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Abstract. We present a theoretical study of the localization
of atoms with an angular momentum J;=3 to Je=4 transition
(e.g., chromium atoms) in quantized optical molasses created
by two counterpropagating linearly polarized laser beams.
We study the localization as a function of the potential depth,
the angle between the polarizations and the interaction time
with the molasses in the low-intensity limit, and discuss the
possibility of adiabatic compression and squeezing of the
atomic distribution.

PACS: 32.80.Pj; 42.50.Vk; 81.15.—z

Optical potentials due to laser light allow the focusing of
atoms to sub-wavelength structures during deposition on a
substrate. Interest in these techniques derives from the possi-
bility that an inherently parallel approach can be develaped
for fabricating nanometer-size structures. In recent atomic
beam experiments, Timp et al. [1] and McClelland et al. [2]
have demonstrated the writing of narrow lines of sodium and
chromium atoms by focusing with atom lenses formed by a
standing-wave laser light. We note that these experiments
are performed in the limit of coherent atom optics [1, 3-7],
i.e., in the limit where there are no spontaneous emissions
during the interaction with the laser light.

Localization of atoms to a fraction of the laser wave-
length can also be obtained by transverse polarization-gra-
dient cooling of an atomic beam. In such an optical molasses
configuration, two counterpropagating laser beams lead to a
damping of the atomic motion and give rise to an optical
potential [8—10]. The periodic optical potential supports a
band structure corresponding to a quantization of the atomic
vibrations in the potential wells. Laser cooling leads to the
accumulation of the atoms in the few lowest vibrational en-
ergy states and localization of the atoms in the potential min-
ima [11-13]. The.purpose of the present paper is to present,
within a fully quantum mechanical framework, results of a
quantitative study of the localization of atoms in optical mo-
lasses and to investigate the possibility of further subsequent
narrowing of the atomic distribution by adiabatic compres-
sion or by “‘squeezing”.

Dedicated to H. Walther on the occasion of his 60th birthday

In optical molasses, the vibrational eigenstates become
more localized when the depth of the optical potential Uy is
increased. On the other hand, in steady-state laser cooling,
the populations of the few lowest states exhibit a maximum
(lowest temperature) at a certain value Uppmq, [8, 9, 11]. We
will show in this paper that these two effects cancel each
other so that the steady-state localization is essentially con-
stant for Uy > Upmax. In our calculations, we will assume a
low intensity-limit where the potential U(z) is proportional
to the local intensity I(z) of the cooling lasers which, for
steady-state molasses, gives rise to the lowest temperatures.
To be specific, we will concentrate on an angular momen-
tum 3 — 4 transition as realized, for example, in chromium
atoms [2].

The localization obtained in optical molasses can be im-
proved by a subsequent adiabatic compression [14] and/or
“squeezing” of the atomic distribution. In a harmonic os-
cillator approximation for the optical potential induced by a
standing-wave laser field, U(z) = U sin (k.2)? & Up(kLz)? =
mw?z?/2 the size of the ground state is given by Aag =
(h/2mw)1/ 2 with w the oscillation frequency of the atom
in the optical potential, m the mass of the atom and kp
the wave vector of the laserfield. For adiabatic compres-
sion, the potential depth is increased to better localize the
vibrational eigenstates. If the time scale of the variation
of the potential is small compared to the oscillation pe-
riod in the wells, but fast on the scale given by optical
pumping, the population of these levels obtained from laser
cooling will remain constant during the adiabtic process, re-
sulting in an overall compression of the atomic distribution.
Since below saturation, the optical potential is proportional
to the light intensity, the compression achieved in this way
is Azg/Az = (wijwp)/? = (Li/I)V*, with Az the inital
(final) width of the distribution and wy(y the initial (final) os-
cillation frequency which is proportional to the square root
of the laser intensity Ji. While the improvement of the lo-
calization goes only with the fourth root of the ratio of the
Initial to final intensity, adiabatic compression has the ad-
vantage of being independent of the longitudinal velocity of
the atom in an atomic beam (interaction time) over a wide
parameter range.
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A second possibility to improve localization is ‘by gen-
eration of a squeezed state of motion in the (gpproxmmtely)
harmonic part of the optical potential. It is well known
that a non-adiabatic frequency variation leads to the for-
mation of a wave packet, which, for certain times, wjll be
squeezed in position space, Az < ag yvith ag Fhe oscxllatpr
ground state [15-17]. A modulation of the optical pqtenpul
between w; < w < wr leads to an improved localization
Az Az = (wiJwr) = (I;/Iy)"/?. These squeezing cycles can
be repeated, resulting in a more and more squeezed gtomlc
distribution. In a harmonic-oscillator potential there is — at
least in principle — no lower bound for the attainable squeez-
ing [15, 17]. We emphasize, however, that a squeezed wave
packet corresponds to a superposition of an increasing num-
ber of harmonic-oscillator energy eigenstates. Thus, the op-
timum squeezing that can be obtained in an optical potential
with period a is limited by Azma x ad/a < ag [18].

