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The nonlinear dynamics of a sample of two-level systems exposed to noisy laser light is investigated.
As stochastic models we treat the chaotic field and the real Gaussian field. Based on the method of mar-
ginal characteristic functions, we deduce analytical solutions for the mean values and variances of the
atomic populations in terms of matrix continued fractions. We find significantly enhanced on-resonance
fluctuations for a real Gaussian field compared to a chaotic field of the same bandwidth and intensity.
Furthermore, in contrast to phase-noise models, the fluctuations in the fluorescence intensity do not de-

crease to zero in the limit of slow fluctuations.

PACS number(s): 42.50.Lc, 32.50.+d, 32.80.—t

I. INTRODUCTION

In a series of recent publications it has been demon-
strated theoretically [1-5] and experimentally [6—8] that
the relatively large intensity fluctuations in the resonance
fluorescence of a macroscopic sample of atoms can be at-
tributed to laser noise. An analysis of the amount and
frequency distribution of these fluctuations has revealed
much more detailed information about the input field
fluctuations that can be obtained by simply looking at the
mean values of the fluorescence intensity. In particular,
fields with an identical spectrum can lead to qualitatively
different fluctuation behavior, exhibiting the differences
in higher-order field-correlation functions. On the other
hand, these fluctuations very often limit the accuracy and
speed of optical high-precision experiments, so that un-
derstanding the precise origin of this detrimental noise
could also help to improve such experiments.

Apart from calculations using lowest-order perturba-
tion theory, most of the work in this field has concentrat-
ed on phase-noise models such as the phase-diffusion
model (PDM) and the phase-jump model [1]. These noise
fields model stabilized single-mode lasers. In this work
we will focus on models exhibiting mainly amplitude
noise, such as the real Gaussian field and the complex
Gaussian field, which contain amplitude and phase fluc-
tuations. While the complex Gaussian field emerges nat-
urally as a well-suited approximation to the output of a
freely running multimode laser or even to thermal light
emerging from a light bulb, there is no such obvious nat-
ural source for a real Gaussian field. However, there
have been a series of recent experimental demonstrations
of the generation and application of such a real Gaussian
field by Elliott and co-workers [7,9] with well-defined and
controlled properties.

This paper is organized as follows. In Sec. II we have
compiled the basic equations necessary for describing the
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atomic system as well as the fundamental features of the
stochastic light models under consideration. Section III
presents a short outline of the method used to solve the
stochastic atom-field interactions for a complex and real
Gaussian field. The results for the mean emitted fluores-
cence intensity and its variance are discussed in Sec. IV
for the two considered light models. In addition, we
compare our results with the corresponding predictions
for a phase-jump and a phase-diffusion model.

II. BASIC EQUATIONS
A. Atomic quantities

1. Photodetection of atomic fluorescence

Following the standard approach to the theory of pho-
todetection [10], one finds that the mean photocurrent for
a photodetector at position x, with a surface 4 and a di-
mensionless quantum efficiency 7, is given by

Kite)N=n | d*> CI(x,t):) N . (1)
A

Here (( )) is the abbreviation for stochastic averaging
and (:I(x,7):) denotes the normally ordered quantum ex-
pectation value for the intensity operator. We assume
our sample consists of many (N) independent atoms ex-
posed to the same fluctuating laser field. In order to con-
nect the mean intensity to the intensity contributions of
the individual atoms in a simple way, we have to neglect
any cooperative effects. Assuming all necessary restric-
tions [2] means that the mean intensity is just the sum
over the intensity contributions from all atoms

N
I(x,t)="3 I'™(x,t1), (2)
k=1

and the mean photocurrent is given by
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Here 4 is the fraction of the emitted fluorescence in-
tensity that is collected by the detector, while k denotes
the inverse lifetime of the excited state. The central ob-
servable we are interested in here is the symmetric two-
time photocurrent correlation function, which under the
above assumptions is given by
2
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Kie)itt+r) N =Li)itt+7)N
— i) Kite+7)) .

