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Abstract
Weanalyze the statistics of photons originating from amplified spontaneous emission generated by a
quantumdot superluminescent diode. Experimentally detectable emission properties are taken into
account by parametrizing the corresponding quantum state as amultimode phase-randomized
Gaussian density operator. The validity of thismodel is proven in two subsequent experiments using
fast two-photon-absorption detection observing second-order equal-time and second-order fully
time-resolved intensity correlations on femtosecond timescales. In thefirst experiment, we study the
photon statistics when the number of contributing longitudinalmodes is systematically reduced by
applyingwell-controlled optical feedback. In a second experiment, we add coherent light from a
single-mode laser diode to quantumdot superluminescent diode broadband radiation. Tuning the
power ratio, we realize tailored second-order correlations ranging fromGaussian to Poissonian
statistics. Both experiments are verywellmatched by theory, thus giving first insights into the
quantumproperties of radiation fromquantumdot superluminescent diodes.

1. Introduction

The intriguingmechanism of amplified spontaneous emission (ASE) results in broad radiation spectra, high
output intensities, and strong directionality of emission [1–3]. Since the invention of the laser in 1960, ASE has
been the subject of intense theoretical and experimental coherence studies, in particular due to the disturbing
influence of ASE at the gas-laser threshold [4–7]. In the 1970s, Allen and Peters were the first to address the ASE
phenomenon, putting it into context withDicke’s superradiance [8]. They definedASE as ‘highly directional
radiation emitted by an extendedmediumwith a randomly prepared population inversion in the absence of a
laser cavity.’ Supported by theoretical studies andHe-Ne gas discharged tube-amplification experiments, they
established the ASE threshold condition, the pump-output-intensity behavior, saturation effects, and spatial
coherence properties [9–12].

Todays, well-developed and highly sophisticated semiconductor laser technology provides compact ASE
light sources realizedwith superluminescent diodes (SLD), which are semiconductor-based opto-electronic
emitters generating broadband light. The technological development of these high-performance devices with
wide-rangingmaterial structure systems is boosting application areas such as telecommunications,medicine,
and industry [13–16].When it comes to compact,miniaturized light sources with spectrally broad properties,
SLDs are the first choice. To foster technological progress, it is indispensable to develop theoreticalmodels of
SLD emission in close adaption to specificmaterial systems targeting specific device properties such as pulse
performance [17], amplification improvements [18], and noise behavior [19–21]. Sophisticated numerical
models based on rate equations and travellingwave approaches have been developed [22–24] and guide future
progress.

However, fundamental quantumoptical studies on SLD light emission, particularly regarding higher-order
coherence properties have not—to the best of our knowledge—been addressed so far. The complexmaterial
structures with predominantly application-driven objectives often lead to theoretical approaches that ignore the
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quantumaspect of the light state. In this context, photon statistics is the footprint of the quantumnature of light;
it is directly related to the emission process and quantified by the central degree of second-order coherence,

τ =g ( 0)(2) [25, 26]. It is important to point out that experimental access to photon statistics via the

determination of the second-order intensity auto-correlation function, τg ( )(2) , in this spectrally ultrabroadband
regime, was not possible until 2009. Then, Boitier et al [27] demonstrated (via two-photon absorption (TPA) in
a semiconductor-based photocathode of a photomultiplier) evidence of the photon-bunching effect on the
corresponding ultrashort timescales. Since then, the second-order correlations, τg ( )(2) , of broadband light
states can be globally resolved, in the sense that all contributing spectral components are simultaneously
detected. A number of investigations have exploited this elegant TPA-detection technique so far, referring to
characterizations and applications of broadband semiconductor emitters regarding their photon statistical
characteristics [28–34].

Moreover, the exploitation of quantumdot (QD)-based gainmaterial in SLD structures enables a strong
enhancement of the spectral broadening [35] and introduces a non-negligible quantum aspect for the carrier
dynamics in the semiconductormaterial, as well as for the generation of photons [36]. The quantized zero-
dimensional carrier systems of the inhomogeneously broadenedQDs in SLD structures generate a strong
emission-state hierarchy [37], which has only recently been extensively investigated regarding its impact on
coherence properties [29]. Recent studies onQD-SLD light coherence [30] have revealed a temperature-
induced reduction of the intensity correlations, while the ultrabroadband spectral emission remains unchanged.
This novel hybrid light state exhibits very lowfirst-order coherence, as it is spectrally broad in termof
wavelength Δλ = 65 nm or angular frequency π=b 2 · 12.41 THz, but it shows suppressed =g (0) 1.33(2)

laser-like intensity correlations.
These latest experiments require the development of a quantum theory of ASE light states emitted byQD-

SLDs. In this paper, we propose a simplemodel in section 2 that allows us to include specific emission properties
of a givenQD-SLDdevice without considering specific structural characteristics. In particular, we surmise a
multimode, phase-randomizedGaussian (PRAG) quantum state and discuss the evaluation ofmoments, as well
as the correlation functions of the lightfield. To probe this hypothesis, wematch it with observations in two
different types of experiments. The results of the first experiment are reported in section 3, where the number of
modes of theQD-SLD light is varied systematically via optical feedback, andwe observe the response in the
photon statistics. A second experiment is presented in section 4, wherewe induce a transition in the photon
statistics by superimposing coherent light from a laser diodewith the broadband emission of aQD-SLD.Our
conclusions and future perspectives are presented in section 5.We present the technical aspects of the
interpolating spectra and the Euler-Maclaurin formula in two appendices.

2. Emission fromaQD-SLD

The emission of an edge-emittingQD-SLD is described by the quantized transversal electric field,

= ++ −
E E Eˆ ˆ ˆ( ) ( )

. Tomodel a broad radiation spectrum, we need to consider a superposition of numerous
longitudinalmodes,N, for the positive-frequency part of the electric field

∑= − =+ +

=

t x y z ct u t aE r E rˆ ( , ) ˆ ( , , ) ( , ) ˆ (1)
j

N

j j j
( ) ( )

1

at position = x y zr ( , , ) and time t. The structural composition ofQD-SLDs [38] enforces a linear y-polarization
upon the radiation field. Aswe are interested in the forward propagating field, wewant to consider the
spatiotemporalmodes of the field, χ= ω−u x y e( , )ej

k z t
y

i( )j j . They are formed by a single transverse wave
function, χ, as well as longitudinal planewaveswithwave numbers π=k j L2j . Here, L is the length of the
optical system andA is the cross-section area. Then, themode functions are normalized to the volumeV=AL,

∫ =r u t Vrd ( , ) . (2)
V

j
3 2

The quantized amplitude, â j , of the electromagnetic field annihilates photons ofmode j and satisfies the bosonic

commutation relation δ=a a[ ˆ , ˆ ]i j ij
† . This field is an approximate solution of the freeMaxwell equationwith a

linear dispersion relation ω = ckj j, with the velocity of light, c. Thefield normalization, ω ϵ= i V2j j 0 , of

equation (1) is chosen such that the energy of the transversal field is given by

∑ ω=
=

H a aˆ ˆ ˆ , (3)
j

N

j j j

1

†

where ϵ0 is the vacuumpermittivity.
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2.1.Quantum state of the electromagnetic field
Toparametrize the quantum state of theQD-SLD emission, we consider an observed optical spectrum, ωS ( ),
shown infigure 1, as an input. Clearly, the diode emits on a central angular frequency, ω π=¯ 2 · 242.6 THz
(λ =¯ 1236 nm), showing aGaussian-shaped distributionwith a very broad spectral width of π=b 2 · 13 THz.
There are also upper and lower side-bands visible, whose strength can be quantified by a three-termGaussian
interpolation of the data (cf table 3 of appendix A) [39].

