
Optics Communications 243 (2004) 107–129

www.elsevier.com/locate/optcom
Ground state correlations in a trapped quasi one-dimensional
Bose gas

R. Walser *

Abteilung für Quantenphysik, Universität Ulm, Albert-Einstein Allee 11, D-89069 Ulm, Germany

Received 27 September 2004; received in revised form 8 November 2004; accepted 8 November 2004
Abstract

We review the basic concepts of a non-equilibrium kinetic theory of a trapped bosonic gas. By extending the

successful mean-field concept of the Gross–Pitaevskii equation with the effects of non-local, two particle quantum cor-

relations, one obtains a renormalized binary interaction and allows for the dynamic establishment of non-classical

many-particle quantum correlations. These concepts are illustrated by self-consistent numerical calculations of the first-

and second-order ground state quantum correlations of a harmonically trapped, quasi one-dimensional bosonic gas.

We do find a strong suppression of the density fluctuations or, in other words, an enhanced number squeezing with

decreasing particle density.
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1. Introduction

Already the state of a single quantum mechani-

cal particle can exhibit an amazingly complexity.

Without the restriction to one space dimension or

by exploiting additional symmetries, it is virtually

impossible even to visualize the information that
is encoded in a single particle wavefunction. Even
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more so, this situation gets quickly out-off hand

by adding more interacting particles to the system.

While the new field of quantum information science

is exactly trying to accomplish this task of describ-

ing and preparing many-particle entanglement, it

remains a formidable challenge. In contrast, many-

particle physics is blessed with serendipity as the
astronomic growth in the dimensionality of the

state space leads to a great reduction of complexity.

No macroscopic physical phenomenon does rely

on a miniscule detail of a particular quantum state
ed.
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as long as the whole ensemble exhibits a certain

macroscopic characteristic.

The past decade of research in degenerate atomic

gases has produced an amazing wealth of con-

densed many-particle phenomena [1–4]: Bose–Ein-
stein condensation [5–7], the creation of vortices

[8,9], Abrikosov lattices [10], the Mott phase tran-

sition [11–13], the creation of molecular conden-

sates [14,15], the BCS-BEC crossover [16,17] and

the one-dimensional Tonks–Girardeau gas

[18,19], most of which have been seen or, at least,

were predicted in other, traditional fields of low

temperature physics. However, observing the ori-
ginal BEC phase transition of a dilute atomic gas

in situ and real space is still a delightful lesson in

fundamental physics, as one can be an eye witness

of the establishment of off-diagonal long range or-

der (ODLRO) [20,21] and get an impression of

role that is carried by quantum fluctuations.

The art of performing successful many-particle

calculations consists of picking the right approxi-
mation scheme that matches the experimental sys-

tem on one hand and that is theoretically tractable

on the other hand. In the context of weakly corre-

lated dilute Bose gases, the Gross–Pitaevskii (GP)

mean-field picture has been a tremendously

rewarding concept and the extension to incorpo-

rate quantum fluctuations dynamically is in princi-

ple straight forward, although it involves in detail
some intricate calculations [22–29]. The descrip-

tion of the temporal relaxation [30,31], the buildup

of spatial correlation functions [32,33] and the

squeezing of atomic number density fluctuations

[34] follow, consequently.

However, it has been recognized very early on

that the spatial dimensionality of a system is of ut-

most importance to its physical behavior. In par-
ticular, it has been proven that the reduction of

the available phase space volume leads to en-

hanced fluctuations and the absence of ODLRO

in one and two dimensions [35,36]. During the last

years, this fascinating observation has received

much attention [37–40] as trapped, inhomoge-

neous systems violate the translational invariance

as required in [35,36]. This different physical re-
sponse should also be reflected by tuning the trap

geometry dynamically from 3d ! 2d ! quasi

1d ! 1d [18,19,41–43]. The extended mean-field
theory that will be presented in the following, is

well suited to describe the cross-over physics with

the exception of the strongly interacting Tonks–

Girardeau regime.

We have arranged this paper according to the
following outline: In Section 2, we will give a basic

review of the premises and concepts of non-equi-

librium kinetic theory. In particular, we discuss

the physical meaning of the relevant master vari-

ables that are used. We discuss the derivation

and approximations that lead to the the basic

self-consistent time-dependent Hartree–Fock–

Bogoliubov (HFB) equations of motion in the
absence of collision. A short review on the mathe-

matical properties of ‘‘Bogoliubov-like’’ symplec-

tic self-energy operators is given, taking special

care of the presence or absence of a zero energy

mode. Section 3 is devoted to an application of

the general formulation to a quasi one-dimen-

sional trapped bosonic gas. To calculate specific

numbers, we are assuming in here the typical data
of a 87Rb experiment. In particular, we calculate

for the zero-temperature ground state of a gas:

the mean-amplitude, the quantum depletion, the

pairing field, as well as the first- and second-order

correlation functions for a full range of particle

numbers N = (100, . . . , 105). In Section 4, we do

draw conclusion and give an outlook to the work

in progress. Finally, five short appendices compile
some technical methods or basic statements that

were used in the paper.
2. Collisionless kinetic equations

2.1. Quantum dynamics

The kinetic evolution of a trapped atomic gas is

described very well by a dilute gas Hamiltonian [4].

In the limit of strongly rarefied atomic gases, it

consists primarily of the single particle energy of

atoms in a harmonic trap potential Vho and the

mutual interaction energy amongst all pairs of

atoms which is mediated through a short-range in-

ter-atomic potential Vbin. Strong collisions be-
tween atomic triples are very unlikely events in

this dilute gas limit and can be disregarded, conse-

quently. Thus, one finds for the Hamilton operator
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Ĥ ¼
Z

d3x âyx � �h2

2m
Dþ V hoðxÞ � l

� �
âx

þ 1

2

Z
d6xy âyxâ

y
yV binðx� yÞâyâx; ð1Þ

where m denotes the atomic mass and l is a conve-

niently chosen zero-energy reference that will be
identified later with the chemical potential.

