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Abstract 
We present a stochastic procedure to investigate the correlation spectra of 
quantum dot superluminescent diodes. The classical electric field of a diode is 
formed by a polychromatic superposition of many independent stochastic os-
cillators. Assuming fields with individual carrier frequencies, Lorentzian li-
newidths and amplitudes we can form any relevant experimental spectrum 
using a least square fit. This is illustrated for Gaussian and Lorentzian spectra, 
Voigt profiles and box shapes. Eventually, the procedure is applied to an ex-
perimental spectrum of a quantum dot superluminescent diode which deter-
mines the first- and second-order temporal correlation functions of the emis-
sion. We find good agreement with the experimental data and a quantized 
treatment. Thus, a superposition of independent stochastic oscillators represents 
the first- and second-order correlation properties of broadband light emitted 
by quantum dot superluminescent diodes. 
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1. Introduction 

Modern-day optical applications like optical coherence tomography [1] [2] and 
ghost imaging [3] [4] [5] make use of the unique emission properties of spectrally 
broadband light-emitting quantum dot superluminescent diodes (QDSLD). By 
using specialized waveguide geometries and gain materials, QDSLDs are able to 
combine high output intensities, spatially directed emission and spectral widths 
in the THz regime. Hence, they fill the gap in the family of semiconductor-based 
optical emitters between coherent laser diodes and incoherent light emitting 
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diodes. After being proposed in 1973 [6], research on the characteristics of 
QDSLDs has been intensified in recent years after Boitier et al. [7] enabled the 
direct measurement of coherence times in the femtosecond regime using two- 
photon absorption in semiconductors. This research is both theoretical and ex-
perimental nature. From the theoretical side, the understanding of light genera-
tion processes inside the diode is a main focus. For this, a plethora of approaches 
is being utilized including rate equation models [8] [9] [10], travelling wave ap-
proaches [11], finite element methods [12] and quantized treatments [13] [14]. 
Experimental studies focus on the determination of first- and second-order 
temporal correlation properties of QDSLDs [15] [16]. In 2011, Blazek et al. were 
able to observe a temperature dependent suppression of intensity fluctuations 

( ) ( )2 0 2g τ = <  using a broadband emitting QDSLD [17]. To this day, effort is 
being put into developing more efficient and high-powered QDSLDs [18] [19] 
[20]. 

Adding a new perspective to the investigation of QDSLDs, we discuss a sto-
chastic model for the emission in this article. Stochastic approaches have long 
proven to have a wide-ranging field of applications in biology [21] [22] [23], en-
gineering [24], finance [25], quantum many-body physics [26] [27], soft-matter 
physics [28] [29], optics [30] [31] and many more scientific areas. We develop a 
model to describe experimental emission spectra from a superposition of sto-
chastic fields. Using least square fits, we determine Lorentzian linewidths, carrier 
frequencies and amplitudes of the individual fields to model experimental spec-
tra. This is illustrated for Gaussian-, Lorentzian-, Voigt- as well as bandpass 
spectra and applied to the experimental spectrum of a QDSLD [3]. Using nu-
merical simulations, we determine first- and second-order temporal correlation 
functions of the electric field and calculate the spectral power density of the re-
sulting emission. 

The article is organized as follows: the stochastic model of emission spectra is 
developed in Section 2. It consists of individual classical fields, which are de-
scribed by a distinct stochastic differential equation. After investigating proper-
ties of these fields, relevant spectra are modelled as a superposition. This is ap-
plied to a specific experimental spectrum produced by a QDSLD [3]. The model 
is subsequently used to calculate the emission spectrum of the diode in Section 3 
and the normalized stationary second-order temporal correlation function in 
Section 4. A conclusion is given in Section 5. An Appendix summarizes the con-
vergence properties of the simulation schemes. 