This obviously demonstrates that the quantum state cannot be described by thermal Planck distribution and
that the broadband emission is strongly incoherent, asmeasured by the first-order correlation function, τg ( )(1) .
Regarding the intensity correlations, QD-SLD emission can exhibit significant deviations from ideal thermal
photon statistics, =g (0) 2(2) . A reduction down to laser-like values of =g (0) 1.33(2) at temperatures around

=T 190 K has beenmeasured [30]. This can be interpreted as a delicate balance between spontaneous and
stimulated emission inQD-SLDs.

These experimental facts about the amplified spontaneous emission of the device are captured by the
multimode PRAG state [40–43]

∫ρ
π

ϕ γ ρ γ=
π

D Dˆ
1

(2 )
d ˆ ( ) ˆ ˆ ( ) (4)s N

N
T

0

2 †

with themultimode displacement operator

∑ γ γ−γ =
=

a aˆ * ˆD̂ ( ) exp . (5)i i i i
†

i

N

1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Anatural choice for an equilibrium state ρ̂T is the canonical operator

ρ =
β−

Z
ˆ

e
, (6)T

Ĥ

where = β−Z Tr{e }Ĥ is the canonical partition function and β = k T1 B is proportional to the inverse
temperature.

A phase-space representation of this PRAG state is shown infigure 2. There, we consider a genericmode, i.
Starting from aGaussian state centered at the origin, we shift it by a complex amplitude γ γ= ∣ ∣ ϕei i

i i and
randomize the phases, ϕi.

It is instructive to consider the limit of vanishing temperature →T 0. There, one finds for the probability of
finding n photons inmode i,

δ
γ

= − = γ−( )p n n n
n

( ) ˆ e
!

, (7)i i
i

n2

i
2

with =n a aˆ ˆ ˆi i i
† . As usual, quantum averages ρ〈…〉 = …Tr{ ˆ }s require tracing over the state. Clearly, this

coincides with the Poissonian distribution of a coherent state, γ γ∣ 〉 = ∣ 〉D̂ ( ) 0 , even thoughwe have completely
randomized the phases of this incoherent state of equation (4).

Figure 1.Measured optical power spectrum, ωS ( ), in arbitrary units versus angular frequencyω of theQD-SLDwith central
frequency ω π=¯ 2 · 242.6 THz and spectral width π=b 2 · 13 THz. A three-termGaussianfit (see appendix A) (red, solid line)
exhibits a dominant central emission line (green, dashed line), as well as a lower side-band (magenta, solid line) and an upper side-
band (blue, dashed dotted line).
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2.2. Ensemble averages
The properties of the PRAG state are completely characterized by first- and second-ordermoments

γ ω δ= = +( )a a a nˆ 0, ˆ ˆ ( ) . (8)l j i i T i ij
† 2

All higher-ordermoments can be determined byWick’s theorem.Here, themean thermal occupation number


ω =

−β ω
n ( )

1

e 1
(9)T

is given by the Bose–Einstein distribution. For near-infrared (NIR) photonswith a central angular frequency
ω π=¯ 2 · 242.6 THz (λ =¯ 1236 nm) at room temperature, the thermal occupation, ω ≈ −n ( ¯) 10T

17, is
negligible. However, one has to keep inmind that theQD-SLD is a driven semiconductor system, so the photon
temperature does not have to agreewith the ambient temperature.

Commonly, the stationaryfield intensity3 of the radiation in units of −W m 2 is given by [44]

ϵ= − +
I x y c E t E tr r( , ) 2 ˆ ( , ) ˆ ( , ) . (10)0

( ) ( )

Due to the stationarity of the state and the translational invariance of the travelingwavefield in equation (1), the
intensity is also independent of t and z. The optical power,P, recorded by a typical single-photon detector at
position z, is proportional to the intensity, integrated over the detector area

∫ ∑= = + ≡ +
=

P x y I x y p p P Pd d ( , ) with (11)
A

i

N

i
s

i
t s t

1

 
ω

ω
γ ω

ω
ω= ≡ = ≡p p

c

L
p p

c

L
n( ) , ( ) ( ). (12)i

s s
i

i
i i

t t
i

i
T i

2

The power is distributed over a bandwidth of frequencies, as shown infigure 1. Therefore, it is relevant to
define frequency averages and variances

∑ ∑Δ≡ ≡
−

= =

( )
p

N
p p

p p

N

1
, . (13)

i

N

i
i

N
i

1

2

1

2

Consequently, the total power (11) can be expressed in terms of the average values as

= + = +( )P P P N p p , (14)s t s t

given by the sumof the average powers of the incoherent field, 〈〈 〉〉ps , as well as the thermalfield, 〈〈 〉〉pt , times the
number ofmodes,N.

The physical quantities introduced in this section, become important in the followingwhen studying first-
and second-order correlation functions, as they provide information about spectra and photon statistics of the
considered light states.

Figure 2. Schematic phase-space representation of a phase-randomizedGaussian state, ρ̂s .We depict themode i, which is prepared in

a thermal state, displaced by γ γ= ∣ ∣ ϕei i
i i, and all phase angles are randomized according to equation (4).