The paper is organized as follows. In Sect. 1, we give
a brief summary of the basic equations for laser cooling in
one—dimensional optical molasses. Section 2 presents our
results for the localization of atoms for a standing-wave
laser configuration with two counterpropagating linearly po-
larized light waves. Finally, in Sect. 3, we discuss the basic
mechanisms of time-dependent compression techniques and
compare results obtained within the harmonic-oscillator ap-
proximation to simulations of adiabatic compression of a
precooled molasses.

1 Basic equations

In this section we summarize and review the basic equations
of one-dimensional (1D) transverse laser cooling to identify
the physical parameters in our model and establish our no-
tation. For details, refer to [8-10]. In our 1D, model we
consider a two-level atom with a Zeeman substructure cor-
responding to an angular momentum J; to J; transition in
a laser configuration consisting of two counterpropagating
light beams with linear polarization. For the specific calcu-
lations below, we assume J, = 3 — J, = 4 corresponding
to Cr. The angle between the polarizaton vectors is denoted
by 6.

We are interested in laser intensities well below satu-
ration s < 1 which give rise to the lowest temperatures
corresponding to the largest ground-state population. The
saturation parameter is defined as s = 102?/(A%+ T, with
(2= 2& d/h the Rabi frequency, d the dipole-matrix element
on the outermost Zeeman transition My=Jy - M=, T
the spontaneous decay rate, and A = WL —weg the laser detun-
ing. Elimination of the excited-state manifold leads to Gener-
alized Optical Bloch Equations (GOBE) for the ground-state
density matrix pgq(t) [19] (A= 1)

Pgg = —i (heffpgg ~ Pgg hiff)

+k
+2’YOZ /

dulN, (W)[B,(£)e™ ™) pg e BL(5)], (1)
o=0,%1 -k

with a non-Hermitian effective Hamiltonian
A2
_ P 8 I . .
hee = Wi + 3 (A - 1—2—> M(z).@T(z) . )

The first two terms on the right-hand side of (1} correspond
to a time evolution due to the Hamiltonian e, while the
last term describes the return of the atomic electron to the
ground state by optical pumping.

The Hermitian part of hey describes the i:nltlcmm ID
motion of a particle in the periodic optical potential

Ve = ~5sar @), @

as given by the ac-Stark shift of the various Zeeman sx‘xb-
levels, where &/ (£) denotes the dipole operator connecting
the ground and excited states. In the following, we will refer
to Uy = —5A/2 as the potential depth. Since our laser con-
figuration involves no m-polarized light compenent, this co-
herent evolution couples only states that are connected by a
o,—o_ Raman transition, i.e., only states of even and odd M,
are coupled by U/(2). The anti-Hermitian part in (2) describes
a damping due to optical pumping with yo = s7°/4, the op-
tical pumping rate between the ground-state levels. The op-
erators Bg(£) = A(,(ff(f) in the last term of (1) describe
a Raman transition, corresponding to absorption of a laser
photon (MT) followed by spontaneous emission of a pho-
ton (the operator A,) with light polarization ¢ = 0,41 and
angular distribution Ny 1 u. Here, No(u) = 3/4[1 = (u/k)?]
and Ny (u)=3/8[1 +(u/k)*] [19] are the angular distribu-
tions of the emitted photons for polarization . The Liouville
operator in the GOBE (1) is invariant under A/2 translations,
and there exists an (infinitely extended) periodic steady-state
density matrix with this symmetry. All the results reported
below correspond to this periodic distribution.

2 Localization in 1D optical molasses

In this section, we will concentrate ona J, = 3 to .J, = 4 tran-
sition. This corresponds, for example, to chromium atoms [2]
driven on the 75:-7P, transition. We note that this transi-
tion is not a pure two-level system since there is a “leak”
of the excited state to the 5D levels with a branching ratio
of about 1:500. We ignore this leakage rate, since, typically,
the steady state of the optical molasses is obtained in a time
much shorter than this decay rate. We note that populations
of the vibrational levels for a Fy, = 3 to F. = 4 transition
were already discussed in our previous work on the spectrum
of resonance fluorescence of 87Rb [9].