In the language of second quantization, the ac-

tion of a field operator âyx or âyx on a state in Fock

space represents the removal or creation of an-

other unstructured particle at the spatial position

x. The bosonic nature of the indistinguishable par-

ticles is reflected by the commutation relation of

the fields as

½âx; âyy� ¼ dðx� yÞ: ð2Þ

Due to the symmetry ½âx; ây� ¼ 0 of the bosonic

particles under coordinate exchange, only even

parity contribution of the interaction potential

Vbin(x) = Vbin(�x) contribute to the kinematic

evolution.

In principle, all dynamic and static aspects of

the evolution of observables Ô can be obtained

from the solution of Heisenberg�s equation
dÔ=dt ¼ i½Ĥ ; Ô�=�h and the knowledge of the initial

state of the system, which is represented by the

many-body density matrix q. As all observables

are formed by the elementary quantum fields ây,
it is only necessary to consider the Heisenberg

equation

i�h
d

dt
âxðtÞ ¼ HðxÞâx þ

Z
d3y V binðx� yÞâyyâyâx:

ð3Þ
For convenience and later reference, we have
introduced in here the Hamilton operator of a sin-

gle trapped atom

HðxÞ ¼ � �h2

2m
Dþ V hoðxÞ � l: ð4Þ

In principle, any complete state representation

can be used to perform further calculations. How-

ever, it is intuitively clear that a representation that

matches the geometry better or incorporates con-

served symmetries of the system will lead to a

greatly simplified description, reveal the essential
physics more clearly and make numerical simula-

tions efficient. Thus, we will decompose the quan-

tum field in the position representation |xæ

âx ¼
X
i1;j1;k1

hxji1; j1; k1iâi1;j1;k1 �
X
1

hxj1iâ1; ð5Þ

in another complete, yet unspecified basis

{|1æ ” |i1,j1,k1æ}, which is supposedly more suitable.

Furthermore, we will also employ an implicit sum-

mation convention over the quantum labels neces-

sary to specify a state completely. This means that

summation symbols are omitted and a repeated

occurrence of a dummy summation index on one

side of an equation implies a summation.
In the generic basis, the dilute gas Hamiltonian

equation (1) reads

Ĥ ¼ H12ây1â2 þ /1234ây1â
y
2â3â4; ð6Þ

where we have introduced the matrix elements

H12 ¼ h1jHj2i ¼
Z

d3x h1jxiHðxÞhxj2i; ð7Þ

of the single particle Hamiltonian equation (3) and

the two-particle matrix elements

ð8Þ

from the binary interaction potential. Due to the

bosonic nature of the particles, only the symmetric

part ðSÞ of the instantaneous coupling vertex /1234

is physically relevant and the diagrammatic repre-
sentation also carries this property.

In the low kinetic energy range that we are inter-

ested in, repulsive s-wave scattering is the dominant

two-particle scattering event [44,45]. Provided that

a proper T-matrix scattering calculation has been

performed [39,46] or one has obtained the experi-

mental scattering data, one can encode this infor-

mation efficiently via a pseudo potential method
[47,48]. In the most elementary invocation of the

method, one uses a fictitious contact potential

Vbin(x1,x2) = V0d(x1 � x2) with a single parameter

V0. This parameter is directly related to the scatter-
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ing length as of two particles in vacuo by

V0 = 4p�h2as/m, provided we would limit all physi-

cal approximations to a first order contribution in

V0. Otherwise again an infinite order resummation

takes place and will lead to a renormalization of the
effective coupling constantV0. We will demonstrate

this renormalization of the effective coupling con-

stant takes place in a self-consistent calculation

and also leads to a natural momentum cut-off. In

the case of such a contact potential, one finds for

the two-body matrix elements:

/1234 ¼ V 0

2

Z
d3x h1jxih2jxihxj3ihxj4i; ð9Þ

which need not be symmetrized, as it is symmetric

already.

In general, no exact solutions of the field equa-

tion (3) or eigen-states of the Hamiltonian equa-

tion (1) and (6) are known and the few

celebrated exceptions [49] such as the Tonks–

Girardeau gas [50,18], the Lieb–Lininger solution

[37], the Richardson pairing model [51,52] and
fermionic Luttinger liquids [53] serve as testing

grounds to prove the approximation schemes. For-

tunately however, most physical phenomena are of

universal character. Thus the system under investi-

gation does not have to follow precisely a particu-

lar model to show a certain response and various

approximations are admissible as long as the main

universal aspects of the problem are incorporated
in the specific model hypothesis.
2.2. Reduced state description with master variables

The method of quasi-averages and self-consis-

tent field equations has a long standing tradition

in the description of classical gases and fluids

[54], in plasma physics, nuclear matter physics

[55] and condensed matter physics [56–59]. It has

been applied successfully to classical particles

and degenerate superfluid bosonic as well as ferm-

ionic systems.
The basic premises for a reduced state descrip-

tion of a weakly correlated many-body problem

relies on the existence of a well separated hierarchy

of time, energy and length scales. If this is the case,

one can assume that the information required to
describe an ensemble effectively can be parameter-

ized with a set of a few relevant variables [56].

However the price that has to be payed for reduc-

ing the ‘‘astronomical’’ dimension of the linear

many-body Schrödinger equation is giving up the
superposition principle and embarking on non-

linear mathematics.

In the mean-field approximation, we want to as-

sume that the ensemble of relevant quantum states

establishes a well-defined mean value for the field

operator and that quantum fluctuations only cause

small deviations around it

â1 ¼ hâ1i þ dâ1; ð10Þ

such that hdâ1i ¼ 0. As mentioned before in Eq.

(5), we use in here the shorthand notation for
any complete set quantum of labels e.g., 1 ” x1 in

position space or 1 ” k1 in momentum space,

respectively. This number symmetry breaking

approximation is tremendously useful and can be

envisaged also as the semi-classical limit of coher-

ent many-particle quantum physics in analogy to

the description of the optical laser [60]. However,

one must be aware of the implied consequences
that have been discussed in the literature

[3,25,29,61] and number conserving approxima-

tions [62–64] have their merits, but shortcomings

as well.