3
A commondefinition of an ‘intensity’misses the appropriate factor of ϵ c2 0 [69] in disagreementwith the radiometric definition of

intensity Wm2 [70]
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2.3. First-order temporal correlations
According toGlauber’s coherence theory [25, 45], thefirst-order correlation function is defined as the
expectation value

= − +
G x x E x E x( , ) ˆ ( ) ˆ ( ) (15)(1)

1 2
( )

1
( )

2

with space-time event =x t r( , ). To assess scale-invariant properties of the correlations, one considers
normalized correlation functions usually given by the fraction

=g x x
G x x

G x x G x x
( , )

( , )

( , ) ( , )
. (16)(1)

1 2

(1)
1 2

(1)
1 1

(1)
2 2

Using a spectrum analyzer, we can obtain an experimentally accessible signal that is proportional to the spatially
averaged temporal correlation function

∫τ τ= +G x y G t tr r( ) d d ( , ; , ). (17)
A

(1) (1)

Applying the normalization condition (2) and using themoments defined in equation (8), we obtain for the
temporalfirst-order correlation function

∑τ
ϵ

= +ω τ

=

− ( )G
c

p p( )
1

2
e . (18)

i

N

i
s

i
t(1)

0 1

i i

For vanishing time delay τ = 0, thefirst-order correlation function reduces to τ ϵ= =G P c( 0) 2(1)
0 .

In evaluating the spatially averaged, normalizedfirst-order temporal correlation function at an equal
position, we assume that for two different space-time events, G x x( , )(1)

1 2 changes slowly compared to equal

events, G x x( , )(1) , and therefore it can be approximated by

∑τ
ϵ τ

≃ = +ω τ

=

− ( )g
cG

P P
p p( )

2 ( ) 1
e . (19)

i

N

i
s

i
t(1) 0

(1)

1

i i

Itsmodulus fulfills a Cauchy-Schwarz inequality

τ⩽ ⩽ =g g0 ( ) (0) 1. (20)(1) (1)

In the experiments, we evaluate field correlation spectra at the position r ; they are defined in the stationary
limit as [46, 47]

∫ω
ϵ
π

τ τ= +ωτ
→∞ −∞

∞ c
G t tr r r( , ) lim d e ( , ; , ). (21)

t

0 i (1)

From this definition, we derive by integration over the cross section of the detector area the power spectrum at
the detector position z

∫ω ω
Δω

ω ω= = + ( )S x y p pr( ) d d ( , )
1

( ) ( ) , (22)
A

s t

with continuous expressions of the powers described by equation (12). In the derivation of this result, we have
approximated the sum in (18) by thefirst termof the Euler-Maclaurin series (cf. equation (B1)) by using the
frequency separation between adjacentmodes Δω ω ω= − −N( ) ( 1)N 1 . Furthermore, we have also assumed
that the frequency spectrumhas afinite support in the frequency band ω ω[ , ]N1 and the spectral width ismuch
less than this bandwidth (i.e., σ ω ω≪ ∣ − ∣N 1 ).

Obviously, the spectrum is also position independent and it consists of a superposition of the continuous
distribution, γ ω∣ ∣( ) 2, as well as a thermal occupation number ωn ( )T . These shapes can be extracted from the
measured power spectrum (see figure 1).

Integration of the frequency spectrumover the bandwidth

∫ ω ω =
ω

ω
S Pd ( ) (23)

N

1

adds up to the total power in equation (11).

2.4. Second-order temporal correlations
In general, two-photon correlations can bemeasured by two single-photon detectors [48], or a single two-
photon detector [40]. The present experiments realize a two-photonmeasurement with a two-photon detector
at position z. The relevant observable, the second-order correlation function, is defined as

5
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= − − + +
G x x E x E x E x E x( , ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) (24)(2)

1 2
( )

1
( )

2
( )

2
( )

1

and the normalized correlation can bewritten as

=g x x
G x x

G x x G x x
( , )

( , )

( , ) ( , )
. (25)(2)

1 2

(2)
1 2

(1)
1 1

(1)
2 2

For slowly varying G x x( , )(2)
1 2 compared to G x x( , )(1)

1 1 , the normalized temporal second-order correlation
functionmeasured by the two-photon detector reads

∫τ
ϵ

τ≃ +
( )

g
c

P
x y G t tr r( )

2
d d ( , ; , ). (26)

A

(2)
0

2

2
(2)

Evaluating the spatial integral leads to the expression

∑τ τ= + −
=

g g
P

p( ) 1 ( )
1

(27)
i

N

i
s(2) (1) 2

2
1

2

depending on themodulus of the temporalfirst-order correlation function, τg ( )(1) , calculated in equation (19).

For the considered PRAG state, wefind that τg ( )(2) is bounded frombelow and above by

τ⩽ ⩽g0 ( ) 2, (28)(2)

which can be verified by considering the single terms in equation (27): the last term takes values only between 0
and 1, and themodulus of τg ( )(1) is limited by (20). Furthermore, the normalized second-order correlation
function obeys the inequalities

τ ⩽ ⩾g g g( ) (0), (0) 1, (29)(2) (2) (2)

which also holds in the special case of treating the electrical field purely classically.
In the special case of a temporal second-order auto-correlation function at vanishing time difference τ = 0,

equation (27) reduces to

= −
+

+

Δ

( )
g

N
(0) 2

1 1

1

, (30)

p

p

p

p

(2)
2

s

s

t

s

2

2

withmean values 〈〈 〉〉 〈〈 〉〉p p,s t , and variance Δ ps2 already introduced in equation (13). It is interesting to note
that the photon statistics of the PRAG state depends on the number ofmodes and their distribution i.e., τg ( )(2) is
coined by the characteristics of each individualQD-SLD.

For negligible thermal contribution and limiting the electric field to a singlemode,N=1, the intensity
correlations =g (0) 1(2) are Poissonian again, as demonstrated in equation (7). In the complementary case of a

perfect thermal light source, the second term in equation (30) vanishes, and consequently =g (0) 2(2) .

3. Tuningmode numbers via optical feedback

On the one hand, the number of activemodes,N, in the emission spectrumof theQD-SLD represents a
significant parameter for the PRAG state (equation (4)). On the other hand, the contribution of thermal photons
in theNIR ωn ( )T ismarginal for room temperature andwill be neglected in the following. The inverse
proportionality toN in equation (30) suggests that for a high number ofmodes, the intensity correlations should
be very close to =g (0) 2(2) , whereas for a lownumber ofmodes, →g (0) 1(2) continuously. Figure 3 visualizes

the dependence of g (0)(2) as a function ofN for different values of Δ 〈〈 〉〉p ps s2 2: They all show steep trajectories

from =g (0) 1(2) to =g (0) 2(2) , wherewith increasing ratio Δ 〈〈 〉〉p ps s2 2, g (0)(2) functions are shifted towards
higher values ofN.