The standard deviation for the intensity fluctuations is
defined as the integrated spectrum

A=V = [ [ dost) |

Q, 2. Atomic time evolution
((l(t)l(t+T))>= TINK— <<pn(t)P11(t+T)» . (4) L. . A i
4w Within the standard approximations of quantum optics
_ . [11], it is possible to deduce an equation of motion for the
The corresponding spectrum S(v) is density operator p 4(¢) of an atom coupled to a stochastic
- o electromagnetic field. We will restrict ourselves to the
S(v)=2 fo cos(vr){(i(t),i(t+7)NdT . (5)  case of a two-level atom (TLA), which leads to the fol-
lowing set of stochastic Bloch equations for the four com-
Here we have adopted the notation ponents of p ,(t):
I
z 0 i%ﬂe“f"” 0
P
0 z* — iMe —ig(t) 0 __T
d Pio 6
dr o |iQ(t)e T —iQ(r)e —K —c| | |w [T ©
0 0 0 0 tr

In Eq. (6) we have set pg,(1)=pge "™, w(t)=p(t)—peolt), and tr(t)=p,,+pep=1; Q(t)=2p-ele(t)| denotes the
atomic Rabi frequency, with e(t)e ~''=|e(t)|e ~'¢'") i the positive-frequency part of the stochastic c-number input
field. Furthermore, we set z=—i§—«k/2, with §=w—w,; the detuning between the atomic transition frequency and
the mean optical frequency of the input field, and « the inverse lifetime of the atomic upper state. To simplify the nota-

tion we will drop the overbar in the following.

It is obvious from Eq. (4) that in order to calculate the variance and the corresponding autocorrelation functions, we
have to deal with equations for the squared atomic density matrix elements,

where we have suppressed the explicit time dependence
of Q1 and ¢. To find an equation for the stochastic aver-
ages of the variables defined by this set of multiplicative
stochastic differential equations it is necessary to specify
the stochastic noise models of the driving fields.

B. Models for the stochastic input fields

The stochastic electric-field amplitude of the laser at
the position of the atom with polarization € can be writ-
ten as

22 0 iQei® 0 0 0 p
0 2z* 0 —iQe'® 0 0 21 0
‘O, —ig o i@ i i Pio 0
p iQe 0 z—«k 0 —iQe Eﬂe PorWw —Kpo; o
dt 0 —iQe'? 0 z¥*—k iQe " i® ——i-Qe”i‘p P1oW —Kpyo |’
. . 2 Po1P1o 0
0 0 _éﬂe_i‘p —;‘Qei“’ z+z* 0 w? —2Kkw
0 0 2iQe ™% —2iQe'? 0 —2k
I
+)

EN(1)=e ®%e(t) . (8)

(
cl
In this paper we will consider two light models, namely
the real Gaussian field and the complex Gaussian field. A
real Gaussian field is defined by a real amplitude €(z),
which obeys an Ornstein-Uhlenbeck process [12]. In the
complex Gaussian field the two quadrature components
are assumed to obey two independent Ornstein-Uhlenbck
processes [13]. Both models are characterized by a
Lorentzian laser spectrum. We will denote the band-
width of these fields by b and the mean intensity by
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((ee*)) (((€?))). Although both models have the same
autocorrelation function they differ in their higher-order
statistics. For comparison, the PDM and the phase-jump
model considered in our previous work [1,2] describe
pure phase fluctuations.

1. The chaotic field

It is well known [14] that the electric field of a mul-
timode laser e(t e obeys Gaussian statis-

=Sige ¢
tics if the phases of the individual modes can be assumed
independent,

P(‘€|)= —(e€* /(e M) . 9)

1
e ) ©
Thus a multimode laser with a larger number of modes is
well described by a chaotic field. It is therefore complete-
ly characterized by its first-order correlation function
{(e*(¢,)e(t,)) (=autocorrelation function).

A complex Gaussian (chaotic) field e(z)=x(z)+iy(1)
with Lorentzian spectrum and bandwidth b can be writ-
ten as a solution of the Langevin equations

d

Ex-——-bx t)+ (b ee* M)V (1),
d (10)
20 = Y+ e M), (1)

with Gaussian random forces obeying ((F,(t)F;(T)))

=3,;6(¢t—7) and ((F,(¢)))=0. The average of the mo-
ments of the incident intensity I =e€* are

I"N=n1ee* N, (1

and the relative intensity fluctuations are AI /{{(I))=1.