The laser configuration consists of two counterpropagat-
ing light beams with linear polarizations. We denote the an-
gle between the polarizaton vectors by 6. In this configura-
tion the electric field can be written as

0z, t) = 25‘\/5[cos(/cz:)e+ —cos(kz + Qe_Je Mt 4)

Here & is the light amplitude, w. denotes the laser fre-
quency, z is the coordinate along the light propagation
axis (which is also the quantization axis for the atom), and
e = $—\‘7—i()‘c + i) are spherical unit vectors.

2.1 Optical potentials

In this subsection, we will discuss those characteristics of the
ac-Stark-shift potential that are important for the Jocalization
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Fig. 1a,b, Diabatic (dashed) and adiabatic (solid) potentials for the odd My
Zeeman sublevels in a Jy=3—Je=4 transition as a function of position for
Up=100 Eg, (a) 6=7r/2, (b) 8 = 7/8

of atoms. The potential (3) is a local operator that operates
in the space spanned by the internal degrees of freedom at
every point in space, and, therefore, its representation in the
basis of the Zeeman sublevels is a position-dependent ma-
trix. The laser configurations considered here involve only
o+ components and, therefore, all of the even ground-state
Zeeman sublevels are coupled by coherent Raman processes.
The same is true for the odd sublevels. The coupling between
the odd and even ground states is only due to spontaneous
emission and, therefore, the potential matrix can be factor-
ized into two submatrices corresponding to the odd and even
submanifold. We will denote the parts of the optical poten-
tial that correspond to odd and even sublevels by U} and U,
respectively. Figure 1 shows the adiabatic (diabatic) poten-
tials corresponding to the eigenvalues (diagonal elements) of
the potential matrix U of the odd Zeeman ground states for
two different angles between the polarizations of the laser
beamns.

Let us first turn to Fig. la, for which @ = /2. This
corresponds to the familiar linllin configuration, as first
discussed for a 1/2 — 3/2 transition by Castin and Dalibard
[8]. In this case the nodes of one standing-wave spatially
coincide with the antinodes of the other [4]. We find that the
diabatic potentials of the outermost two sublevels M, = £3
are sinusoidal and have their minima at positions with pure
o+ and o_ light, respectively. This leads to a lowest adiabatic
potential that has a periodicity of A/4 (for a detailed study
of this symmetry, see [20]). The other states give rise to
adiabatic potentials that lie above the threshold of the lowest
one. In Fig.1b, we show the same plot but for an angle
§ = /8 between the polarizations. In this case, the two
standing o, and o_ light waves are shifted with respect to
each other and, therefore, their nodes move closer together.
This leads to a corresponding shift of the diabatic potentials
and a A/2 symmetry for the adiabatic potentials. In addition,
the potentials are somewhat deeper, so that we expect their
Bloch wave functions to be better localized than the ones in
the linllin configuration. Another difference from Fig. la
is that the other states give rise to adiabatic potentials that
are no longer above the threshold of the lowest one.

In the following, we will quantitatively investigate the
localization of atoms in the molasses created by the two
laser configurations mentioned above as a function of the
most important experimental parameters, i.e., the potential
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Fig. 2a,b. Spatial distribution of the various Zeeman sublevels (solid line
Mg = +3, dashed line My = -3, thin solid lines My = —2,...,+2) and
corresponding total distribution (dotted line) for Uy=100 Eg, o = 10 ug ,
(a) @=7/2 and (b) 8 = 7/8 . The arrows indicate the FWHM of the total
distribution

depth Uy and the interaction time with the molasses. To
calculate this spatial localization, we solve the GOBE (1)
using a Monte-Carlo wave-function technique [9, 19].

2.2 The linLlin configuration (6 = 7/2)

Figure 2a shows the spatial distribution of the various Zee-
man sublevels (i.e., the diagonal part of the density matrix
(2, Mg| pgg |2, M})) for a potential depth of Up = 100 Er
as a function of position. Here, Er = hwr = h%k?/2m de-
notes the recoil energy. The dotted line represents the total
spatial distribution of the atoms (summed over all Zeeman
sublevels). We find- 87% of the population in the two outer-
most Zeeman sublevels M, = %3, i.e. in the lowest adiabatic
potential. The distribution of the M, = +3 sublevel shows
a A/2 periodicity, whereas the fotal distribution exhibits a
A/4 period.