We put these theoretical predictions to an experimental trial with aQD-SLD. Therefore, wemustmeasure
second-order correlation functions, τg ( )(2) , of light emitted in theNIRwith spectral widths up tomore than
Δλ = 100 nm corresponding to π=b 2 · 19.9 THz in terms of angular frequency, which sets challenging
requirements on the time resolution of themeasurement system. Standard coincidence counting techniques
such asHanbury-BrownTwiss (HBT) setups are fundamentally limited by the bandwidth of the implemented
detectors, and they fail in time resolution bymore than 4 orders ofmagnitude (see, e.g., [49]). In 2009, Boitier
et al developed amethod to experimentally access sub-femtosecond time-resolution for second-order
correlation functions, τg ( )(2) [27]. The technique is based onTPA inside a semiconductor-based photocathode

6
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of a photomultiplier tube (PMT). TPA is an absorption process, which relies on a virtual state inside the bandgap
of the semiconductormaterial exhibiting a lifetime resulting from energy-time uncertainty, thus enabling
ultrafast and ultrabroadband detection of τ =G ( 0)(2) [40]. Implementing the TPA-PMT in aMichelson-
Interferometer, which introduces a time delay, τ, via a high-precision,motorized translation stage, second-order
autocorrelation functions, τG ( )(2) , can be extracted from themeasured TPA-interferograms via low-pass
filtering (figure 4, left) [27, 50].

In the following, wewill use the notation g (0)th
(2) and g (0)exp

(2) to differentiate between theoretically predicted

and experimentally determined values, respectively.
It turns out that one of our earlier studies [28] demonstrates the tailoring offirst- and second-order

coherence properties of pureQD-SLD emission by applying optical feedback (OFB) onto the semiconductor
emitter (figure 4, right). The essence of this investigationwas the observation of a simultaneous, continuous
reduction of i) the spectral width, Δλ, from 120 nm to subnanometer values, and ii) the second-order coherence
degree, g (0)exp

(2) , from1.85 to 1.0, for the light emitted by theQD-SLD (InAs/InGaAs, dot-in-well structure)

under increasedOFB.However, this observed transition in coherence, induced at relatively low spectral widths,
still lacks a theoretical explanation. This published experimental investigation is therefore perfectly suited to be
compared to the theoretical investigation performed in this paper, especially because narrowing the spectral
width is synonymouswith reducing the number ofmodes,N.

TheOFBwas realized straightforwardly by splitting the collimated light emission from theQD-SLDby a
broadband 50:50 beamsplitter and reflecting the light back into thewaveguide with amirror, forming a total
feedback distance of 600 mm (figure 4, right). For optimized and controlledOFB coupling, the polarization of
the backfed light has been analyzed preliminarily using the Stokes parameter formalism [51]. The polarization
was found to be preserved during propagation in theOFB arm, revealing an expectedly high degree of

 

Figure 3. Intensity correlations, g (0)(2) , versus number ofmodes,N (equation (30)).We depict the influence of the parameter
Δ 〈〈 〉〉p ps s2 2 for a PRAG state on g (0)(2) for characteristic values.

Figure 4. (Left) Schematic TPA-detection setup for second-order correlationmeasurement: photomultiplier (Hamamatsu R928,
multialkali photocathode) in TPAoperation (TPA-PMT), long passfilter blocking fundamental absorption (LPF), achromatic lenses
(AL), broadband 50:50 beam splitter (BS 1),motorized translation stage (TLS), and singlemode fiber (SMF). (Right) Schematics of
the optical feedback setup: broadband 50:50 beam splitter (BS 2), variable attenuator (ATTN), and optical isolator (ISO).
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polarization >( 0.95) above the ASE thresholdwith a dominant linear polarization component whose
orientation coincides well with the horizontal structure of theQD layers. A small feedback strength below 5%
resulted in a smooth narrowing of the ultrabroadband optical spectra down to15 nm spectral widths in terms of
wavelength, with ASE ripples becomingmore andmore significant (Optical SpectrumAnalyzer ADVANTEST
Q8384). A high feedback strength up to 25% induced strong spectral narrowingwithmultimode emission
operation. There, the frequency spacing of themodes clearly corresponded to theQD-SLDwaveguide length of
3 mm.Wewant to emphasize that we avoided any systemdynamics caused byOFB operation by delicately
choosingOFB adjustments where the permanentlymonitored optical spectrum showed stabilized and
controlled emission during themeasurement. In this study, we are explicitly not interested in any dynamical
regimeswhereOFBonQD-based emitters can lead to highly nonlinear and chaotic behavior [52, 53], especially
when one deals with low-gain regimes [54, 55].

The continuous transition of the second-order coherence degree, g (0)exp
(2) , taken from [28], is nowdepicted

infigure 5 as a function of the number of emittedmodesN, calculated from themeasured optical spectra, psi.
Note that it is essential to exclude nonrelevant spectral contributions, which can falsify the statistics of psi; thuswe
choose to take into account only those peaks that are nomore than 13 dB below themaximumpower value,
ps

max .We calculate the corresponding theoretical values, g (0)th
(2) , according to equation (30) with the

experimentally obtained parametersN, 〈〈 〉〉ps , and Δ ps2 , in order to reproduce the experimental conditions of
the observed coherence transition. Figure 5matches experimental data with theoretical prediction. Numerical
values are tabulated in table 1 for reference.

For ultrabroadbandQD-SLD emission,N takes very high values. Here, the number ofmodes could not be
enumerated straightforwardly by counting spectral peaks because smoothGaussian-like spectral shapes
dominate, and thereforeN remains experimentally undeterminable. However, a lower bound estimate is given
by the number of Fabry-Pérotmodesmatching the length, =L 3 mm, of theQD-SLDwaveguide, similar to a
multimode laser but herewith strongly broadened and overlapping longitudinalmodes. In practice,N has been
determined by fittingmodeswith spacing according to the free spectral range (FSR) in terms of angular
frequency, Δω π π= =c n L2 2 2 · 1.465 · 10 HzGaAs

10 ( ≈n 3.41GaAs ), to the optical spectra, taking into
account the previouslymentioned 13 dB cutoff, resulting inmode numbers >N 1000. In this regime, we
observe experimental values, g (0)exp

(2) , fluctuating around 1.85 and theoretical values around =g (0) 1.999th
(2)

(i.e.,very close to the limit value of 2 for pure thermal states). Again, the specifiedmode numbers,N, are lower,

Figure 5.Results of the second-order coherence degree, g (0)(2) , from the optical feedback experiment as a function of the number of
modes,N, in comparisonwith values calculated according to our theoreticalmodel (equation (30)). Additionally, a guide-to-the-eye
trajectory is depicted, with Δ 〈〈 〉〉 =p p 0.8s s2 2 reflecting the predicted behavior offigure 3.

Table 1.Representative values taken from
figure 5with experimentally determined
parametersN and Δ 〈〈 〉〉p ps s2 2 for calcula-
tion using equation (30).

N
Δ

〈〈 〉〉
p

p

s

s

2

2 g (0)exp
(2)

g (0)th
(2)

3 1.31 1.18 1.23

10 1.12 1.78 1.74

30 1.08 1.83 1.931

1945 0.57 1.84 1.999
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bound estimates, but regarding figure 3, we can deduce that, considering the experimentally determined values
of Δ 〈〈 〉〉p ps s2 2 (see table 1) of about 0.6, >g N(0), ( 1000)th

(2) is clearly restricted to values above 1.99, which

limits the uncertainties, Δg (0)th
(2) , to below 1%.