2. Stochastic Model of Emission Spectra 

The classical electric field of a diode results from a superposition of stochastic 
fields. Hence, the electric field outside of the diode reads 

( ) ( )d
1

,
N

j
j

t tε ε
=

= ∑                         (1) 

with the number of fields N and ( )j tε  the j-th complex field amplitude. 
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2.1. Ornstein-Uhlenbeck Process 

An individual classical field ( )tε ∈  is modelled as a complex Ornstein-Uhlenbeck 
process [32]. This is described by the Ito stochastic differential equation [33] 

( ) ( ) ( ) ( )0d i d d ,t t t D W tε ν γ ε= − +                 (2) 

with the carrier frequency 0ν , the linewidth γ , the diffusion constant  
D Iγ= , the mean intensity of the electric field ( ) 2

limtI tε→∞=  and the 
complex Wiener noise increment ( )dW t ∈ , whose properties are given by  

( )d 0W t =  and ( ) 2
d dW t t= . 

The stationary first-order temporal correlation function reads [33] [34] 
( ) ( ) ( ) ( ) 0i1 *
s lim e .

t
G t t I γ τ ν ττ ε ε τ − −

→∞
= + =               (3) 

The spectral power density is given by the Fourier transform 

( ) ( ) ( )1 i
s

1 d e
2

S G ντν τ τ
∞

−∞
=

π ∫
                  (4) 

of (3) in accordance to the Wiener-Khintchine theorem [35] [36]. This yields 

( )
( )

( )2 2
0

2 1, d .
2

S I S Iγν ν ν
ν ν γ

∞

−∞π π
= =

− +
∫           (5) 

Furthermore, the stationary normalized second-order temporal correlation 
function is given by the Siegert relation [34] [37] 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

* *
22

s * *
lim 1 e .
t

t t t t
g

t t t t
γ τε ε τ ε τ ε

τ
ε ε ε τ ε τ

−

→∞

+ +
= = +

+ +
        (6) 

2.2. Stochastic Simulation 

In addition to analytical results, we perform numerical simulations of (2). In or-
der to obtain an efficient simulation procedure, we separate the rapid oscillating 
carrier frequency by the transformation ( ) ( ) 0ie tt t νε η −=  yielding 

( ) ( ) ( )d d d .t t t D W tη γη= − +                    (7) 

As the diffusion constant D is independent of the electric field amplitude 
( )tη , the Euler scheme [38] can be used to achieve strong convergence of order 

1.0 (see Appendix). Therefore the electric field amplitude can be simulated ite-
ratively 

( ) ( ) ( )1 ,i i it t t t D Wη η γη+ = − ∆ + ∆                  (8) 

with the discrete time step 1i it t t+∆ = −  and W∆  a complex Gaussian random 
process with mean 0W∆ =  and variance 2W t∆ = ∆ . 

The first-order temporal correlation function of (3) is calculated from a sam-
ple average over M realizations 

( ) ( ) ( ) ( )( ) ( ) ( )
*1

1

1 M
m m

s s
m

G t t
M

τ ε ε τ
=

= +∑                (9) 

long after the transient regime 1s jt γ . ( ) ( )m tε  is the m-th realization of the 
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electric field. This result can be used to calculate the spectral power density of 
the emission using a Fourier transformation. 

The determination of the normalized second-order temporal correlation 
function (6) can be split into two separate calculations. The first-order tem-
poral correlation functions in the denominator can be simulated according to 
(9), while the second-order correlation function in the numerator can be cal-
culated as 

( ) ( ) ( ) ( ) ( ) ( )
22

1

1 .
M

m m
s s

m
G t t

M
τ ε τ ε

=

= +∑               (10) 

Simulation results as well as analytical calculations of the first- and second-order 
temporal correlation properties of an individual field can be seen in Figure 1.  

 

 

Figure 1. (a) Stationary first-order temporal correlation function ( ) ( )1
sG τ  versus time 

τ , (b) spectral power density ( )S ν  versus frequency ν  with width (FWHM) 2 1γ =  

THz and (c) stationary normalized second-order temporal correlation function ( ) ( )2
sg τ  

versus time τ  for the electric field described by (2). Simulation results (black, solid) and 
analytical expressions (yellow, dashed) were calculated with 1I =  and 0 10 THzν = . The 
correlation functions were determined using 0.01 pst∆ =  and 410M =  realizations. 
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The simulations show good agreement with the analytical results for the given 
parameters ( 0.5 THzγ = , 1I = , 0 10 THzν = , 0.01 pst∆ = , 410M = ). 