Based on these assumptions, we want to sum

the c-number field amplitudes a1 ¼ hâ1i that were
introduced in Eq. (10) over this complete set of

states and form a basis-independent element of a
Hilbert space as

ð11Þ
In here, we have used the Dirac notation with

the implied standard scalar product Æa|bæ =
�d3x a*(x)b(x). Due to the non-linear nature of

the ensuing mean-field equations, we can no longer
rely on the dynamical superposition principle

available in linear quantum mechanics. However,

the advantage of the notation arises from preserv-

ing and emphasizing the geometrical transforma-

tions properties of all correlations functions

under a change of basis or, most generally, frame

of reference. The wiggly line has been introduced

to represents the mean-field amplitude graphi-
cally. This symbol literally denotes the state at
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time t and not the time-ordered propagator that

evolves it.

In an analogous fashion, we can separate the

single particle density operator of the atomic gas

f ¼ hâyâi ¼ f ðcÞ þ ~f into a mean-field contribution
f (c) and a fluctuation ~f around it. This contribu-

tion ~f is also known as the normal quantum deple-

tion of the atomic cloud. Both quantities are

hermitian tensor operators of rank (1,1) and de-

fined as

ð12Þ

For example, in a position representation, the

single particle density matrix reads as

x1h jf x2j i ¼ f ðcÞðx1; x2Þ þ ~f ðx1; x2Þ ¼ aðx1Þa�ðx2Þþ
hðâyx2 �a�ðx2ÞÞðâx1 �aðx1ÞÞi.

Similarly, we define anomalous averages or
pairing fields m ¼ hââi ¼ mðcÞ þ ~m, as symmetric

tensors of rank (2,0), i.e.,

ð13Þ
as well as their symmetric conjugates as

. These anomalous averages are also

associated with the quantum depletion of the

degenerate gas. In contrast to the single particle

nature of normal density matrix of Eq. (12), it

can be seen immediately from the structure of

Eq. (13) that the pairing field is a two-particle
state. It will be shown in Section 2.6 that the pair-

ing field ~mðx1; x2Þ evolves basically like a general-

ization the bare two-particle Schrödinger state.

Thus, it carries all the important physics of binary

scattering. In a position representation, the pairing

field is given by hx1jhx2jm ¼ mðcÞðx1; x2Þþ
~mðx1; x2Þ ¼ aðx1Þaðx2Þ þ hðâx2 � aðx2ÞÞðâx1 � aðx1ÞÞi.

2.3. Structure of the generalized density matrix

From the transformation properties of the

matrices under coordinate change, one finds that
the normal density matrix ~f ðtÞ and the pairing

fields ~mðtÞ are not independent but actually the

components of a generalized density matrix G

[55,58,65]. If we represent the system in a state

space of dimension n, then it is convenient to

arrange the mean field in a 2n-dimensional row

vector v and the fluctuations as a positive semi-

definite matrix dim[G] = 2n · 2n,
v ¼
a

a�

� �
; G ¼

~f ~m

~m� ð1þ ~f Þ�

 !
P 0: ð14Þ

The non-negativity of this co-variance matrix im-

plies that the magnitude of the anomalous fluctua-

tions is limited by the normal depletion through a

Cauchy–Schwartz inequality (see Appendix A). In

the general context of Green function�s, this sin-
gle-time density operator G(t) can also be viewed

as a particular limit of a time-ordered ðT Þ, two-
time Green function G(s,t), i.e., GðtÞ � G>ðtÞ ¼
lims!tþT Gðs; tÞ. Consequently, it is also necessary

to consider the opposite limit and to define a

time-reversed, single-time density operator

through G<ðtÞ ¼ lims!t�T Gðs; tÞ. Explicitly, this

operator is given by

G< ¼ r1G
>�r1 ¼ G> þ r3 ¼

1þ ~f ~m

~m� ~f
�

 !
;

ð15Þ
where standard Pauli spin matrices have been

introduced and are defined in Appendix B.

The specific structure of the generalized density

matrix implies various important physical proper-

ties. First of all, we have to assume that there is a
basis that diagonalizes this fluctuation matrix. Ex-

actly n of its 2n eigen-values correspond to the po-

sitive occupation numbers of finding a particle or,

more generally, a quasi-particle in a certain mode.

For a given, but otherwise arbitrary, G matrix, one

can construct this basis by studying the transfor-

mation law of the density matrix under a canonical

transformation T (see Appendix C),

G0 ¼ TGT y: ð16Þ
It is important to note that this is not the transfor-

mation law of a general matrix under coordinate

change. This would require that T� = T�1. How-
ever, by only using the properties of the symplectic

transformations, one can show that a canonical ei-

gen-value problem is defined by

r3Gð ÞT y ¼ T y r3G
0ð Þ: ð17Þ

The solution of this eigen-value problem yields the

eigen-vector matrix T� and the corresponding

diagonal eigen-value matrix r3G 0. All normalizable

states can be rescaled such that Tr3T
� = r3. Now,

we are able to reconstruct the positive G matrix
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G ¼ V P V y; ð18Þ

from its eigen-vectors V = r3T
� and the diagonal,

positive occupation number matrix P = r3G 0r3.
Second, an important feature of an admissible

fluctuation matrix is its consistency with the com-

mutation relation, i.e., hâ1ây2i ¼ hây2â1i þ d12 and
hâ1â2i ¼ hâ2â1i. This was already expressed in

Eq. (15) as

r1G
�r1 � G ¼ r3: ð19Þ

By invoking the properties of a unitary symplectic

transformation, one can show that the elements of

the diagonal occupation number matrix P are not
2n independent variables. Actually half of them

are determined by the other half, P(n + 1,. . .,2n) =

1 + P(1,. . .,n), or

r1Pr1 � P ¼ r3: ð20Þ

In other words, by separating the occupation num-

bers P and the eigen-vector matrix V into a first
and second half, i.e., P ¼ ðPþ; 1þ PþÞ and

V = (V+,V�), one can then decompose a general

fluctuation matrix as

G ¼ V þPþV y
þ þ V �ð1þ PþÞV y

�: ð21Þ
2.4. Dynamic equations of motion

It is now straight forward to derive equations of

motion for these averages directly from the Hei-

senberg equation (3). However, due to the nonlin-

ear character of the operator equation, one finds
always a coupling of correlation functions involv-

ing n fields to a correlation function of n + 2 fields.