2. The real Gaussian field

The real Gaussian field can be viewed as the limit of a
two-dimensional Markov process where the noise in one
quadrature component is strongly suppressed. This is the
classical analog of a squeezed vacuum: one has strong
fluctuations in one quadrature component and no fluctua-
tions in the other. However, in contrast to squeezing, all
field-correlation functions stay positive in this case. In
this limit the Langevin equation for the real field ampli-
tude is

4 ey Te(t)+(2b"K 2 N)V2F (1) (12)

dt

with (F(¢)F(7))) =8(t—7) and (F(z)))=0. The sta-
tionary solution of the equivalent Fokker-Planck equa-
tion for the probability distribution of the amplitude is

1 —(&2/2()
areamiat 13

and the moments of the intensity I =€ are given by
(I =@n—11KeN", (14)

with (2n—1)M1=1X3X5X -++ X(2n+1), and (—1)
=1. Comparing this to the chaotic field, we see that the

P(e)=

fluctuations for the real Gaussian field increase by a fac-
tor of V'2, yielding AI /(1)) =V2.

III. ANALYTICAL SOLUTION
FOR THE STOCHASTIC AVERAGES

In this section we will briefly outline a method of deriv-
ing analytical solutions for the averages and variances of
the density matrix elements for the stochastic differential
equations, Egs. (6) and (7), for a real Gaussian and chaot-
ic driving field. The method [14,15] is based on the fact
that Eqgs. (6) and (7) are multiplicative stochastic
differential equations and that the driving field is Marko-
vian. It has proven to be a powerful technique and has
therefore been used in various calculations involving
atoms driven by noise fields [16].

As a first step, we introduce the so-called marginal
characteristic functions. With an appropriate Taylor an-
satz the resulting partial differential equation is
transformed into a difference-differential equation. Its
stationary solution then can be found in the form of a
matrix continued fraction. We will now demonstrate this
method in more detail for the real Gaussian field.

A. The real Gaussian field

The Bloch equation [Eq. (6)] for the real Gaussian field
has the form of

d
dt

with 4 and B as matrices and u as the vector of density
matrix elements. By combining this equation with the
Langevin equation for the driving field, we arrive at the
following set of Langevin equations for the atom and field
variables:

=[A+e(t)B]u(t), (15)

[4+e(t)Bult)
—bel(t)

0 0
0 vV2b

0
F(t)

d u

dt

(16)

These equations define a Markov process [15,17], and the
equivalent Fokker-Planck equation for the probability
distribution P(u,e€,t) reads

9 —+L(e) P(u,e,t)=—i[(ﬁi_+e§)uP(u,e,t)],
ot du
_ d
L(e) b 3 (17)

From Eq. (17) it is obvious that the equations for the
atomic averages {((u())) are coupled to equations for the
combined atom-field averages {(u(z)e(z))). These in turn
are coupled to higher-order atom-field correlations, so
that we end up with an infinite hierarchy of coupled
equations. In order to treat this set of equations sys-
tematically we introduce marginal averages defined by

u,(€1)= fuuPuetdu, (18)

and their Fourier transforms, the characteristic marginal
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averages

JA)=u,()e ™y (1))

= fe—"“u,w(e,z)de . (19)

The decorrelation of the atom-field averages [13] in the
case of weak coupling between field and atoms
(Qy<<k,b,8) suggests an ansatz in the following form:

T, (A, 1)=g,, (A, 1) (e ™)) . (20)

Consequently, we expect g,,(A,7) to have a much
smoother dependence on the parameter A than #(A,?).
Using Eq. (13), we can find

(e~ =

As a next step, we write a Taylor series for g“v(}»,t ),

—A22

2 g, 1)

n=0

gyv(}"’t)z

which, when inserted in Eq. (17) leads to the set of

differential-difference equations:

-d—+bn

dt 8=

A4 V1g1",u + A,ugl"v

+i(n+1)B,gl, ' +B,gl™")

—i(B,gl, ' +B,g."") . (22)

Introducing a vector g"