2.3. Modelling of Emission Shapes 

The emission of a diode (1) is described as the superposition of N independent 
classical fields with individual linewidths jγ , mean intensities jI  and central 
frequencies jν . The stationary first-order temporal correlation function reads 

( ) ( ) ( ) ( ) ( ) ( )1 * *
d d d

1
lim lim .

N

j jt t j
G t t t tτ ε ε τ ε ε τ

→∞ →∞ =

= + = +∑        (11) 

Thus, the spectral power density is the incoherent sum of the individual spectra 

( ) ( )d
1

.
N

j
j

S Sν ν
=

= ∑                       (12) 

This model can be used to approximate a wide range of shapes through the 
adjustment of the 3 N free parameters jγ , jI  and jν  in (12) by means of a 
least square fit, minimizing the error functional 

( ) ( )( )2
t di i

i
e S Sν ν= −∑                    (13) 

for a test spectrum ( )tS ν  at discrete frequencies iν . Examples of interest are 
given by Gaussian spectra [39] 

( )
( )20

22
g 2

1 e ,S
ν ν

σν
σ

−
−

=                     (14) 

Lorentzian spectra [39] 

( )
( )l 2 2

0

2 ,S γν
ν ν γ

=
− +π

                  (15) 

Voigt profiles [39] 

( ) ( ){ }2

v 2

1 iRe e erfc i , ,
2

zS z z ν γν
σσ

− +
= − =            (16) 

with the complementary error function ( )erfc z , and bandwidth limited box shapes 

( )b
2 , for 2,

0, else.
S γ ν γν

 ≤π= 


                (17) 

This is illustrated in Figure 2. Please note that all spectra are normalized to 

( )1 d 1.
2

Sν ν
∞

−∞π
=∫                      (18) 

2.4. Model of Quantum Dot Superluminescent Diode Emission 

Superluminescent diodes are semiconductor-based light sources, which are cha-
racterized by spatially directed emission and spectral widths in the THz regime. 
The experiments with QDSLDs [3] had an active medium consisting of inho-
mogeneously broadened InAs/InGaAs quantum dot layers. The optical power 
spectrum has a Gaussian shape (see Figure 3).  
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Figure 2. (a) Gaussian spectrum ( )gS ν , (b) Lorentzian spectrum ( )lS ν , (c) Voigt pro-

file ( )vS ν  and (d) bandwidth limited box shape ( )bS ν  versus frequency ν  (black, 

solid; 0 0ν = , 1σ = , 1γ = ) modelled according to (12) with 30N =  elementary os-
cillators (yellow, dashed). The oscillations at the edge of the box are a typical Gibbs phe-
nomenon [40]. 

 

 
Figure 3. Experimental optical power spectrum ( )eS ν  (black, solid) versus frequency 

ν  [3] with Gaussian fit ( )gS ν  (red, dotted), stochastic emission ( )dS ν  for 30N =  

oscillators according to (12) (yellow, dashed) and spectra of individual oscillators ( )jS ν  

(solid, blue). The results of the Gaussian fit are a central frequency 0 239.9 THzν =  and 
a width 1.17 THzσ = . 
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Therefore the developed formalism is used to describe the emission of the di-
ode, which is modelled by 30N =  individual oscillators. Using a least square fit 
(see (13)) to an experimental spectrum ( )eS ν  [3] the linewidths jγ , mean in-
tensities jI  and central frequencies jν  describing the emission are deter-
mined. This is illustrated in Figure 3. 

3. QDSLD Emission Spectrum 

The optical power spectrum emitted by the QDSLD is simulated numerically. 
For this, the central frequencies jν , linewidths jγ  and mean intensities jI  
describing the QDSLD emission determined in Sec. 2.4 are used to calculate the 
individual electric fields ( )j tε  according to (8). The electric field emitted by 
the diode ( )d tε  results as a superposition of the individual field ( )j tε  ac-
cording to (1). Subsequently, the stationary first-order temporal correlation 
function ( ) ( )1

dG τ  is calculated according to (9) using 410M =  realizations of 
the diode field ( )d tε . The spectral power density of the emission ( )dS ν  is de-
termined using a Fourier transformation. 