If we truncate this infinite hierarchy of correlation

functions (BBGKY) at the level of one and two-

operator fields fa; ~f ; ~mg and approximate higher

correlation functions with the help of Wick�s theo-
rem [23,24,56], one obtains the following equa-

tions of motion, also known as time-dependent
Hartree–Fock–Bogoliubov equations (THFB)

i�h
d

dt
v ¼ Pv; ð22Þ

i�h
d

dt
G ¼ RG� GRy: ð23Þ
For the evolution of the mean-field v, one finds a

generalized Gross–Pitaevskii propagator that is

defined as

P ¼
PN PA

�P�
A �P�

N

� �
: ð24Þ

The two contributions that define this symplectic
propagator are a normal hermitian Hamiltonian

operator and a symmetric anomalous coupling

potential

ð25Þ

ð26Þ

It is easy to identify PN with the well-known her-

mitian GP-propagator that accounts for the free

evolution of the mean-field H, its self-interaction

Uf ðcÞ , as well as the energy shift U ~f , which caused

by the presence of the non-condensate cloud.
However, due to the existence of the anomalous

fluctuations there is also a coupling through PA
to the time-reversed field. For convenience, we

have introduced two auxiliary potentials

Uf and Vm. Explicitly, they are defined in terms

of the two-body matrix elements as

U14
f ¼ 2/1234f32; ð27Þ

V12
m ¼ 2/1234m34: ð28Þ

In a position representation, this reduces to the

familiar non-local Hartree–Fock potentials

Uf ðx; yÞ ¼
1

2

�
V binðx� yÞf ðx; yÞ þ dðx� yÞ

�
Z

d3z V binðz� yÞf ðz; zÞ
�
; ð29Þ

Vmðx; yÞ ¼ V binðx� yÞmðx; yÞ: ð30Þ
Similarly, one finds that the evolution of the den-

sity operator G is ruled by a HFB self-energy R
that can be obtained also by variational methods

[58]. In detail, this symplectic self-energy is given

by
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R ¼
RN RA

�R�
A �R�

N

� �
; ð31Þ

where we have introduced hermitian Hamiltonian

operators and symmetric anomalous coupling

potentials as

ð32Þ

ð33Þ

It is important to note the different weighing fac-

tors of the mean-field potential in Eqs. (25) and (32)
and the fact that the potentials are local in time.

2.5. Structure of the Hartree–Fock–Bogoliubov

self-energy

2.5.1. Normal quasi-particle modes

Symplectic self-energy operators arises not only

naturally in kinetic theories [24,66] or variational
calculations, but in many other contexts involving

stability analysis. In the case of bosonic fields, the

self-energy operator is of the generic form:

R ¼
RN RA

�R�
A �R�

N

� �
: ð34Þ

In here, RN stands for a hermitian operator

RN ¼ Ry
N and RA denotes an anomalous coupling

term that has to be symmetric RA ¼ RT
A. The rela-

tive size of the operators RN and RA determines
the character of the energy spectrum. It can either

be real valued with pairs of positive and negative

eigen-energies, or one finds a doubly degenerate

zero eigen-value, if the energy difference between

the smallest positive and highest negative vanishes

(gap-less spectrum). In the general case, there is a

mixed spectrum consisting of pairs of real sign-

reversed as well as pairs of complex conjugated ei-
gen-values. The eigen-vectors W are normalizable

with respect to the indefinite norm ||W||2 =

W�r3W, except for those that belong to zero or

complex eigen-values. It is important to note that

this energy basis W is in general distinct from the

instantaneous basis V that diagonalizes the fluctu-
ation matrix G in Eq. (18). They do coincide only

in equilibrium. The mathematical properties of the

eigen-states W can be derived easily from the

intrinsic symmetries of the HFB self-energy

operator:

R ¼ �r1R
�r1; ð35Þ

Ry ¼ r3Rr3: ð36Þ
Thus, if W is a solution of the right eigen-value
problem with energy E,

RW ¼ WE ð37Þ
it follows directly from Eq. (35) that W ¼ r1W �, is

also a right eigen-vector but corresponds to the ei-

gen-value �E ¼ �E�. Starting from the second sym-

metry in Eq. (36) and the right eigen-value
problem of Eq. (37), it is easy to construct the left

eigen-vectors ~W ¼ W yr3 that correspond to the ei-

gen-values ~E ¼ E�:

~W R ¼ E� ~W : ð38Þ
Finally, from a combination of the results for the
right and left eigen-vectors, it follows that the ei-

gen-vectors are orthogonal with respect to the met-

ric r3:

0 ¼ ðE� � E0ÞW y
Er3W E0 ; ð39Þ

if E* 6¼ E 0. On the other hand, this relation implies

also that eigen-vectors that belong to complex ei-

gen-values must have zero norm.
2.5.2. Defective sub-spaces

The situation of a doubly degenerate zero en-

ergy eigen-value E = 0 needs special attention.

One can view this case as a limit when two non-

degenerate states approach each other. However,

as the energy gap decreases, the two eigen-states

become more and more collinear. Thus, in the lim-

it of a vanishing energy separation, the dimension
of the spanned vector space collapses from 2 to 1

and R becomes defective [58,67]. In the present

context, a gap-less linear response matrix occurs

from a perturbation analysis of the simple

Gross–Pitaevskii equation and describes the col-

lective excitation of the system. The emerging zero

energy state is called Goldstone mode and can be

interpreted physically as an attempt to restore
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the broken number symmetry. On the other hand,

we find for the THFB Eqs. (22) and (23) that the

self-energy matrix R has a gap and its eigen-states

form a complete non-defective basis. It is impor-

tant to distinguish these states from the collective
excitations of the total system, whose excitation

spectrum is again gap-less [26,68].

The general situation can be described by sepa-

rating the two ground state modes ðW E0
;W �E0

Þ
from the remaining states W 0 such that

dim[W 0] = 2n · 2(n � 1) and the diagonal eigen-

value matrix has a dim[E 0] = 2(n � 1) · 2(n � 1).