We performed a series of simulations for various poten-
tial depths ranging from 60 to 1000 Er and found that, at
large enough Uy the distribution in Fig. 2a is rather insensi-
tive to the potential depth. Although the width of the various
peaks decreases rapidly with increasing Up in the range of
60 to 100 Ep, it more or less approaches a constant value
for Uy larger than 200 Ey (for a quantitative discussion of
this see Sect. 2.3). We, therefore, conclude that although the
linLlin molasses leads to a good localization of the individ-
ual Zeeman sublevels (line separation : FWHM = 4 : 1), the
lines of the fotal distribution overlap in such a way that the
total distribution is essentially sinusoidal, with a background
that is on the order of 25% of the peak hight (Fig. 2a). This
is due to the A/4 dislocation of the minima of the diabatic
potentials of the sublevels M, = +3.
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2.3 The lin—Z~lin configuration (6 = 7 /8)

According to (4), the angle # between the polarization vec-
tors is related to the phase shift between the o* and o~
standing waves of the electric field. For 8 # /2, the two
minima of the adiabatic potentials move together: this is il-
lustrated in Fig. 1b for 6 = 7 /8, where the distance between
adjacent M, = — 3 and M, = +3 minima is approximately
A/16. Slnce laser cooling ]eads to a localization in these po-
tential minima, we expect that the M, = 3 distributions are
now strongly overlapping and that thIS conﬁguratlon leads
to lines with penod1c1ty A/2. Since the temperature in opti-
cal molasses tends to increase for decreasing 6 < /2 [20],
and the vibrational ground state in the potential Fig. 1b is
wider than that in Fig. 1a, we expect less localization on an
absolute scale but a better relative localization (width of the
lines divided by their distance).

The spatial distribution of the various Zeeman sublevels
for the same parameters as in Fig.2a is shown in Fig.2b.
We find that the population in the two outermost sublevels
M; = £3 has drOpped to about 50%, and that each of the
inner sublevels carries approximately 10% of the population.
We find good total localization, even in the case of moderate
potential depth (Up = 100 Ex in Fig.2a). The width of the
various sublevels is even slightly smaller than in the §=m/2
case. This is due to the better localization of the Bloch levels
in the deeper adiabatic potentials (Fig. 1b).

To investigate the dependence of the localization on the
potential depth, we define the linewidth Az (either one in-
dividual sublevel or the total distribution) to be the FWHM
of a Gaussian which we fit to the given spatial distribution
(Fig. 2b). The results for a series of steady-state simulations
with various potential depths are presented in Fig. 3. We find
that for small potential depths, up to approximately 100 Ek,
Azq, decreases strongly with increasing Up. This is due to
the fact that the temperature of the molasses and, therefore,
the population of the various bands is more or less constant
(the optimum cooling potential is 80 Egr[9]), whereas the
Bloch states themselves are better localized the deeper the
potential is. A further increase of the potential depth beyond
100 ER still decreases the width of the lowest vibrational
states but the temperature and, therefore, the population of
higher levels increases, since we are no longer in the regime
of optimal laser cooling. These two competing effects lead to
the saturation of the localization that takes place for Up> 200

Eg.

2.4 Time scale of localization

In an atomic-beam experiment with transverse cooling, the
longitudinal velocity of the atoms leads to a certain inter-
action time for the transverse localization. In [2], an ap-
proximately 2 cm long optical molasses was utilized to
transversely cool a thermal chromium beam of temperature
1500°C. (Note that the actual deposition in this experiment
is not due to the localization in the molasses, but rather
to the coherent focusing of the atoms in a far off-resonant
laser standing wave, which we will discuss in Sect. 3.) This
leads to an interaction time of approximately 20 us, which
corresponds to about 100 spontaneous emission lifetimes.
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Fig. 3. FWHM of the total distribution versus potential depth, calculated
with 79 = 10 wg and @ = 7/8 . The dots show the individual simulation
points
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Therefore, the question arises: can the steady state, which
was assumed for the calculations in Sects. 2.2 and 2.3, be
reached within this interaction time?

To answer this question, we performed transient simu-
lations of the GOBE (1), by starting with an initial distri-
bution that is an incoherent superposition of plane waves.
The momentum distribution was assumed to be a (Doppler
precooled) Gaussian with a half-width of 12 %kr, and the
internal distribution was assumed to be distributed equally
and incoherently among the various Zeeman sublevels. In
these simulations, we further neglected any variation of the
intensity of the laser beams with position. The results are
shown in Figs. 4a,b as a function of optical pumping times
1/70 [21].