The observed discrepancy, Δ = ∣g g(0) (0)(2)
exp
(2) – ∣ ≈g (0) 0.15th

(2) , between experiment and theory in this

ultrabroadband regime can have various causes. First, the frequency-dependent TPAdetection efficiency
described by the TPA absorption parameter, β ω( ), of the detecting photomultipliermight engender an unequal
balance between photons of different frequencies contributing to the total intensity correlation signal, and thus
lead to a slight reduction in g (0)exp

(2) [56]. Second, chromatic and sherical abberation is an important challenge

when one deals with spectrally ultrabroadband light beams.Wemanage tominimize these effects by
incorporatingNIR-optimized achromatic doublet lenses (Thorlabs) with high-quality abberation control. And
third, chromatic dispersion of the beamsplitter from theMichelson apparatusmay affect the central degree of
second-order coherence [27, 33, 56]. In addition to all those experimental effects, the SLD itselfmight exhibit
nonideal thermal photon bunching [30, 31, 57] and thus intrinsically provide reduced values of g (0)(2) .

Entering the regime of directly countablemode numbers ofN=30 down toN=15, we still observe high
second-order coherence degrees above =g (0) 1.8exp

(2) , but alreadywith a slightly decreasing tendency. This is in

agreementwith the calculated values, g (0)th
(2) , which show a less-fluctuating trajectory. It is only for smallmode

numbers, <N 15, that a steep transition from =g (0) 1.8(2) to =g (0) 1.0(2) is recorded, both for experimental

and for calculated values. Strongly deviating g (0)exp
(2) values are due to challenging experimental conditions

concerning the stabilization of theQD-SLD emission underOFBduring themeasurement. Nevertheless, the
agreement between experiment and theory ismore than obvious, and therefore we can confirm that the
coherence transition is indeed triggered by the strongly reduced number of existing emissionmodes, N, and the
slightly enhanced ratio of Δ 〈〈 〉〉p ps s2 2. Hence, this result supports the assumedPRAG state for describing ASE
light states fromQD-SLDs.

Unfortunately, the coherence transition is observed for a very lownumber ofmodes where theQD-SLDno
longer exhibits smooth broadband spectra. The reason for significant second order coherence changes only for

<N 15 lies in the small values of Δ 〈〈 〉〉p ps s2 2 (see table 1) in the range between 1 and 2. For broadband
emissionwith tens of nanometer spectral widths andGaussian-like spectral shapes, wefind even lower values,
Δ 〈〈 〉〉 <p p 1s s2 2 , which fix second-order coherence degrees quickly to =g (0) 2(2) by increasingN (figure 3).
The drawback of these results is therefore the loss of the broadband emission property of theQD-SLD, and
hence the accuracy of the PRAGmodel in the broadbandASE regime of theQD-SLD still requiresmore
evidence.

Consequently, we choose to implement a second experimental approachwith priority on the conservation
of the broadbandASE regime ofQD-SLDoperation: a fully coherent light state from a single-mode laser
emission is superimposed on broadbandASE fromaQD-SLDwith an implemented variability of the intensity
ratio between both light components influencing the second-order correlation properties. The coherent light
state thereby probes the accuracy of the assumedPRAG state via the combined photon statistical behavior. This
approach is based on the concept of ‘mixed-light,’which has been subject to extensive experimental and
theoretical studies starting shortly after the invention of the laser in the 1960s, in connectionwith photon-
countingmethods and the newly developedHBT experiment [5, 6, 58–61]. Recently,mixed-light state analysis
with pseudothermal light [62] has been investigated, demonstrating the continuous tunability of photon
statistics [63] regarding polarization dependencies related to possible applications such as ghost imaging
schemes [64]. Here, we extend themixed-light phenomenon to highlyfirst-order incoherent light sources, and
we exploit it for the verification of our theoreticalmodel.

4.Mixing light from two sources

In this section, we present the theoretical analysis of the superposition of a coherent light statewith the already
introduced PRAG state, focusing on the proper quantumoptical definition of the superimposed state of light
and the resulting combined second-order correlation behavior. In a second step, wewill show results of the
realization of amixed-light experiment.

4.1.Mixing light theoretically
According to the implementedmixed-light experiment (seefigure 6), light from aQD-SLD is superimposed
with light generated by an independent single-mode laser sourcewith a fixed frequency, ωk, combined in afiber-
based beam splitter. From there on, the state of the electric field reads

9
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ρ α ρ α= D Dˆ ˆ ( ) ˆ ˆ ( ), (31)m k s k
†

with the single-mode displacement operator, α α α= −D a aˆ ( ) exp( ˆ ˆ )k k k k k
† * , and ρ̂s given by equation (4). In

otherwords, we add a coherent amplitude αk inmode k to the state of theQD-SLD light as a result of the beam
splitter,mixing the two independent sources.

The normalized temporalfirst- and second-order autocorrelation functions formixed-light can be
determined the sameway as the case of a single source. For the temporal second-order correlation function

τG ( )(1) and the total power Pm of light states characterized by the density operator of equation (31), one gets

∑τ = + +ω τ

=

− ( )G p p p( ) e , (32)
i

N

i
l

i
s

i
t(1)

1

i i

∑= + + ≡ + +
=

P p p p P P P , (33)m

i

N

i
l

i
s

i
t l s t

1

showing the same results as for theQD-SLD, butwith additional terms considering contributions from the laser.
Here, the laser power is defined as

∑ ω
α δ≡ =

=

P p p
c

L
with . (34)l

i

N

i
l

i
l i

i ik

1

2

Now,we can specify the spectrumof themixed-light state,

ω δ ω ω
Δω

ω ω= − + +( )S P p p( ) ( )
1

( ) ( ) , (35)l
k

s t

with three contributing terms (i.e., three single spectral distributions), as illustrated infigure 7. The green line
indicates a delta function at frequency ωk, which occurs due to the laser light description of a pure coherent
state. The other two distributions originate from the assumed nature of the PRAG states: the blue curve reflects
the thermal contribution, described by an ordinary Planck distribution, and the red curve is a Gaussian,
representing its incoherent character.

The temporal normalized second-order correlation function in the case ofmixed-light with density
operator ρ̂m reads

Figure 6. Schematic of the setup for themixed-light experiment. All semiconductor-based free-space emitting devices (QD-SLD and
single-mode laser), optical isolator (ISO), variable attenuators (ATTN), and single-mode fiber-based beam splitter (FBS). For second-
order correlation analysis, the fibercoupledmixed-light is guided to the TPA-detection setup in figure 4.