— T
8"=(811,812:813:822:823:833:841,842:843) »

and exploiting the symmetry of g,, and the matrices 4
and B, we can rewrite Eq. (22) into a tridiagonal vector re-
currence relation [15]

d ) n—
E_'_Qn gn+g'(' )gn 1+Qr(z+)gn+1=5n,01 . (23)
(The explicit expressions of the matrices can be found in
Appendix A.) The stationary solution of Eq. (23) then
can be given in terms of a matrix continued-fraction ex-
pansion

g%()= lim g%1)=(Qo+ Q%" DL
t— o
st g g g ‘2‘”
In particular, we have
Cuw?N=g%h(), Cwh=gh(=x), (25)

which allows us to obtain easily all the relevant quantities
of interest. In the case of fast fluctuations b >>«,{,,5 we
can truncate Eq. (24) at n =1 to obtain explicit expres-
sions for (w ) and {w?)) as demonstrated in Appendix
B. For the general case of arbitrary field-correlation time
and strength, the continued-fraction solution to Eq. (24)
can be evaluated numerically very efficiently and accu-
rately.

B. The complex Gaussian field

Generalizing the above procedure to a chaotic field im-
plies a Bloch equation of the form

Lu=[4+et)B+eICTul) . (26)
To calculate the averages of the atomic variables it is
again possible to transform Eq. (26) to an equivalent
Fokker-Planck equation:

S tL(ee") |Plue,r)
at
=—%{[4+e§+e*§]uP(u,e,t)} ,
(27)
d d d
L(e,e*) bae e €* 2«66»86*

Proceeding analogously to the case of the real Gaussian
field, we also introduce a marginal characteristic func-
tion. The main difference between the two cases arises
from the fact that the stochastic process is now two di-
mensional. To obtain a simple one-dimensional recursion
relation we have to write the Taylor series for the mar-
ginal characteristic averages

_ Ak ¥ gk
«e ihe(t)—iL" € (t)»ze AA ,
(w2e ~iren=iR*eX 1))y — ,—MA* v o ny wn
w’e =e 2 g33(A"A
. gk % a2
«p(zne ike(t)—idT € (l)»ze AA 2 gi.’l(t)}\'n+2k#n ,
n=0

etc. Making use of this ansatz, we again can derive a
differential-difference equation analogous to Eq. (23),
which again is solved by a matrix continued fraction (we
have postponed the definitions of the coefficient matrices
to Appendix A). Explicit expressions obtained by a first-
order truncation of the continued fraction are presented
in Appendix B.

IV. RESULTS AND DISCUSSION

In this section we discuss numerical results and analyt-
ical approximations for the mean values and variances of
the atomic populations of an atom driven by real and
complex Gaussian fields. In addition, we find it interest-
ing to compare our predictions with our previous work
[1], which considered an atomic system interacting with a
phase-diffusing light field. In contrast to a real or com-
plex Gaussian field, a phase-diffusing light field has no
amplitude fluctuations. In comparing the atomic mean
values and variances for these different field models, we
assume that these light fields have the same mean intensi-
ty and bandwidth, i.e., have the same autocorrelation
function but differ in the higher-order statistics.

In Figs. 1(a), 2(a), 3(a), and 4(a) we show the mean
upper-state population {{p;;)) as a function of the laser-
atom detuning 8 in units of k. The corresponding vari-
ances Ap;, are plotted in Figs. 1(b), 2(b), 3(b), and 4(b).
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The dashed and solid lines correspond to the chaotic and
real Gaussian fields, respectively, while the phase-
diffusion results are plotted with dotted lines. In Figs. 1
and 2 we have chosen the bandwidth of the driving field
to be smaller than the natural linewidth of the system,
b =0.25k, while the Rabi frequency

Qo=[LQ*(1)Q(r))]}/?

increases from weak fields to the limits of strong saturat-
ing fields, ,=0. 1k, 10«. Figures 3 and 4 show our pre-
dictions for a broadband field, b =5k, for the same Rabi
frequencies.