By introducing two quadrature modes PQ with
dim[PQ] = 2n · 2 via

RW 0 ¼ W 0E0; ð40Þ

RPQ ¼ PQ i�h
0 �M�1

Mx2
0 0

 !
; ð41Þ

one can span a two-dimensional vector space

which is orthogonal to the higher modes W 0 and

does not collapse [69,70]. This is mathematically
achieved by the construction of a ‘‘best’’ basis in

the context a singular value decomposition [67]

and introduces two singular values, i.e., an inertial

mass parameter M and a gap energy E0 = �hx0 of

the number and phase quadratures. The quadra-

ture states satisfy the following orthogonality:

PQyr3W 0 ¼ 0; PQyr3PQ ¼ �hrð1Þ
2 ; ð42Þ

and symmetry relations PQ = �r1PQ*. From a
dimensional consideration, it is obvious that one

also has to use lower dimensional Pauli matrices,

which act in the appropriate subspaces such that

dim½rðlÞ
k¼1;2;3� ¼ 2l� 2l. All states together form

again a complete basis such that

W 0rðn�1Þ
3 W 0y þ PQ

rð1Þ
2

�h
PQy ¼ r3: ð43Þ

With these states, we can then obtain the following

spectral decomposition of the self-energy

Rr3 ¼ W 0ðE0rðn�1Þ
3 ÞW 0y þ PQ

M�1 0

0 Mx2
0

 !
PQy

¼ W 0ðE0rðn�1Þ
3 ÞW 0y þ 1

M
P � P y þMx2

0Q � Qy:

ð44Þ
The physical meaning of the quadrature states can

be understood most clearly when mapping them

again back onto the quantum field

P̂

Q̂

 !
¼ PQyr3

â

ây

� �
;

b̂

b̂
y

 !
¼ W 0yr3

â

ây

� �
:

ð45Þ

Now, these field quadratures Q̂, P̂ satisfy a conven-

tional Heisenberg–Weyl algebra and define

independ, as well as orthogonal bosonic quasi-

particles b̂i according to

½Q̂; P̂ � ¼ i�h; ½b̂i; b̂
y
j � ¼ dij: ð46Þ
2.6. Upgrading off-diagonal potentials to many-body

T-matrices

While one can understand the physical structure

of the self-energy best in the general form of the ki-

netic equations (23), one can appreciate other as-

pects much better by considering the equations

for the components individually

i�h
d

dt
~f ¼ RN ~f � ~fRN þ RA ~m

� � ~mR�
A; ð47Þ

i�h
d

dt
~m ¼ RN ~mþ ~mR�

N þ RAð1þ ~f Þ� þ ~fRA: ð48Þ

In stationarity and by assuming a real valued self-

energy, one can solve for ~m in an HF eigen basis

RN �ij i ¼ ð�i � lÞ �ij i ð49Þ
and finds

~m12 ¼
R13

A ð1þ ~f Þ�32 þ ~f 13R
32
A

2l� ð�1 þ �2Þ
: ð50Þ

No rules for circumventing poles in the above en-

ergy denominator need to be specified as all ener-

gies satisfy �i > l.
In the present paper, we have only considered

first-order processes and found the one-loop con-

tribution to the self-energy as

ð51Þ
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Now, if we substitute the stationary solution of

Eq. (50) into this equation, one obtains an inho-

mogeneous linear equation for the self-energy

R12
A ¼ 2/1234mðcÞ

34 þ 2/1234 ð1þ 2 ~f Þ330
2l� ð�3 þ �4Þ

R304
A : ð52Þ

It is now clear that the value of RA is only deter-

mined by m(c) in the absence of a homogeneous
contribution. Thus, there must be a T-matrix that

maps mean-field to the off-diagonal self-energy

ð53Þ

This leads to the following general definition for

an off-the energy shell T-matrix

T 1234
A ð�Þ ¼ 2/1234 þ 2/123040 ð1þ 2 ~f Þ30300

�� ð�30 þ �40 Þ
T 3004034

A :

ð54Þ
In operator notation, this is equivalent to

TAð�Þ ¼ V þ VGAð�Þ½ð1þ 2 ~f Þ � 1�TAð�Þ; ð55Þ
where GAð�Þ ¼ ð�� RN � 1� 1� RN Þ�1

is a

Green�s function, which describes the propagation

of two independent HF particles according to

Eq. (49). The diagrammatic representation of this

TA-matrix relation is

ð56Þ
2.7. Invariants and conservation laws

2.7.1. Number

The total particle number N̂ ¼
R
d3x âyxâx is a

conserved quantity if the atoms evolve under the
generic two-particle Hamiltonian operator Ĥ given

by Eq. (1), i.e., ½Ĥ ; N̂ � ¼ 0. This conservation law

implies that the system is invariant under a global

phase change â ! â expð�iUÞ. By using this contin-
uous symmetry, i.e., a ! a expð�iUÞ; ~f ! ~f ;
and ~m ! ~m expð�2iUÞ, it is easy to see that the ki-

netic equations (22) and (23) are also explicitly

number conserving at all times:

NðtÞ ¼ hN̂i ¼ Tr f ðcÞðtÞ þ ~f ðtÞ
� �

¼ const: ð57Þ
Nevertheless, it is important to note that out-

of-equilibrium there can be a continuous particle

exchange between the condensate and the non-

condensate clouds.

2.7.2. Energy

In the absence of any time-dependent external

driving fields, such as optical lasers or magnetic

rf-fields, the overall energy Ĥ must be conserved

as well. To find the expectation value of the total

system energy E ¼ hĤi, we use again Wick�s theo-
rem (see Appendix E) systematically. Explicitly,

this energy functional is given as

EðtÞ¼Tr Hþ1

2
Uf ðcÞ þU ~f

� �
f ðcÞ þ½HþUf ðcÞ þU ~f � ~f

�

þ1

2
V ~mmðcÞ� þ1

2
½VmðcÞ þV ~m�~m�

�
¼ const: ð58Þ

That this is also a constant of motion follows

straight from Eqs. (22) and (23) and make this a

‘‘derivable theory’’ according to [29]. For example,
the same first-order results can be found in [58],

derived by a variational procedure.

2.7.3. Entropy and individual occupation

probabilities

In Section 2.3, we have demonstrated with Eq.