Figure 4a shows the width Azts of the outermost Zee-
man sublevels as a function of time for the lin_Llin configu-
ration and for various potential depths. A -Azy3/\ equal to
0.27, corresponds to a spatial distribution with peak-to-valley
ratio of 0.1, whereas Azy3/X = 0.19 and 0.16 correspond
to peak-to-valley ratios of 0.01 and 0.001, respectively. The
localization takes place on a rather short time scale, ap-
proximately 15/, more or less independent of the potential
depth. Figure 4b shows the same characteristics for the 7 /8
configuration. The localization time is increased by a factor
of 2, which is due to the less-efficient cooling in this laser



configuration. Furthermore, the steady state Azy3 is smaller
than that of the linLlin configuration,

3 Compression of the transverse spatial distribution

The preceding sections described a full quantum mechan-
ical treatment of the 1D transverse-cooling process of an
atomic beam. We have shown that strong localization oc-
curs within the potential wells corresponding to the indi-
vidual magnetic sublevels. Now, we address the question
of whether further narrowing of the position width can be
achieved, once optimal cooling has been obtained. We first
discuss the possibility of adiabatic compression and squeez-
ing of the spatial distribution obtained in optical molasses
within a harmonic-oscillator approximation [15-17]. Then,
we compare these analytical predictions with a full calcula-
tion of adiabatic compression of optical molasses on a 3 — 4
transition.

3.1 Spatial compression in the harmonic approximation
Expanding the periodic potential in the vicinity of a mini-

mum Ul(z,t) = Uy(t)sin (kL2)* = Uo(t)(kL2)? yields a har-
monic Hamilton operator

A= 2 4 Lneps 5)
T om T 2mES

with w(t) = [(2k? /m)Uy(t)]'/? and a maximal permissible
aperture a = X\ /2, which is equal to the periodicity of the
potential. Assuming a thermal quantum state in a harmonic
oscillator, we have

= o~ A /ksT 1
Tr(e-—ff(ti)/ksT)

=2sinh (8/2) Y |n) (n|e™F"+1/2), (6)

ﬁlh

where 8 = hw(t;)/(kgT) and |n) are the energy eigenstates.
The position and momentum width at the initial instant #;,
which can be obtained from averages over the thermal state

(...) = Tr(pw...), are

2a0ay — [ 50e2\ _ saeenZ _ 21

AT = (200°) — (20)" = o s, ™
25(t) = «.2_A.2__ﬁ_2___1_
A%t = (P)*) ~ (3(0)” = 10 s (8)

where ag = (h/2mw;)'/? is the width of the initial ground
state (w(%i) = wj). It is a consequence of the parity and the
rotational symmetry of pi, seen, for example, from a Wigner
representation in phase space, that the expectation values
(2() , (B(E)) and A2[2(t)P(t) + H(t:)2()] vanish.

The solutions of Heisenberg’s equation for position and
momentum operators 2(t), p(t) are obtained immediately
since they are linear. By defining a transfer matrix S(t) from
the fundamental solutions of the classical equation of motion
d? 2
a‘{ffi:u(t) = —w(t)*fi(t), ®

which is of the same functional form, we find
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2D\ _ 2(0) .
(ﬁ(ﬂ) =50 (ﬁ(0)> with
_ [ L@ fult)/m
80 = (mfl(t)' Fa(ty ) {10

and S(t;) = 1. Since S(%) is symplectic, Det[S(t)] = 1 which
implies that the commutation relations are preserved. Thus,
position and momentum width are given by

240+,
450 = 2207 + L2 ey |
= A%2(t) [A1t)* + Wl )] (11)
A*P(t) = m2 A2 F1() + AZ(t:) fa(t)
1
= A%p(t) | — fi @+ fz(t)'zJ : (12)

Depending on the rate of frequency change there are several
discernable limits.

3.1.1 Adiabatic compression. The adiabatic limit is appropri-
ate if the frequency changes significantly only after a large
number of oscillation periods have passed, i.e.,

w(t)

w(t)?
Together with a WKB ansatz f(t) = exp [i®(t)], this con-
dition leads to the adiabatic approximation for the transfer
matrix 9, 4,,(t) (see the Appendix for details). From these
solutions we can infer that the position variance diminishes
according to

A25(t) = Azé(ti)a—j—:i—)

~ t
X{1+tan [e()]sin[2 / w(t1)dt1]+(9’[90(f)2]}, (14)

ti

=2tan p(t)| < 1. (13)

while the momentum width increases as

2ty = Mg 22

t
X {1 — tan [¢(t;)] sin [2/ w(ty)dt] + @[cp(t)z]} . (15)
t

Note that there can be residual oscillations around the value
obtained for a smooth turn on if (w(t) # 0). However,
the state is still transferred adiabatically, as the uncertainty
product remains constant. It is also interesting to note that
the extremal values ’

At = Ast) (%) C 4 Ol

_ Aseen [ Do) : U
= A2(t) (“—U0<tf>> + Bl (16)
L
Ap(ts) = Ap(t;) (gf) + Olp(t)]
Dot &
= 4ot (59 "+ 1ot ()

that are reached at the end of the period are independent
of the interaction time and thus also of the velocity of the
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particle. This implies that within the adiabatic regime, a lon-
gitudinal velocity spread of the atomic beam has no effect
on the position narrowing. However, the maximal compres-
sion is just the square root of the result that is obtained for
instantaneous squeezing, which we will discuss next.