One of the basic features apparent in these figures is
that the averages of the upper-state population satisfy
(PDM denotes phase-diffusion model; CGF and RGF
denote complex and real Gaussian fields, respectively)

Kp11Meom> €p1i N> Cp1i Drar » (28)

which reflects the different saturation behaviors of the
stochastic fields. (For very low intensities, the atomic
mean populations are identical because in this limit only
the first-order correlation function enters, which is the
same for all three models [Figs. 1(a) and 3(a)].) Similarly,
we find for the variances (at least for a large range of de-
tunings near resonance)

0.007 T T T T T T T

0.006 + e
0.005 + B
0.004 + B
(Pu)
0.003 + 4
0.002 + 4

0.001 ¢ :

D'OOO 1 1 1 1 1 1 1
-4 -3-2-10 1 2 3 4

0.010 T
(b)
0.008 e

0.006 | N j
Ap,, I\
0.004 - [ 4

0.002 7 N 4

0.000 sl L 1 L L 71' T

6/k

FIG. 1. (a) Mean population {{p;,)) and (b) standard devia-
tion A(p;;) vs laser detuning 8/k. The three curves represent
the real Gaussian field (solid), chaotic Gaussian field (dashed),
and phase-diffusion model [1] (dotted). The parameters are
Q,=0.1k and b =0.25k.
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FIG. 2. Same as Fig. 1 with Q;=10« and b =0.25«.

(Ap11)rGe> (Apy11)cge> (ApyppMm - (29)

Qualitatively, this behavior is again related to the intensi-
ty fluctuations: for the chaotic field we have
AI*/(IN?*=1, and AI?/{I)?*=2 for a real Gaussian
field. The mean upper-state population [Figs. 1(a) and
2(a)] shows the usual resonance profiles with the width
reflecting the natural linewidth, the spectral width of the
field and the effects of power broadening with increasing
intensity.

At low intensities and for small bandwidth b <k /2, the
laser-induced population fluctuations for the PDM show
a minimum at resonance with two maxima at the points
of maximum slope of the atomic population versus detun-
ing [Fig. 1(b)] [1,8], while for large intensities we find a
saturation dip [Fig. 2(b)]. In contrast, the real and com-
plex Gaussian-field fluctuations are maximum on reso-
nance in the weak-field limit [Fig. 1(b)], but again show a
saturation hole for strong fields [Fig. 2(b)]. As an in-
teresting new feature, the variance for the real Gaussian
field exhibits a sharp narrow resonance of width ~«k/2
superimposed on the broad background with width deter-
mined essentially by the Rabi frequency [Fig. 3(b)]. This
feature is absent for the chaotic field. A physical inter-
pretation of this peak will be given when we discuss the
broadband limit.

The smaller the bandwidth of the field and the higher
the intensity, the more terms are needed in the matrix
continued-fraction expansion to achieve convergence.
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FIG. 3. Same as Fig. 1 with Q,=0. 1k and b =5«.
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FIG. 4. Same as Fig. 1 with Q,=10« and b =5«.

The quasistatic limit b —0, on the other hand, can be
solved quite easily by analytical methods. In this case the
atomic variables are assumed to follow the driving-field
fluctuations adiabatically. Derivations for the variances
and mean population in the zero bandwidth limit can be
found in Appendix C. We emphasize, however, that the
narrow central peak in the variance of the real Gaussian
field cannot be explained by this quasistatic approxima-
tion.

We turn now to a discussion of our results for broad-
band fields b =5« (Figs. 3 and 4); the other parameters
are the same as in Figs. 1 and 2, respectively. The main
difference for the mean upper-state population in Figs.
3(a) and 4(a) compared to Figs. 1(a) and 2(a) is a less
effective saturation of the atomic transition accompanied
by the expected broadening induced by the laser band-
width. The standard deviations plotted in Figs. 3(b) and
4(b) look qualitatively similar to those found in the
small-bandwidth case. The narrow feature for the real
Gaussian field is similar to the one found in Fig. 2(b). In
the present case the background is broader, while the
central peak retains its width of =~k /2, independent of
the laser bandwidth.

