inside the interferometer, this value has been double-checked viaa

photon-counting experiment determining the explicit photon number distribution [71] p(n), validating gc(f; (0) = 1.0.
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Figure 9. TPA interferograms in arbitrary TPA-count unit (bottom), measured here with a Hamamatsu H7421-40 photomultiplier
(GaAsP photocathode) and determined g'® (z) (top) of single device emission: (left) QD-SLD ASE and (right) single-mode laser light.
(Inset) Close-up of the TPA interferogram showing high-resolution interference fringes.

The experimental setup for the superposition of the two light fields, already introduced in the theoretical
part, is schematically drawn in figure 6. To get experimental access to a maximum range of photon statistical
variation in terms of ¢g¥ (0), we introduce a variable attenuator within the beam path of each light source.

As stated in the beginning, special care is taken to preserve the broadband QD-SLD emission property, and
hence we ensure steady-state emission conditions by driving both light sources at a constant heat sink
temperature of 20.0 °C and constant DC-pump currents. The combination of the two respective attenuation
values results in a power ratio between single-mode laser optical power P'and QD-SLD optical power P, which
represents the critical parameter for the photon statistics tunability in the mixed-light experiment
(equations (39) and (40)). A clearer illustration of its dependency can be given by introducing a relative quantity,
¢, expressed by

1
(=L -_¢ (46)
Plyps 1+e

with € already defined in equation (44), constraining the values of { to a range between 0 (exclusive QD-SLD
emission, figure 9, left) and 1 (exclusive laser emission, figure 9, right). Applying { to the theoretical results of the
mixed state of light, we can rewrite equations (36) and (40) into

@ — WP _2_ L Ap? ] 2
g (D) =1+|g, (D] —¢ ——[1+ 1-9 (47)
b si ) N T’
and correspondingly
@) — 2 1 Apf ] 2
gn (0)=2-¢ ——[1+ (1-0". (48)
" N

Note that these theoretical counterparts respect the general and discrete spectral distribution case p; due to the
complex optical spectra formation of the QD-SLD (see figure 1) [39], and they will be used to calculate
theoretical counterparts for the following comparisons to experimental results.

Figure 10 (bottom) shows an exemplary TPA interferogram corresponding to { = 0.6. The interferogram
exhibits a shape that includes features from both sources: (i) along range (z/z. > 1) intensity modulation
originating from laser emission, but with reduced constructive and destructive interference maxima that show
already the interplay of both light fields, and (ii) enhanced correlation for 7/z. < 1 originating from QD-SLD
emission, together with a modulation of the envelope, clearly indicating a superposition. Figure 10 (top) pictures
the experimentally extracted ge(f; (7) function (red line), as well as the calculated correlation function gtf) (1)
(equation (47), blue line) showing well-coinciding trajectories: the beat signal-like modulation of the envelope
of the interferogram (figure 10, bottom) translates into secondary maxima g (+1,) (figure 10, top),
corresponding to the spread of the central wavelengths of both emitters, A1 &~ 64 nm, resulting in a beat time of
Theat = T2 & 76 fs where the theoretical model reproduces both the proper time scales, +7, and — 7, , and the
absolute values of the secondary maxima, gt(hz) (£12) = 1.1. Most decisively, ge(fr)) (0) takes a value of 1.64, clearly

differing from values of the two single-emission states also confirmed by theory with a value 1.63. Slight
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Figure 10. Exemplary TPA interferogram in arbitrary TPA-count units (bottom) and g (z) (top) of a mixed-light realization
according to equation (47) with { = 0.6.
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Figure 11. Photon statistics results in terms of ge(fg (0) (black crosses) as a function of the relative parameter {, together with error bars

resulting from standard deviation of five averaged experimental values. Calculated values of g‘(h2

theoretical model based on experimental parameters are also plotted for comparison.

)(0) (blue squares) obtained from our

deviations between theory and experiment are observed in the range of 0 < 7 < 7,, where the experimental
resolution does not allow one to record the theoretically predicted minima below g'¥ () = 1.

Investigating ¢'*) (0) as a function of  (figure 11, black crosses), we achieve a full-range, continuous
tunability of g (0) in the range between 1.91 and 1.0 with a parabola-like trajectory. To the best of our
knowledge, this is the first demonstration of the mixed-light phenomenon that includes an ultrabroadband light
source. Figure 11 also depicts the theoretical values gt(hz) (0) (blue squares) obtained from the derived analytical

expression (equation (48)) calculated with the experimentally determined parameters: £, N, ((p°)), 42p*,and P/
(table 2). Comparing the theoretical and the experimental trajectories of g* (0) as a function of ¢, we note an
overall good agreement with excellently coinciding values for ¢ > 0.6 within the statistical uncertainties, and
slightly deviating trajectories for { < 0.6. The latter is again explainable by the previously discussed
experimental challenges in section 3, which prevent ideal detection of thermal values, g? (0) = 2, in this
ultrabroadband emission regime of the QD-SLD, therefore resulting in an experimentally obtained parabola
trend, ge(f; (0) (£), with slightly lower bending, which is most significantly apparent at low values of {.
Nevertheless, we observe an overall good reproduction of photon statistical behavior in this mixed-light
experiment by the analytical quantum theoretical considerations based on the superposition of a well-known
coherent light state and the assumed PRAG state. We thus deduce that the broadband light states generated by
the ASE of the QD-SLD are well described by the PRAG states.
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Table 2. Selected, experimentally determined values taken from
two measurements of figure 11 and calculated theoretical counter-
parts according to our model (equation (48)) for direct compar-
ison to values of the OFB experiment (table 1).