3.1.2 Instantaneous squeezing.The sudden approximation
covers the other extreme case when the frequency change
occurs on a time scale much shorter than an oscillation pe-
riod; in other words, the state of the system is unaltered
during this instant. Assuming that w(t < ;) = w; remains
constant until it changes instantaneously at a jump time ¢
to w(t > tj) = wr, we obtain a transfer matrix Sgyqden(t)
which is formed by two harmonic-oscillator propagators
(see Appendix). The position uncertainty does not change
A3(t < ) = AZ(t;) until the frequency jump occurs. From
then on it oscillates between the initial A2(¢;) and a minimal
value Afmin = A2(H) (wi/wr) = AR(E) [Uo(t:)/Uo(tl'/*:

A%5(t) > A%t > 1) = A%8(E)

w? . 2 VN
X1+ | =5 — 1) sinfwrt — )" p =2 A%2(E)—5 . (18)
W ' Wi
The momentum uncertainty also remains constant, Ap(t <
t;) = Ap(t;), before the frequency jump happens. After that
time it varies periodically like

A%p(t) < A%P(t > t) = Ap(t:)

w? w?
X {1 + (_g. - 1) sin [wi(t — tj)]z} < A% (19)
Wi ot
between Ap(t;) and a maximum of Ay = AP(ti Nwe/wi) =
Ap(t)[Uo(ts)/Un(t)]'/2. Thus, the maximal compression of
the position width can be substantially larger compared to
the adiabatic limit as long as the time-of-flight dispersion
remains smaller than the oscillation period 27 /wr.

3.1.3 Non-adiabatic compression. The two aforementioned
approximations are in a sense very general because they
do not take into account the very details of the frequency
change. By assuming the most common transverse beam pro-
file I(z), i.e., a Gaussian, we can also study the effects of a
non-adiabatic turn-on. A particle passing through the profile
with velocity v will experience a time-dependent oscillation
frequency that is also of this shape

w(t) = w(@ e~ fort = —7, <t < t;=0, (20)

where we have introduced the time-of-flight 7, = L/v
through the rising part of the profile of width 2L. The in-
crease in oscillation frequency from w(t; = —7y) = w; to
w(ts = 0) = wr is measured by @ = In (wg/w;). Since there are
no known solutions to (9) and (20) in terms of elementary
functions, one has to resort to numerical methods to obtain
the transfer matrix.

A recent publication [5] discusses an approximation,
originally due to Glaser, which is especially suited for a
Gaussian. Strictly speaking, the Glaser limit is valid only
for small relative frequency changes, i.e., @ = In (wg/w;) =
(wr — w;)/w; < 1. Within this range, it is valid for all parti-
cle velocities
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quencies vs time scaled by the time-of-flight 7v = 1[L/v}: Gaussian fre-
quency wgauss(t) (solid), Lorentzian frequency wgiaser(t) (long dashed) and
the sudden frequency change weygen(t) (dot dashed) where wiTy = 27 and
WfTy = 47

1

_ @1
1+a(t/n)’

w(t) = wfe*"‘(”/'”)2 = wr

But, even beyond these limits (i.e., @ > 1), the approximate
Lorentzian function itself represents an interesting turn-on
shape; furthermore, it interpolates between the endpoints of
the Gaussian if « is set to o = (wf — wjwi. The great value
of this approximation lies in the fact that simple solutions
are available. In this case, the position width is given by

prsta = asey 8 (1s (SR
- Y1+ 87 ¢?

x sin[6(s) — 6(s))]* — Z-’ sin {2[6(s) — 9(30]}) , 22)

where s(t) = \/at/my, 0(s) = qarctans, g = (1 + k2)!/?
and k2 = (wsry)?/c. The uninspiring expression for the mo-
mentum width can be obtained from the explicit solutions
postponed to the Appendix.

In Fig.5, we present w(t)ry for the three considered
frequency turn-on shapes vs time scaled by the time-of-
flight 7, = 1[L/v]. The solid line represents the result for
the Gaussian frequency wgauss(t), the long-dashed line is
the Lorentzian approximation to it Wgiaser(t), while the dot-
dashed step function is wsdgen(t). The frequency changes
moderately from w; = 277y — wr = 4w 7, which cor-
responds to a relative frequency change of o = In2 =
0.69... Considering the non-vanishing slopes of wgayss (i)’
and waglasee(t;)’, one can expect small oscillations of the po-
sition widths with a modulation frequency of 2 w(t) around
the value that would be obtained for a smooth turn-on as
indicated in (14).