In the limit of broadband fields the matrix continued-
fraction expansion can be truncated in low order. A dis-
cussion of the broadband limit and its relation to a
white-noise approximation can be found in Appendix B.
In this appendix, for detunings much less than the laser
bandwidth, we derive the approximate relations
172

A
ual , (30)

«p“ »

with S=Q2/(kb) the saturation parameter. The corre-
sponding result for the real Gaussian field is

1
1+28

CGF

apu | 4(8/kP+2(1+5) v
puM |rgr | #8/K)H(1+28)+(1+5)(1+38S) ’
(31)

1.6 _————
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1.2

1.0
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0.0 e

-4 -3-2-10 1 2 3 4
6/k

FIG. 5. The depicted curves show  VgrGrrpDM)

=(Ap11 /L& p11 N rcrrpm)) /(Ap11 /€ p11 Wlcrg). The solid curve
describes the same situation as in Fig. 1 Q,=0. 1x, b =0.25«, the
dashed curve shows it for Fig. 3, Q,=0. 1x, b =5«.
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0.0
-45 -30 —-15 O 15 30 45

6/

FIG. 6. Same as Fig. 2, but with Q,=10«, b=0.25« (solid
line) and Qy= 10k, b =5« (dashed line).

which shows the narrow resonance of width =«/2.
Physically speaking, this resonance structure in the real
Gaussian field arises from the fact that a field with no
phase fluctuations couples only to a specific quadrature
component of the atomic polarization. The coupling of
the driven atomic polarization component to the orthog-
onal polarization component arises only via the detuning.
This uncoupled quadrature component is damped only by
the natural decay rate but is, close to resonance,
unaffected by the laser fluctuations. This leads to the
narrow features in Figs. 2(b) and 4(b). In order to exam-
ine the statistics of the emitted radiation we have calcu-
lated the ratio

= (Apll/«pll»|RGF)
(AP11/<<P11»|CGF) ‘

We show this in Figs. 5 and 6.

V. CONCLUSIONS

In this paper we have studied the effects of laser noise
on the fluorescence emitted by a large sample of two-level
atoms. We have investigated the atomic mean popula-
tions and variance for the real and complex Gaussian
fields of finite bandwidth. In comparison with the case of
pure phase fluctuations [1], we find that for fields of the
same mean intensity and bandwidth the presence of am-
plitude fluctuations significantly enhances and alters the
dependence of the populations’ variance on the laser and
atomic parameters. For weak fields, the variance of the
atomic population is determined by the fourth-order
correlation function of the laser. Correspondingly, the
real Gaussian field shows fluctuations larger than the
complex Gaussian field, which again exhibits fluctuations
much larger than for a field with pure phase noise. For
strong fields we find that a saturation dip develops, which
tends to suppress the noise near resonance. For the real
Gaussian field we predict the appearance of a sharp reso-
nance as a function of the population variance with width
equal to the natural decay rate of the transition.
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APPENDIX A: COEFFICIENT MATRICES

To complete the outline of our calculation we present
the explicit definitions of the coefficient matrices cited in
text [Eq. (23)].

In the chaotic field

o=2n+1E,

with Fl,3=F5,2=2¥ F3,2=F4,5='_2, F3,6=F7’9=1, and
Fse=Fg9=—1;

_ Q
[N )=“7Q ,

with G,;=—1, Gys=1,

. G;,1=Gy;=2,
G5,4=G9,8= _2, G6,3 =4, and G6,5= _4;

I=_Ke98n70 >
Q,=2bnl —%E-F%ng'fﬁ ,
K
:-—8.—_ s
z 1 D)

with H, ,=H},=2b—2z, H, ,=H; ;=H;3=H, =K,
H,;=—Q/2, H,s=Q/2, H; =H¢;=2Q, H;;
=H3s;=b—z+k, Hs,=H¢s=—2Q, Hg ¢=Hg =2k,
H,,=Hgg=b—2z,Hy;=Q,Hgg=—Q.

In the real Gaussian field,

Q=2+ E+G),

_ Q
()=—*(F+G
n 2(_ G),

I= —chﬁ,,yo ’
Q,=nblg—L,

With Ll,I:—L:,“:—zZ’ L2'2=L3’7=L5’8=L9,9=K,
Lyy=Ls=—z+k, Lg¢=Lgy=2k, and L,;=Lg,
= —z. All other matrix elements are zero.