(18) that any admissible covariance matrix is nec-

essarily of the following form:

GðtÞ ¼ V ðtÞP ðtÞV ðtÞy; ð59Þ

r3 ¼ V ðtÞyr3V ðtÞ: ð60Þ

Furthermore, we have derived a non-linear equa-

tion of motion (23) for this entity in Section 2.4.

It is not self-evident that the aforementioned con-
straints on the structure of the density matrix are

automatically preserved during the time evolution.

Fortunately however, this is the case. This can be

verified easily by inserting Eq. (59) into Eq. (23).

From this, one finds that all instantaneous eigen-

values of the density matrix are constants of

motion

PðtÞ ¼ const: ð61Þ
provided that the instantaneous eigen basis evolves

according to
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i�h
d

dt
V ðtÞ ¼ RV : ð62Þ

In turn, this is compatible with Eq. (60) due to the

symmetry of the self-energy in Eq. (36).
3. Results

3.1. Rescaling the kinetic equations to a prolate,

quasi one-dimensional configuration

General discussions on the properties of many-

body physics are usually plagued by a very ab-

stract language. In order to gain further insight

into the complex non-linear physics, it is mostly

necessary to examine spatially homogeneous sys-
tems and assume stationary in the time-domain.

This makes it possible to continue with analytical

work and to capture the essential bulk physics of

macroscopic systems. However, trapped quantum

gases are different in many respects as the system

size is of the same order as the coherence length,

thus boundary effects are of equal importance.

Moreover, it is difficult to discuss succinctly the
meaning of the thermodynamic limit in a quantum

system with a mesoscopic particle number and a

discrete energy spectrum.

In the following sections, we will therefore

examine numerically the properties of a quasi-

one dimensional prolate system as shown in

Fig. 1. While we have studied already a three-

dimensional isotropic configuration [71], prolate
‘‘cigar-shaped’’ traps are currently at the focus of

attention [40,42,72,73]. Due to the reduction

of the available phase-space volume, the role of

quantum fluctuations becomes more pronounced

in low dimensional systems.
Fig. 1. Schematic representation of the density distribution in a

typical ‘‘cigar-shaped’’ trapped gas. The kinematic motion in

the orthogonal directions y, x is frozen out and presumably all

the dynamics occurs along the weakly trapped x-axis.
To be specific, we want to assume that the single

particle trap Hamiltonian of Eq. (4) is of the form

HðxÞ ¼ � �h2

2m
Dþ V hoðxÞ � l; ð63Þ

V hoðxÞ ¼ 1
2
mx2x2 þ 1

2
mx2

?ðy2 þ z2Þ: ð64Þ

A measure of the anisotropy of this trap geometry

is the aspect ratio b = x^/x. In a very elongated,

prolate configuration the perpendicular oscillation

frequency x^ is much larger than the longitudinal

circular frequency x, thus b � 1. In order to re-
duce the kinetic equations also to a dimensionless

form, we choose the ground state extension of the

longitudinal harmonic oscillator a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�h=mx

p
as

the basic length scale, t0 = 2p/x as the basic time-

scale and E0 = �hx as the natural energy unit.

The present formulation of the theory in terms

of a generic set of basis states {|1æ} is able to han-

dle the dimensional reduction from the general
three-dimensional kinetic theory to the quasi

one-dimensional situation quite easily, if we use

an adapted trap basis in terms of longitudinal

and perpendicular harmonic oscillator states

|1æ = |i1æ � |j1,k1æ^. By assuming that only the

ground state components of the fields in the trans-

verse directions are occupied, one can limit the

evolution to one dimension effectively

aj i ¼ a1 1j i � 0; 0j i? ð65Þ

~f ¼ ~f 1;2 1j i 2h j � 0; 0j i? 0; 0h j?; ð66Þ

~m ¼ ~m1;2 1j i 2j i � 0; 0j i? 0; 0j i?: ð67Þ
In order to evaluate the matrix elements of the

binary interaction potential further, we need the

position representation of the normalized two-

dimensional harmonic oscillator ground-state

hy; zj0; 0i ¼ u0ðy; z; tÞ

¼ e�ibxt

ffiffiffiffiffiffiffi
b
pa20

s
e�bðy2þz2Þ=2a2

0 ; ð68Þ

Z
dy dzju0j

2 ¼ 1;

Z
dy dzju0j

4 ¼ b
2pa20

: ð69Þ

To compensate for the ground state energy of the
two-dimensional harmonic oscillator, we are
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working here with an explicitly time-dependent ba-

sis that removes that energy shift. We can now

partially evaluate the matrix elements of the two-

body interaction in the contact potential approxi-

mation of Eq. (9). By assuming only ground states
in the transverse direction, one obtains

/1234
0 ¼ �hxa0

g
2

Z
dx h1jxih2jxihxj3ihxj4i; ð70Þ

where we have introduced a dimensionless cou-

pling constant g = 2bas/a0. This corresponds to

an effective one-dimensional interaction potential

V ð1Þ
binðxÞ ¼ �hxa0gdðxÞ, which would produce the

same matrix elements. In this limit of a very local-
ized, point-like binary interaction, one finds fur-

ther that the self-energy operator of Eqs. (24)

and (31) become local operators in space and time,

i.e., P(x,y,t) = d(x � y)P(x,t) and R(x,y,t) =
d(x � y)R(x,t). Finally, this leads to the quasi

one-dimensional self-consistent Hartree–Fock–

Bogoliubov (SCHFB) equations in the contact po-

tential approximation

iotv ¼ Pðx; tÞvðx; tÞ; ð71Þ

iotG ¼ Rðx1; tÞGðx1; x2; tÞ � Gðx1; x2; tÞRðx2; tÞy;
ð72Þ

where local self-energies operators have been de-

fined as follows:

Pðx; tÞ ¼
PN ðx; tÞ PAðx; tÞ
�P�

Aðx; tÞ �P�
N ðx; tÞ

� �
; ð73Þ

PN ðx; tÞ ¼
�o2x þ x2

2
þ gjaðx; tÞj2 þ 2g ~f ðx; x; tÞ � l;