Indeed, this behavior is found in Fig. 6 where we show
the position widths vs time-of-flight through the profile. We

are still within the adiabatic regime as f_on w(ty)dt; =~ 3.
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Fig. 6. Scaled position width A2(t)/AZ2(%;) vs time scaled by the time-
of-flight 7v = 1[L/v]: AZgauss(t) (solid line), Asge(t) (long dashed),
AZsygden(t) (dot dashed) and for smooth adiabatic turn on AZ,4;,(t) (dot-
ted) where t; = ~0.6 7y
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Fig. 7. Scaled position width AZ(t)/A2(t;) vs time scaled by the time-of-
flight 7v = 0.25[L/v]: AZgauss(t) (solid line), AZgraser(t) (long dashed),
AZgdden(t) (short dashed) and for smooth adiabatic turn on AZgiap(2)
(dotted), where tj = —0.6 7y

The dotted curve is the adiabatic result ignoring the turn-on
effect. The maximal squeezing, which is reached at ¢; = 0
is AS(t0)/A%(t) = (wi/wp)'/? = [Uot)/Uo(t)]'/* = 1/1/2.
By numerically integrating the Gaussian turn-on we obtain
the solid line, while the long-dashed curve represents the
result for a Lorentzian shape (22). After the frequency jump
occurs at t; = —0.6 7y, the postion width of the sudden limit
(dot-dashed line) reaches the maximal amount of squeezing
A2(tn)/AZ(E) = wijws = [U()(tj)/U()(t{)]]/z = 1/2 at times
th = (2n+ 1) w/2.

In Fig. 7, we have increased the particle velocity by a fac-
tor 4, but left all other parameters unchanged. The adiabatic
character that prevails in Fig. 6 is lost now and the position
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widths for the continuous turn-on frequencies wggys(t) and
Walaser (t) approach the result of the sudden limit.

3.2 Adiabatic compression of the optical molasses

We have mentioned already in the previous section the ad-
vantage of the adiabatic compression over other schemes
[2], i.e., its inherent insensitivity to the longitudinal veloc-
ity. In this subsection, we will examine such an adiabatic
compression performed immediately after the atoms have
been cooled in a rather shallow potential (since this gives
the coldest temperatures in terms of the population of the
various bands [9]). By increasing the depth of the opti-
cal potential, one reduces the width of the various Bloch
states. 'Two restrictions limit the time scale of this poten-
tial increase. The compression has to be slow enough to
guarantee an adiabatic evolution of the populationg. A sharp
drop of the potential would lead to a breathing motion of
the density matrix, as has been discussed in the case of
a harmonic oscillator. On the other hand, the compression
has to be fast enough to avoid spontaneous emission. This
would lead to heating (since the steady-state temperature
increases with increasing Uy ) and, therefore, result in an
unwanted broadening of the spatial distribution. Defining
AE(t) = Eng[Up(t)] — EaqlUs(t)], the energy difference
between two Bloch states as a function of the increase in
potential depth, we can write conditions to both guarantee
adiabaticity and avoid spontaneous emission

AE(®)
m < AE(t)/2nh, 23)
sI'T « 1, 24)

respectively. The first condition tells us (in conjunction with
the dependence of the Bloch energies E,(q) on the pote-
nial depth Up) how fast we can switch on the compressing
potential, and, therefore, gives us the compression time T'.
Condition (24) then gives us the required saturation s.

In Fig.8, we compare the steady-state localization in
the molasses and the localization obtained by compress-
ing the atomic distribution starting from a shallow molasses
(Uo = 100 ER, 6 = m/8 ). The dashed line is the steady-
state result from Fig. 3, while the circles refer to results we
obtained from a transient simulation of cooling and succes-
sive compression processes. The solid line represents the
perfectly adiabatic case which was calculated by using the
steady-state populations of the various bands inferred from
the molasses simulations for Uy = 100 Eg, 6 = 7/8, and
Yo = 10wr. Using these populations as weights for the Bloch
states for various potential depths, we can calculate Az of
the resulting distribution. '

In Fig.9, we present the width of the localization, ob-
tained for ideal adiabatic compression discussed above, but
taking into account just a single Zeeman sublevel | M, =3)
(solid line). In comparing this to the adiabatic compression
of a thermal state of the same initial width in a harmonic
oscillator (dotted line) one finds good agreement. The set of
parameters is identical to those of Fig. 8.