The result of the simulation (see Figure 4) shows good agreement with the 
experimental optical power spectrum [3]. We define the width of the spectral 
power density [41] [42] 

( )2

1 .
d

b
Sν ν

∞

−∞

=
∫

                      (19) 

This yields d 4.51 THzb = , implying a coherence time of c,d d1 221.9 fsbτ = = , 
which matches the experimental results of e 4.29 THzb =  and c,e 233 fsτ =  
very well. 

The method of modelling emission spectra as a superposition of individual 
oscillators is therefore suitable to describe the first-order temporal correlation 
properties of QDSLDs.  

 

 
Figure 4. Experimental optical power spectrum ( )eS ν  (black, solid) versus frequency 

ν  [3] with simulation results ( )dS ν  (yellow, dashed) for 30N =  oscillators resulting 

from a Fourier transformation of the stationary first-order temporal correlation function 
( ) ( )1
dG τ  calculated according to (9) with 410M = . 
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By extracting appropriate simulation parameters from an experimental spec-
trum, the electric field emitted by the diode can be simulated numerically and 
can be used to calculate the stationary first-order temporal correlation function 
and optical power spectrum of the emission. 

4. Second-Order Temporal Correlation Function 

In addition to the investigation of the optical power spectrum, the developed 
formalism can be used to investigate the classical photon statistics of the QDSLD 
emission. For this, the electric field ( )d tε  emitted by the diode already calcu-
lated in Sec. 3 can be reused. Instead of calculating first-order temporal correla-
tion properties of the field, M realizations of ( )d tε  are used to calculate the 
stationary normalized second-order temporal correlation function ( ) ( )2

dg τ  of 
the emission according to (6, 9, 10). 

The result for the central frequencies jν , linewidths jγ  and mean intensities 

jI  determined in Section 2.4 is illustrated in Figure 5. There is good agreement 
between the simulation and the experimental data ( ) ( )2

eg τ . The central degree of 
second-order temporal coherence ( ) ( )2

d 0 2g τ =   indicates a Gaussian photon 
distribution, which was also shown experimentally. Therefore, the developed for-
malism is suited for classical photon statistical investigations of QDSLDs. 

5. Conclusions 

In this article, we study a stochastic model to describe experimental emission 
spectra. These are considered to result as a superposition of individual complex 
Ornstein-Uhlenbeck processes. The first- and second-order temporal correlation 
properties of these oscillators are investigated analytically and numerically. We 
can approximate Gaussian-, Lorentzian-, Voigt- and bandwidth limited spectra 
by determination of Lorentzian linewidths, carrier frequencies and amplitudes of 
the individual oscillators using least square fits. 

 

 
Figure 5. Experimental stationary normalized second-order temporal correlation func-
tion ( ) ( )2

eg τ  (black, solid) versus time τ  [3] with simulation results ( ) ( )2
dg τ  (yellow, 

dashed) for 30N =  oscillators calculated according to (9, 10) with 410M = . 
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The developed procedure is applied to the emission properties of quantum dot 
superluminescent diodes. Simulation parameters are extracted from a least 
square fit to an experimental spectrum [3]. These are used to simulate the 
QDSLD emission and calculate first- and second-order temporal correlation 
properties. The determined spectral power density of the emission, resulting 
from a Fourier transformation of the stationary first-order temporal correlation 
function, shows good agreement with the experimental results regarding the 
shape of the spectral line, as well as spectral width and coherence time. Addi-
tionally, calculating the stationary normalized second-order temporal correla-
tion function results in a central degree of second-order temporal coherence 

( ) ( )2 0 2g τ =  . This indicates a Gaussian photon distribution, which is in 
agreement with experiments and former theoretical investigations. 