Figure 7. Schematic representation of the single components of the spectral distribution formixed-light. The depicted curves are a
delta distribution (green) for the laser light, aGaussian distribution (red) for theQD-SLD light, and a thermal Planck distribution
(blue) for reference.
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τ τ= + −
+ ∑ =g g

P p

P
( ) 1 ( ) . (36)

l
i
N

i
s

m
(2) (1) 2

2

1
2

2

As in the previous discussion in section 2, the time-dependence only arises from themodulus of

∑ ∑

∑ ∑

τ

Δ τ Δ τ

= + +

+ + +

ω τ ω τ

=

−

=

−

= =
( )

g
P

P p p

p p P p p

( )
1

e e

2 cos 2 cos (37)

m
l

i

N

i
s

i

N

i
t

i j

N

j
s

i
t

ij
l

i

N

i
s

i
t

ik

(1) 2

2

2

1

i

2

1

i

2

, 1 1

i i

⎡

⎣
⎢⎢

⎤
⎦
⎥⎥

with frequency difference Δ ω ω= −ij i j. The last term in (37) oscillates with the beat frequency of the laser and

the ithmode of theQD-SLD, Δ ω ω= −ik i k, leading to side-bands in the spectrum and in τg ( )(2) .
It is instructive to discuss different limiting cases of the light-state assumptions. For a pure thermal state (i.e.,

αk and γi are zero), the last term in (36) vanishes and the temporal second-order correlation function reduces to
thewell-known Siegert relation [65]

τ τ= +g g( ) 1 ( ) , (38)(2) (1) 2

where τg ( )(1) is the normalizedfirst-order correlation function for thermal light sources. For a single coherent
state, the correlation function of the second order takes the expected constant value of one, τ =g ( ) 1(2) , for
arbitrary time delay, τ. Certainly, for vanishing amplitude αk, the expression of the second-order correlation
function, as already studied, reduces to equation (30). Specifically, in the case of identical space-time events,
τ = 0, we get

= −
+ ∑ =g

P p

P
(0) 2 . (39)

l
i
N

i
s

m
(2)

2

1
2

2

Rewriting g (0)(2) in terms of variance andmean values, as already introduced, yields

= −
+ +

+ +

Δ

( )
g

N
(0) 2

1 1

1

. (40)

p

p

P

N p

p

p

P

N p

(2)
2

s

s

l

s

t

s

l

s

2

2

2

2

4.2. Example of aGaussian spectrum
Motivated by the experimentally obtained optical spectra of figure 1, we study analytically the case of a single
Gaussian spectrum, that is,

ω ωΔω
π σω

= −
ω ω

σ

−( )
p P( )

2 ¯
e , (41)s s

0

¯
2

2 2

withmean value ω̄, frequency width Δω ω ω= − −N( ) ( 1)N 1 , and standard deviation σ. The normalization
constant, P s

0, is determined by the discrete summation of the powers

∑ ω≡ ≈
=

P p P( ) , (42)s

i

N
s

i
s

1

0

which is satisfied by equation (41), assuming the applicability of the Euler-Maclaurin formula (see appendix B).
For the sake of simplicity we neglect thermal contributions to the spectrumof the SLD, (i.e., ω =p ( ) 0t

i ). After
utilization of the Euler-Maclaurin formula and introduction of dimensionless variables τ στ=˜ , ω ω σ=¯̃ ¯ ,
Δω Δω σ=˜ , and δω δω σ ω ω σ= = −˜ ( ¯ )k k k , we obtain the scaled second-order correlation function

τ
ϵ

τ ω η ϵ δω τ τ
ω

δω τ= +
+

× + − + −τ− − τ{ ( )( ) ( ) ( ) (g ˜ 1
1

(1 )
e 1 ˜ ¯̃ 2e cos ˜ ˜

˜

¯̃
sin ˜ ˜ , (43)k k

(2)
2

˜ 22 ˜2
2 ⎟

⎡
⎣⎢

⎞
⎠

⎤
⎦⎥

⎫⎬⎭

η Δω
π ω

ϵ= + = P

P
with

˜

2
1

1

2 ¯̃
, . (44)

l

s2
⎜ ⎟⎛
⎝

⎞
⎠

For an increasing time delay, the first term in the brackets exhibits an exponential decreasing behavior that is
subtracted by a small offset depending on the frequency distance, Δω̃, and themean value, ω̃̄, of theQD-SLD;
the last term shows a damped oscillationwith beat frequency δω̃k, depicted infigure 8.Here, the blue line
corresponds to the scaled second-order correlation function ofmixed-light for varying time delay τ̄ , with the
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chosen values ϵ = 3 2, Δω = −˜ 10 3, ω =¯̃ 100, and δω =˜ 4k . The dashed (dotted) black line depicts the limiting
case of vanishing laser (QD-SLD) light. Evaluating equation (43) for time delay τ = 0 results in

η ϵ
ϵ

= − +
+

g (0) 2
(1 )

, (45)(2)
2

2

depending on the frequency width Δω, standard deviation σ and on the ratio of the powers of the laser and the
QD-SLD.

4.3.Mixing light experimentally
The superposition of the coherent light state with broadbandQD-SLD light is experimentally realized by the
exclusive use of semiconductor-based opto-electronic emitters, namely a single-mode quantum-well ridge-
waveguide Fabry-Pérot laser (Eblana Photonics) and aQD-SLD (InnolumeGmbH).

The 4 mm longwaveguideQD-SLD consists of a triple-chirped epitaxial structure (InAs/InGaAs, dot-in-
well structure with 10 activeQD layers) in order to realize ultrabroadbandASEwhen operated above the ASE
thresholdwith a spectral width Δλ = 67 nm centered at approximately λ =¯ 1236 nm (figure 1). The
combination of a high reflective facet on the backside and an antireflective facet on the front side, allows i) high
intensities and efficient light-outcoupling, and ii) efficient suppression of reflections back into thewaveguide at
the output facet, in order to prevent spectral narrowing. This extreme first-order incoherence is accompanied by
enhanced second-order correlationswithin the ultrashort coherence time, visible solely on the scale of
approximatively 100 fs on the recordedTPA interferogram (figure 9 (bottom left)).