We performed detailed simulations of the compression
process for two reasons. First, due to the special form of the
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Fig. 8. Adiabatic compression, starting from a /8 molasses with Uy=100
ERr. The solid line represents the perfectly adiabatic compression, calcu-
lated using the populations of the various band in the cooling molasses.
The circles represent the results for a transient simulation with the follow-
ing parameters. Cooling: 8=m/8, Up=100 ER, v0=10 wr , Teool = 15tr.
Compression: =1 /8, Uy=100 — 1000 ER, 70=0.025 wgr , Teamp = 15tr
[Uy(t) is a Gaussian with HWHM of 8.3 tg and a hight of 1290 Eg plus
a constant background of 100 ER]
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Fig. 9. Width of localization AZ3(t)/ A, for adiabatic compression if only
a single Zeeman level | M; = 3) is considered (solid) and the result of the
harmonic approximation for the same initial width (circles). Same set of
parameteres as in Fig. 8§
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light-shift potential (Fig. 1), the dependence of the band en-
ergies on Uy is rather complicated and shows several avoided
crossings, which correspond to the crossing of levels in the
various adiabatic potentials. To maintain adiabaticity along
these avoided crossings, one would have to use extremely
slowly increasing potentials, which, in turn, leads to long
interaction times and unrealistically small saturations. But,
as the simulations show (circles in Fig. 8, see figure caption
for simulation parameters), adiabaticity across these avoided
crossings is not really necessary. This can be understood by
the fact that only rather high-lying bands with populations
of a few percent are affected by these crossings, and by
the fact that diabatic transitions tend to preserve the spatial
distribution of the Bloch waves.

The second reason for the simulations was to study
the effect of residual spontaneous emission. The calculation
shown in Fig. 8 represents the ideal case, where we decreased
the saturation to such a small value that we expected (and
found) only one spontaneous-emission event during the en-
tire compression process. Using a ten times higher saturation
leads to only a slight upshift of the Azy3 vs Up characteris-
tics that is on the same order as the Monte-Carlo uncertainty
(noisiness of the data in Fig. 8).

4 Conclusions

We have investigated localization of atoms in quantized 1D
optical molasses in the steady-state and transient regime in a
laser configuration consisting of two linearly polarized coun-
terpropagating laser beams with angle 6 between the polar-
ization vectors. In view to recent interest in deposition of
chromium atoms on a substrate, we adopted an atomic model
corresponding to an angular momentum J; =3 — J. =4
transition. Detailed results for the spatial distribution of the
various Zeeman populations of the atomic ground state were
presented for § = 7 /2 and § = 7/8: in the first case, the spa-
tial periodicity of the total atomic density is A/4, in the
second case A/2. For the low-intensity limit investigated in
this work, we found that the spatial localization was essen-
tially constant for a potential depth larger than ~ 100Ey
with FWHM on the order of Ar/10.

Furthermore, we have investigated a time-dependent com-
pression of the atomic distribution following the preparation
of optical molasses by adiabatic compression and squeezing.
For a given range of variation of the laser intensity, the best
compression can be achieved by increasing the laser intensity
instantaneously. The resulting breathing motion of a local-
ized wave packet leads to a minimum width after a quarter
period (squeezing). These squeezing cycles can be repeated.
We emphasize, however, that the optimum compression in
a squeezing scheme is the diffraction limit of coherent atom
optics. A squeezing scheme requires an atomic beam with
a longitudinal velocity dispersion which leads to an interac-
tion time less than the oscillation time in the optical well,
This is not the case for adiabatic compression which is in-
dependent of the interaction time or the longitudinal atomic
beam velocity. For a given intensity variation, however, the
compression ratio is only the square root of the squeezing
scheme.

Appendix

Transfer matrices

The transfer matrix obtained in the adiabatic approximation
is

§adjab (ta tl) =
VEN
wi(t)

— /W)~

cos (t;) cos (L)

t t
cns[f, w(t My —p(ti)] sin [fL wlt eyl
- —e

A ;:ns w(t)) g /“’(:i)‘“(")
sm[f wlt) Mty +e(t)— () cos [j; w(t )t +p(L)]

w(t
V W)

cos (L)

(Al)



with tan (t) = w(t)’/2w(t)®>. The transfer matrix in the
sudden approximation is given by

Ssudden(t > 1)) = 8, (t = )8, [t; — (=7)], with
!

S - coswt  —— sinwt
2u,(®) ( —muw sin wt T oos wt ' (A2)

The transfer matrix within the Glaser limit is

Sctaser(ts ) = 8G1aser 81 S rases [SEN Y (A3)

§Gla§er[3(t) = \/& <£‘>]

V1+s2cosf(s) Y ging(s)
m+/aq
m V@ scosf(s)—gsinf(s) gcosB(shs sin B(s) ’
-

v V1+s? gV1+s?

(Ad)

where 0[s] = garctans, g = (1 + k2)'/2 and k2 = (wery)? /v
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