ﬁ 2) () 0)
¢ N @’ & (0) Sexp
0.83 + 0.03 1990 0.83 1.276 1.28 + 0.03
0.34 + 0.03 1990 0.83 1.862 1.79 + 0.04

5. Conclusion

In conclusion, we have studied ultrabroadband amplified spontaneous emission generated by QD-SLDs in
terms of first- and second-order correlations, as well as mixing the emissions with coherent light.

For the analysis of the experiments, we considered an N-mode PRAG state. This state is an incoherent
superposition of thermal Gaussian states shifted by a complex amplitude, y,, for each mode. This ansatz is well
suited to match any given NIR optical spectrum: it reflects the incoherent character of these broadband emitters
and reproduces correct intensity correlations. We have derived analytical expressions for first- and second-order
correlation functions g'V (z), ¢ (7), and g'¥ (0), the latter being the footprint of the photon statistics. The
intensity correlation ¢ (0), depends functionally on the first-order correlation g (z), with additional finite
mode number corrections.

By a straightforward extension of an OFB experiment [28], we could change the number of modes, N, by
narrowing the spectrum. This resulted in a coherence transition, as seen in figure 5, and agreed very well with the
predictions for g'? (0) by the PRAG state.

The drawback of spectral narrowing was rectified by a second experiment creating a mixed-light state. There,
we superimposed coherent light from a single-mode laser with a steady-state broadband QD-SLD emission. As a
main result, we obtained broad-range tunable photon statistics; to the best of our knowledge, this is the first
realization of the mixed-light phenomenon that includes a completely incoherent light component (i.e., strong
incoherence in both first- and second-order correlations (figure 11)). All relevant experimental features of the
mixed-light state can be accounted for with the PRAG state, including the temporal correlation functions g (z),
which are applicable to pure QD-SLD emission as well as to mixed-light at ultra-short timescales (cffigures 9
and 10).

This comprehensive theoretical and experimental study of two different types of tunable photon statistic
experiments validates the simple PRAG-state ansatz for broadband QD-SLD ASE. This allows us to identify
relevant parameters, such as the number of modes, N, and the statistical properties of their spectral distribution:
p* (), {{p*)), and A*p°. Future microscopic modeling of the QD-SLD semiconductor will benefit from these
insights.
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Appendix A. Fitting the optical power spectrum

A smooth interpolation of the optical power spectrum, S (@), of a QD-SLD, which is depicted in figure 1, is given
by a sum of three Gaussian distributions,

2 (oa)
S(w) =Zs,-°e‘ 7. (A1)

i=1

The numerical data of the fitted amplitudes $?, the central frequencies @; and standard deviations o; are
tabulated in table 3.
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Table 3. Fit parameters of the Gaussian fit (A1) to the QD-SLD spectrum depicted in

figure 1.
i 1 (dashed) 2 (dashed-dotted) 3 (solid)
@; (THz) 2w - 242.55 2 &+ 246.05 2 x- 236.82
6; (THz) 27 - 2.468 272875 272105
s? (arbitrary units) 1.904 0.637 0.532

In this paper, the central frequency of an optical power spectrum, S (@), is defined as the integral
S(w)
2 do S(w)

Consequently, the spectrum in figure 1, described by the Gaussian distribution S (@) in equation (A1) with the
specified parameters of table 3, has a central angular frequency @ = 2z - 242.6 THz or a central wavelength
A = 1236 nm.

A well-established definition of the spectral width b is given by the twofold standard deviation,

® = /m dw ws(w), with s(w) = (A2)

b=26 with 0'2=/ da)(a)—a'))ZS(w). (A3)
The resulting spectral width for the considered spectrum reads b = 2z - 7.5 THz.

Generally speaking, for fat-tailed distributions like Lorentzian spectra, the definition of a width in
equation (A3) is not applicable. Therefore, we use an alternative definition for the spectral width

1

= —/ A4
/_O:O dw s? () (A4)

according to [25], also known as Stissmann measure [66]. In the case of a single normalized Gaussian distributed
s (w) with standard deviation o, the spectral width,

bgauss =2Jro, (A5)

is given by o multiplied by 2/7 [i.e., a deviation ofa factor /7 = 1.77 compared to the first definition
(equation (A3))]. For a spectrum described by equation (A1) and Tab. 3, one obtains b = 27 - 13 THz.

Comparing the two definitions of spectral widths, b = 2z - 13 THz (equation (A4)),b = 2z - 7.5 THz
(equation (A3)) underling different definitions, exhibits a systematic bias. Accordingly, it is important to specify
the chosen definition, especially for broadband sources.

Appendix B. Euler-Maclaurin approximation

The Euler-Maclaurin formula approximates a sum by its integral representation and higher-order corrections

al ) 1t f(a) + f(b)
;f(a+(1—1)A)=Z/a dif(1) + =

M-1 rom—1
A B, .

(g @) RO

m=1

Provided that the procedure leads to a vanishing residual R, we obtain a series approximation of order M in
terms of Bernoulli numbers B, and the higher-order derivatives of a function f*). The width of the N — 1
equally spaced integration intervalsis A = (b — a)/(N — 1) [67, 68].
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