Figure 9 (top left) depicts the extracted second-order correlation function τg ( )(2) (red line), togetherwith its
theoretical counterpart (blue line), calculated according to the PRAG statemodel (equation (27))with
experimentally determined parameters taken from the corresponding optical spectra:N, psi,P, and τ∣ ∣g ( )(1) 2

using equation (19). Just as for theOFB experiment,N is estimated by taking the lower bound of possibly
contributingmodes, namely the number of Fabry-Pérotmodesfitting into the recorded optical spectrum, with
spacing corresponding to the FSRwith respect to the 4-mm-longwaveguide of theQD-SLD.One can recognize
coinciding functions, revealing i) an ultrashort coherence time of 70 fs, and ii) strongly enhanced correlations
with a central second-order coherence degree of = ±g (0) 1.91 0.05exp

(2) , close to the limit value of 2 for pure

thermal states, which is nicely reproduced by theory ( =g (0) 1.999th
(2) ), revealing a fully incoherent light state for

theQD-SLD emission.
On the other hand, the single-mode laser, operated above laser threshold, exhibits a central wavelength of

λ =¯ 1300 nm in combinationwith a spectral bandwidth, π<b 2 · 1.75 · 10 Hz6 as well as a side-mode
suppression ratio of 37 dB. Ideal coherent laser light exhibits constant correlation functions τ =g ( ) 1n

th
( ) , for

every order n, and thus τ =g ( ) 1th
(2) is expected.Measuring the second-order correlation function, delivers an

approximate constant value of τ = ±g ( ) 1.01 0.04exp
(2) (figure 9, right), which reveals a high coherent light source

character, not only showing high-qualitymonochromaticity reflected by the fullymodulated interference
fringes (figure 9, bottom right), but also a central second-order coherence degree of = ±g (0) 1.00 0.01exp

(2)

(figure 9, top right), reflecting Poissonian photon statistics behavior4.

Figure 8. Scaled temporal second order correlation function τg (˜)(2) versus dimensionless delay time τ̃ (equation (43)) forGaussian
distributed photon number γ∣ ∣i

2 with ϵ = 3 2, Δω = −˜ 10 3, ω =¯̃ 100, and δω =˜ 4k (blue line). The black dotted (dashed) line
represents the correlation in absence of the light-emittingQD-SLD (single-mode laser).

4
Because of the limited range of the translation stagemoving themirror inside the interferometer, this value has been double-checked via a

photon-counting experiment determining the explicit photon number distribution [71] p(n), validating =g (0) 1.0.exp
(2)
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The experimental setup for the superposition of the two lightfields, already introduced in the theoretical
part, is schematically drawn infigure 6. To get experimental access to amaximum range of photon statistical
variation in terms of g (0)(2) , we introduce a variable attenuator within the beampath of each light source.

As stated in the beginning, special care is taken to preserve the broadbandQD-SLD emission property, and
hencewe ensure steady-state emission conditions by driving both light sources at a constant heat sink
temperature of 20.0 °C and constantDC-pump currents. The combination of the two respective attenuation
values results in a power ratio between single-mode laser optical power Pl andQD-SLDoptical powerPs, which
represents the critical parameter for the photon statistics tunability in themixed-light experiment
(equations (39) and (40)). A clearer illustration of its dependency can be given by introducing a relative quantity,
ζ, expressed by

ζ ϵ
ϵ

=
+

=
+

P

P P 1
, (46)

l

l s

with ϵ already defined in equation (44), constraining the values of ζ to a range between 0 (exclusiveQD-SLD
emission, figure 9, left) and 1 (exclusive laser emission, figure 9, right). Applying ζ to the theoretical results of the
mixed state of light, we can rewrite equations (36) and (40) into

τ τ ζ
Δ

ζ= + − − + −g g
N

p

p
( ) 1 ( )

1
1 (1 ) (47)

s

sth
(2)

th
(1) 2 2

2

2
2

⎡
⎣⎢

⎤
⎦⎥

and correspondingly

ζ
Δ

ζ= − − + −g
N

p

p
(0) 2

1
1 (1 ) . (48)

s

sth
(2) 2

2

2
2

⎡
⎣⎢

⎤
⎦⎥

Note that these theoretical counterparts respect the general and discrete spectral distribution case psi due to the
complex optical spectra formation of theQD-SLD (see figure 1) [39], and theywill be used to calculate
theoretical counterparts for the following comparisons to experimental results.

Figure 10 (bottom) shows an exemplary TPA interferogram corresponding to ζ = 0.6. The interferogram
exhibits a shape that includes features fromboth sources: (i) a long range (τ τ ≫ 1c ) intensitymodulation
originating from laser emission, butwith reduced constructive and destructive interferencemaxima that show
already the interplay of both lightfields, and (ii) enhanced correlation for τ τ < 1c originating fromQD-SLD
emission, togetherwith amodulation of the envelope, clearly indicating a superposition. Figure 10 (top) pictures
the experimentally extracted τg ( )exp

(2) function (red line), as well as the calculated correlation function τg ( )th
(2)

(equation (47), blue line) showingwell-coinciding trajectories: the beat signal-likemodulation of the envelope
of the interferogram (figure 10, bottom) translates into secondarymaxima τ±g ( )(2)

2 (figure 10, top),
corresponding to the spread of the central wavelengths of both emitters, Δλ ≈ 64 nm, resulting in a beat time of
τ τ= ≈ 76 fsbeat 2 where the theoreticalmodel reproduces both the proper time scales, τ+ 2 and − τ2 , and the

absolute values of the secondarymaxima, τ± =g ( ) 1.1th
(2)

2 .Most decisively, g (0)exp
(2) takes a value of 1.64, clearly

differing fromvalues of the two single-emission states also confirmed by theorywith a value 1.63. Slight

Figure 9.TPA interferograms in arbitrary TPA-count unit (bottom),measured here with aHamamatsuH7421-40 photomultiplier
(GaAsP photocathode) and determined τg ( )(2) (top) of single device emission: (left)QD-SLDASE and (right) single-mode laser light.
(Inset) Close-up of the TPA interferogram showing high-resolution interference fringes.
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deviations between theory and experiment are observed in the range of τ τ< <0 2, where the experimental

resolution does not allow one to record the theoretically predictedminima below τ =g ( ) 1(2) .

Investigating g (0)(2) as a function of ζ (figure 11, black crosses), we achieve a full-range, continuous

tunability of g (0)(2) in the range between 1.91 and 1.0with a parabola-like trajectory. To the best of our
knowledge, this is the first demonstration of themixed-light phenomenon that includes an ultrabroadband light

source. Figure 11 also depicts the theoretical values g (0)th
(2) (blue squares) obtained from the derived analytical

expression (equation (48)) calculatedwith the experimentally determined parameters: ζ,N, 〈〈 〉〉ps , Δ ps2 , andPl

(table 2). Comparing the theoretical and the experimental trajectories of g (0)(2) as a function of ζ, we note an
overall good agreement with excellently coinciding values for ζ ⩾ 0.6within the statistical uncertainties, and
slightly deviating trajectories for ζ < 0.6. The latter is again explainable by the previously discussed

experimental challenges in section 3, which prevent ideal detection of thermal values, =g (0) 2(2) , in this
ultrabroadband emission regime of theQD-SLD, therefore resulting in an experimentally obtained parabola

trend, ζg (0)( )exp
(2) , with slightly lower bending, which ismost significantly apparent at low values of ζ.