ð74Þ

PAðx; tÞ ¼ g~mðx; x; tÞ ð75Þ
and

Rðx; tÞ ¼
RN ðx; tÞ RAðx; tÞ
�R�

Aðx; tÞ �R�
N ðx; tÞ

� �
; ð76Þ

RN ðx; tÞ ¼
�o2x þ x2

2
þ 2gjaðx; tÞj2 þ 2g ~f ðx; x; tÞ � l;

ð77Þ

RAðx; tÞ ¼ gaðx; tÞ2 þ g~mðx; x; tÞ: ð78Þ
The numerical results that are presented in the fol-

lowing sections are based on typical 87Rb conden-

sate data, i.e., an atomic mass m87 = 1.4431 ·
10�25 kg, axial and radial trap frequencies

(m,m^) = (3,800) Hz, which result in an aspect ratio
b = 267, an axial harmonic oscillator ground state

size a0 = 6.2263 lm and a 3d scattering length

as = 5.8209 nm. This leads to an effective coupling

constant g = 2bas/a0 = 0.4986.

3.2. The Gross–Pitaevskii equation and the

collective Bogoliubov excitations

Before discussing the properties of the fully self-

consistent equations, it is prudent to start with the

most basic version of it. By disregarding ~f and ~m
altogether, one obtains the Gross–Pitaevskii

equation

iotv ¼ PGPðx; tÞvðx; tÞ; ð79Þ

PGP
N ðx; tÞ ¼ �o

2
x þ x2

2
þ gjaðx; tÞj2 � l; PGP

A ¼ 0:

ð80Þ
From a stationary solution v0 ¼ ða0; a�0Þ

T
, which is

normalized to the total particle number

N ¼
R
dxja0ðxÞj2, one obtains the chemical poten-

tial l(N). In the interaction dominated mean-field
regime, one may disregard the kinetic energy con-

tribution altogether and one finds in the Thomas–

Fermi approximation lTF = (3gN/2)2/3/2, the width

of the condensate xTF ¼
ffiffiffiffiffiffiffiffiffiffi
2lTF

p
and a healing

length n = 1/xTF.

3.2.1. Linear response analysis

From a weak perturbation around the station-
ary solution aðx; tÞ ¼ e�itdl½a0ðxÞ þ daðx; tÞ� or

equivalently

vðx; tÞ ¼ e�itr3dl v0ðxÞ þ dvðx; tÞ½ � ð81Þ
one obtains the collective Bogoliubov excitations
modes and linear response frequencies of Eq. (79).

iotdv ¼ RBðxÞdvðx; tÞ � dlP ; ð82Þ

RB
N ðxÞ ¼

�o2x þ x2

2
þ 2gja0ðxÞj2 � l; ð83Þ

RB
AðxÞ ¼ ga0ðxÞ2; ð84Þ
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Fig. 2. The condensate density ja(x)j2 as a function of the

position x in units of the harmonic oscillator length for a

particle number of N = 103. Only in the proximity of the

Thomas-Fermi radius xTF = 9.07 the exact numerical solution

(solid line) is distinguishable from the Thomas-Fermi approx-

imation (dashed doted line). The chemical potential energy in

h.o. units l = 41.205 is also well approximated by lTF = 41.198.
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The energy spectrum for the linear response matrix

RB must be gap-less (E0 = 0) as the GP-Eq. (79) is

U(1) invariant under a global phase change of a0.
In other words, there exists a degenerate manifold

of ground state solutions and it requires no energy
to transform one of them into another. The infin-

itesimal generator of this phase rotation is the

zero-mode P ¼ ða0;�a�0Þ
T
and it can be verified

easily that RBP = 0.

The initial perturbation dv can also induce a

small change in the particle number dN = P�r3dv.
In turn, this leads to a small modifications of the

chemical potential l(N + dN) = l(N) + dl at
which the perturbed system is evolving globally.

By taking this into account in the ansatz for the

perturbation analysis in Eq. (81), one is able to

cope with the secular terms that arise otherwise

in a gap-less linear response analysis

dvðtÞ ¼ e�itRB

dvðx; 0Þ þ itdlP

¼ iQdN � iPdUþ W 0e�itE0
rðn�1Þ
3 dv0; ð85Þ

where we have used the completeness relation of
Eq. (43) and defined Bogoliubov amplitudes as

dU = Q�r3dv, as well as dv 0 = W 0�r3dv. The resid-

ual energy shift of the chemical potential is pro-

portional to the inverse of the inertial mass of

the collective ground state mode dl = dN/M.

Within the TF approximation, one finds for the

mass parameter MTF = (12gN)1/3/g.

In considering the similarities of the collective
Bogoliubov excitations Eq. (82) and the quasi-par-

ticle modes of the generalized self-energy matrix of

Eq. (72), it is of utmost importance not to confuse

their different physical meaning. Quasi-particle

modes address the questions of excitations of the

quantum fluctuations above a static mean-field

without considering the back-action. Conse-

quently, they do not have to be gap-less nor satisfy
a Kohn theorem [74], but they are just a convenient

basis to describe the quantum vacuum or the ther-

mal excitations thereof. Thus, they should not be

considered as better or worse approximation of

each other. Only the linear response analysis of

the coupled system of Eqs. (71) and (72) will be

comparable to the collective Bogoliubov excita-

tions of Eq. (82). It is straight forward to verify that
the coupled system of Eqs. (71) and (72) are U(1)
invariant, thus gap-less (E0 = 0). Moreover, the

collective center of mass oscillation also decouples

from the internal excitations and it evolves exactly

with the harmonic oscillator frequency of E1 = 1.