The stochastic description of QDSLD emission offers a straightforward pers-
pective on the process of light generation inside QDSLDs, describing it as a su-
perposition of individual classical oscillators. More data on the emission charac-
teristics of the constituents of QDSLDs can lead to a better understanding and 
contribute to the design of new diodes. Furthermore, this approach can be uti-
lized in the investigation of other properties of QDSLDs. As it explains the sta-
tistical properties of the electric field emitted by the diode, it can be used in a 
classical explanation of temperature dependent intensity fluctuation suppression 
observed by Blazek et al. 
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Appendix. Convergence of Stochastic Simulations 

Consider the Ito stochastic differential equation [33] 

( ) ( )( ) ( )( ) ( )d d d ,x t a x t t b x t W t= +                (20) 

with the drift term ( )a x  and the diffusion term ( )b x . Identifying ( )0 0x t x= , 
the formal solution of this equation is given by integration: 

( ) ( )( ) ( ) ( )( )
0 0

0 d d
t t

t t
x t x t a x t W t b x t′ ′ ′ ′= + +∫ ∫            (21) 

The goal of time discrete maps ( ) ( )1i ix t F x+ =  of stochastic differential equ-
ations is the approximation of a solution ( )x t  up to a order of convergence γ . 
Such a scheme is said to converge strongly with order 0γ > , if for the final time 
instant T and N T= ∆  there is a finite ε  and 0 0∆ >  such that [38] 

( ) ( )Nx T x t γε− ≤ ∆                      (22) 

for any time discretization 00 < ∆ < ∆ . A strong Taylor scheme of order γ  can 
be constructed by considering the Ito-Taylor expansion, which is obtained by 
continuously applying the integral form of Ito’s formula [33] 

( )( ) ( ) ( )( ) ( ) ( )( )
0 0

0 1
0 d d ,

t t

t t
f x t f x t L f x t W t L f x t′ ′ ′ ′= + +∫ ∫       (23) 

with ( )( ) ( ) ( )( )0 2 21 2x xL a x t b x t′ ′= ∂ + ∂  and ( )( )1
xL b x t′= ∂ , to nonconstant 

terms inside the integrals of the formal solution (21). A criterium [38] for the 
terms of the Ito-Taylor expansion required for the associated strong Taylor 
scheme to achieve a desired order of strong convergence γ  states, that a simu-
lation scheme strongly converges to the order of an integer γ  if it includes all 
combinations of integrals up to this order, with time differentials dt  being of 
order 1 and Wiener noise increments ( )dW t  being of order 1/2. Simulation 
schemes of half-integer order γ  additionally require the inclusion of the pure 
time integral of order 1 2γ + . 

A strong convergence scheme of order 1/2 is the Euler scheme 

( ) ( ) ( ) ( )
0 0

0 0 0d d .
t t

t t
x t x a x t b x W t′ ′= + + +∫ ∫             (24) 

Discretizing the time steps, discrete map can be developed which yields 

( ) ( ) ( )( ) ( )( )1 ,i i i ix t x t a x t t b x t W+ = + ∆ + ∆             (25) 

where W∆  is a Gaussian random process with 0W∆ =  and 2W t∆ = ∆ . 
To expand the Euler scheme to order 1.0 of strong convergence, the double sto-
chastic integral appearing in the remainder   in (24) has to be included, 
yielding 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0

1
0 0 0 0d d d d .

t t t t

t t t t
x t x a x t b x W t L b x W t W t

′
′ ′ ′ ′′= + + + +∫ ∫ ∫ ∫   (26) 

This is called the Milstein scheme [43]. The double stochastic integral can be 
calculated [33] 

( ) ( ) ( ) ( )( ) ( )
0 0

2
0 0

1d d ,
2

t t

t t
W t W t W t W t t t

′  ′ ′′ = − − −  ∫ ∫         (27) 
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which leads to the iteration rule for the Milstein method 

( ) ( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

1

2

1
2

1 .
2

i i i i x i

i i x i

x t x t a x t b x t b x t t

b x t W b x t b x t W

+
 = + − ∂ ∆  

+ ∆ + ∂ ∆

        (28) 

With increasing order of convergence γ , the simulation schemes become 
more complex and include an increasing number of stochastic increments. 
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