Nevertheless, we observe an overall good reproduction of photon statistical behavior in thismixed-light
experiment by the analytical quantum theoretical considerations based on the superposition of a well-known
coherent light state and the assumed PRAG state.We thus deduce that the broadband light states generated by
the ASE of theQD-SLD arewell described by the PRAG states.

Figure 10.Exemplary TPA interferogram in arbitrary TPA-count units (bottom) and τg ( )(2) (top) of amixed-light realization
according to equation (47)with ζ = 0.6.

Figure 11.Photon statistics results in terms of g (0)exp
(2) (black crosses) as a function of the relative parameter ζ, together with error bars

resulting from standard deviation of five averaged experimental values. Calculated values of g (0)th
(2) (blue squares) obtained fromour

theoreticalmodel based on experimental parameters are also plotted for comparison.
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5. Conclusion

In conclusion, we have studied ultrabroadband amplified spontaneous emission generated byQD-SLDs in
terms offirst- and second-order correlations, as well asmixing the emissionswith coherent light.

For the analysis of the experiments, we considered anN-mode PRAG state. This state is an incoherent
superposition of thermal Gaussian states shifted by a complex amplitude, γi, for eachmode. This ansatz is well
suited tomatch any givenNIR optical spectrum: it reflects the incoherent character of these broadband emitters
and reproduces correct intensity correlations.We have derived analytical expressions for first- and second-order

correlation functions τg ( )(1) , τg ( )(2) , and g (0)(2) , the latter being the footprint of the photon statistics. The

intensity correlation g (0)(2) , depends functionally on the first-order correlation τg ( )(1) , with additional finite
mode number corrections.

By a straightforward extension of anOFB experiment [28], we could change the number ofmodes,N, by
narrowing the spectrum. This resulted in a coherence transition, as seen infigure 5, and agreed verywell with the

predictions for g (0)(2) by the PRAG state.
The drawback of spectral narrowingwas rectified by a second experiment creating amixed-light state. There,

we superimposed coherent light froma single-mode laserwith a steady-state broadbandQD-SLDemission. As a
main result, we obtained broad-range tunable photon statistics; to the best of our knowledge, this is thefirst
realizationof themixed-light phenomenon that includes a completely incoherent light component (i.e., strong
incoherence in bothfirst- and second-order correlations (figure 11)). All relevant experimental features of the

mixed-light state canbe accounted forwith the PRAGstate, including the temporal correlation functions τg ( )(2) ,
which are applicable to pureQD-SLDemission aswell as tomixed-light at ultra-short timescales (cffigures 9
and 10).

This comprehensive theoretical and experimental study of two different types of tunable photon statistic
experiments validates the simple PRAG-state ansatz for broadbandQD-SLDASE. This allows us to identify
relevant parameters, such as the number ofmodes,N, and the statistical properties of their spectral distribution:

ωp ( )s , 〈〈 〉〉ps , and Δ ps2 . Futuremicroscopicmodeling of theQD-SLD semiconductor will benefit from these
insights.
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AppendixA. Fitting the optical power spectrum

A smooth interpolation of the optical power spectrum, ωS ( ), of aQD-SLD,which is depicted infigure 1, is given
by a sumof threeGaussian distributions,

∑ω =
=

−
ω ω

σ

−( )
S S( ) e . (A1)

i

i

1

3
0

i

i

¯
2

2 2

The numerical data of the fitted amplitudes Si
0, the central frequencies ω̄i and standard deviations σi are

tabulated in table 3.

Table 2. Selected, experimentally determined values taken from
twomeasurements offigure 11 and calculated theoretical counter-
parts according to ourmodel (equation (48)) for direct compar-
ison to values of theOFB experiment (table 1).

ζ N
Δ

〈〈 〉〉
p

p

s

s

2

2 g (0)th
(2) g (0)exp

(2)

0.83 ± 0.03 1990 0.83 1.276 1.28 ± 0.03

0.34 ± 0.03 1990 0.83 1.862 1.79 ± 0.04
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In this paper, the central frequency of an optical power spectrum, ωS ( ), is defined as the integral

∫
∫

ω ω ω ω ω
ω
ω ω

= =
−∞

∞

−∞
∞s s

S

S
¯ d ( ), with ( )

( )

d ( )
. (A2)

Consequently, the spectrum infigure 1, described by theGaussian distribution ωS ( ) in equation (A1)with the
specified parameters of table 3, has a central angular frequency ω π=¯ 2 · 242.6 THz or a central wavelength
λ =¯ 1236 nm.

Awell-established definition of the spectral width b̃ is given by the twofold standard deviation,

∫σ σ ω ω ω ω= = −
−∞

∞
( )b s˜ 2 with d ¯ ( ). (A3)2 2

The resulting spectral width for the considered spectrum reads π=b̃ 2 · 7.5 THz.
Generally speaking, for fat-tailed distributions like Lorentzian spectra, the definition of awidth in

equation (A3) is not applicable. Therefore, we use an alternative definition for the spectral width

∫ ω ω
=

−∞
∞b

s

1

d ( )
, (A4)

2

according to [25], also known as Süssmannmeasure [66]. In the case of a single normalizedGaussian distributed
ωs ( )with standard deviation σ, the spectral width,

π σ=b 2 , (A5)gauss

is given by σmultiplied by π2 [i.e., a deviation of a factor π ≈ 1.77 compared to the first definition
(equation (A3))]. For a spectrumdescribed by equation (A1) andTab. 3, one obtains π=b 2 · 13 THz.

Comparing the two definitions of spectral widths, π=b 2 · 13 THz (equation (A4)), π=b̃ 2 · 7.5 THz
(equation (A3)) underling different definitions, exhibits a systematic bias. Accordingly, it is important to specify
the chosen definition, especially for broadband sources.

Appendix B. Euler-Maclaurin approximation

The Euler-Maclaurin formula approximates a sumby its integral representation and higher-order corrections

∫∑

∑

Δ
Δ

Δ

+ − = +
+

+ − +

=

=

− −
− −( )

f a i f t
f a f b

B

m
f b f a R

( ( 1) )
1

dt ( )
( ) ( )

2

(2 )!
( ) ( ) . (B1)

i

N

a

b

m

M m
m m m

M

1

1

1 2 1
2 (2 1) (2 1)

Provided that the procedure leads to a vanishing residualRM, we obtain a series approximation of orderM in
terms of Bernoulli numbersBk and the higher-order derivatives of a function f k( ). Thewidth of the −N 1
equally spaced integration intervals is Δ ≡ − −b a N( ) ( 1) [67, 68].
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