APPENDIX B: BROADBAND FIELDS

In this appendix we study the white-noise limit of Egs.
(15) and (26). These results shall be compared to the
first-order truncation of the matrix continued fraction

«x,-(tl )xj(tz)» = «xiz»ﬁ,-je_bl'?-"l'

2
_ 20§ = —
b>>K,8,ﬂo«xl Ns, b8(t2 f) -

(B1)
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1. Cumulant expansion

For & correlated fields, Eq. (B1), we find for the aver-
ages of

‘%UZz[A""xl(t)Xl+X2(Z)X2)]UZ+I2, (BZ)

by means of the cumulant expansion [18] with 4 and X, ,
matrices, the equation

(x}
b

«x3N

»
Xi+—

-%«%»= A+ X2 [Cu N +1, .

(B3)
Application of Eq. (B3) to the chaotic field gives with

_. Qo _ Cee* )
X e 2

X,= o (
=2 2({ee* N)?

the equation of motion

B+C), «xi»

«X2 »= «66* )) ,

B_—_EL 2 2

2

QO -
4 ()= |4——2(BC+CB) |[Cu,)+1, . (B4)
dt 4b
Introducing a saturation parameter S =Q2/(bk) we write
the stationary solution of Eq. (B4) as

—__1 2y —_ 1
Kw M 155" w2 535 -
Note that these expressions are independent of the detun-
ing.
For the real Gaussian field, comparing Eq. (B3) with
Eq. (15) yields

(BS)

— 0 5 2)) — 2
X =is B (xiN=Ke,

X,=0, (x3;N=0,

and
Q|
L)) =— A——B I, . (B6)
We find for w )) and (w?))
___1 2\ 1
Cuw )= TS’ Cw?) =
1+2s——————
1+2s+486°/k
(B7)

Note that the variance now exhibits a narrow resonance
with width k/2 (S < 1).

2. Low-order truncation of the matrix continued fraction

For rapid fluctuations of the driving fields it is
sufficient to retain only the first terms of the matrix con-
tinued fraction,

CuN=[Qo—267 (@' 7'17'L, . (B8)

To obtain a first approximation for a chaotic field it is
permissible to neglect the second term in the denomina-
tor (because the Taylor series in the derivation had to be
more specified). Inverting Q, results in

1

Cwh=—rs
1+¢%L+L

2k | 1, It

(B9)
(w?N=—Cw)

|_ 2% a*T+ar*
a*B+aB* |’

ll=b+i8+—;—, r=1+-—,

I
Q5 Q3
a=I,+k+ , B=at2— .
b+i6+§ o

Inspection shows that the corresponding expressions for
the discussed approximations are identical with respect
to lowest-order expansion.

For a real Gaussian field, there is no conceptual
difference from the case discussed above, except that we
have to use the continued fraction up to second order

KuN=[Q,— Q5@ {717, (B10)
which results in identical expressions for ((w)) and

(w?)) as in Eq. (B9). There is only a slight change
within the definitions of «, 3,

1,=b +i8+§, r=1+-,

L
=1, +x+ % - +2Q‘2’
a=h et S sty Pt

APPENDIX C: SLOWLY FLUCTUATING
DRIVING FIELDS

If b is the smallest frequency appearing in the problem
(b <<k,8,(,), we can assume that the atomic variables,
which obey an equation of motion

iu(t)=4(05(t))u-+—l ,

d (C1

reach a stationary state before the field has changed
significantly,

u(e(t))=—A4""(e())I . (C2)

Thus it is justified to approximate the stochastic average
by

Kule(e))N= fP(e)us(e)de .

For the real Gaussian field [Eq. (13)], we find in this way
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(w(e) NP =0=Vaxe* (erf(x)—1) ,

Cw(e?N™0=—(ole)N %L —x)+x?,
172

2 2
(k/27°+8° | erf(x)=7/2_; Jle™ax .

03

Far off resonance, this reduces to

Alpy(€)°7°] -
lim ——=Vv2 .
s (pyy(€) N0 =0

In the same way we find for the complex Gaussian field

(wle) ) =0=2x22*"Ei(—2x2) ,

([w(e?IN=0=2x2[(w(e) P =°+1], (Ca)
172
(§>2+82 .
_ . _ a9 e
=g | Eie)= J! Sar,

and again for large detuning [compare Eq. (11)]
Alpy(€)°7°]
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