3.2.2. Static mean-field and collective Bogoliubov

excitations for 103 particles

In Figs. 3 and 4, we depict a few selected collec-

tive excitation modes of the GP-equation corre-

sponding to the static solution with N = 103

particles shown in Fig. 2. The reflexion symmetry

of the harmonic trap is carried over to the mean-

field state. Consequently, one can also classify
the collective Bogoliubov modes according to even

and odd parity modes. Conventionally, one intro-

duces also hole u(E < 0) and particle v(E < 0)

amplitudes as components of W(x,En < 0) =

[u(x,E),v*(x,E)]T. The particle character of

v(E < 0) becomes visible in the higher energy excita-

tion modes E80,81 where only the particle-like ampli-

tudes reach far outside the spatial extend of the
condensate and oscillate between the classical turn-

ing points of fictitious particles with energy |E|. In

contrast, hole-like excitations always remain local-

ized on the site of the condensate wavefunction

and their amplitudes decrease with decreasing

excitation energy.
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GP equation as a function of particle number (solid line). For
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Fig. 3. The normalized, even spatial components of the

negative energy Bogoliubov excitation mode W ðEn < 0Þ ¼
½ue; v�e �

T
as a function of the position x in units of the harmonic

oscillator length. In particular, we show the three low energy

modes En = (0,2,4) = (0,�1.732,�3.167) and an arbitrarily chosen

higher energetic mode E80 = �63.845 for comparison.
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Fig. 4. The normalized, odd spatial components of the negative

energy Bogoliubov excitation mode W ðEn < 0Þ ¼ ½uo; v�o�
T
as a

function of the position x. Depicted are the three low energy

modes En = (1,3,5) = (�1,�2.451,�3.882) and an arbitrarily cho-

sen higher energetic mode E81 = �64.723 for comparison.
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3.2.3. Chemical potential and collective Bogoliubov

excitation energies for a full range of particle

numbers

The general character of the solutions depends

parametrically on the particle number. In Fig. 5,
we have plotted the chemical potential l(N) as well

as the collective Bogoliubov energies E(N) as a

function of the particle number N. The double log-

arithmic representation of the chemical potential

shows clearly a linear slope, hence reproduces the

power law dependence that is found within the
Thomas–Fermi approximation lTF = (3gN/2)2/3/2.

The collective excitation frequencies are identical

to the harmonic oscillator spectrum for small par-

ticle numbers. However with increasing particle

number, the energy density of states visibly

increases as the level spacing is reduced. By focus-

ing on the two lowest energy excitations, i.e., the

Goldstone mode E0 = 0 and Kohn mode E1 = 1,
one finds that those fundamental symmetry gener-

ating modes are unaffected by the interactions.
3.3. Ground state solutions of the self-consistent

Hartree-Fock-Bogoliubov equations

In this section, we will discuss the self-consistent

solution of the stationary Eqs. (71) and (72), i.e.,

0 ¼ Pv; 0 ¼ RG� GRy: ð86Þ
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Fig. 7. The normalized, spatial components of the negative

energy Bogoliubov excitation mode W ðEn < 0Þ ¼ ½ur; v�r �
T
as a

function of the position x in units of the harmonic oscillator

length. In particular, we show the three low energy modes

En = (0,2,4) = (�3.356, �6.421, �8.636) and an arbitrarily chosen

higher energetic mode E80 = �64.819 for comparison. The low

energy modes are localized on the right side of the condensate

and almost degenerate to the modes localized on the other side

depicted in Fig. 8.

120 R. Walser / Optics Communications 243 (2004) 107–129
In particular, we are interested in the lowest energy

configuration of the system. Thus, no quasi-parti-

cle modes shall be occupied and according to Eq.

(21), we construct the quantum vacuum only from

the negative energy states W� = WE < 0 with
dim[W�] = 2n · n

G ¼ W �W y
�: ð87Þ

With an iterative procedure, one can solve for the

mean-field amplitude a0 assuming static ~f and ~m.
In a second step, one has to find the quasi-particle

modes and construct a density matrix from it. This

procedure has to be continued until convergence is

reached. We have computed the self-consistent

solutions for a range of particle numbers
N = (100, 101, 102, 103, 104, 105). For a particle

number N < 1, this extended mean-field theory is

neither physically meaningful, nor did it lead to

converging solutions any longer.

3.3.1. Static mean-field and quasi-particle modes

for 103 particles

For a particle numberN = 103, we show in Fig. 6
the mean-field density as a function of position.

Due to a repartitioning of particles between con-

densate and the non-condensed fraction, there are

now fewer particles in the mean-field component.

Thus, the difference to the Thomas–Fermi approx-

imation is more visible than in Fig. 2. For a total
-15 -10 -5 0 5 10 15
0

10

20

30

40

50

60

70

80

x

|α
(x

)|
2

Fig. 6. The self-consistent mean-field density ja(x)j2 (solid line)

and Thomas-Fermi approximation (dashed doted line) as a

function of the position x in units of the h.o. length.
particle number of N ¼ 103 ¼ N ðcÞ þ ~N , we find a

ðN ðcÞ; ~NÞ ¼ ð984:83; 15:17Þ and chemical potential

of l = 40.61 in h.o. energy units.

The quasi-particle modes are depicted in Figs. 7

and 8. While the collective Bogoliubov modes of

Figs. 3 and 4 can be characterized with a definite

even or odd parity, this is seemingly not the case
here. The low energy quasi-particle modes are

localized on left and right sides of the condensate

and have more of the character of the single parti-

cle Hartree–Fock excitations discussed in Eqs. (32)

and (49), where the potential energy

V ho þ 2Uf ðcÞ � l has a double minimum at ±xTF.

However, one has to take into account also that

the low lying modes are energetically degenerate
and that the higher energy excitations do exhibit

a definite parity. Thus, one could construct qua-

si-particle modes with definite parity by symme-

trizing or anti-symmetrizing them. We have

deliberately chosen not do so in order to permit

the occurrence of a reflexion symmetry breaking.

For example, spatial symmetry breaking is ob-

served in deformed nuclei [58] or the mixing of
two component Bose gases [75]. Nevertheless, we
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-15 -10 -5 0 5 10 15
-1

-0.5

0

0.5

1

x

ul(x)

-15 -10 -5 0 5 10 15
-1

-0.5

0

0.5

1

vl(x)

x

Fig. 8. The normalized, spatial components of the negative

energy Bogoliubov excitation mode W ðEn < 0Þ ¼ ½ul; v�l �
T
as a

function of the position x. Depicted are the three low energy

modes En = (1,3,5) = (�3.3556,�6.421, �8.636) and an arbitrarily

chosen higher energetic mode E81 = �65.689 for comparison.

The low energy modes are localized on the left side of the

condensate.
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did not find such a symmetry breaking behavior

here.

3.3.2. Chemical potential and quasi-particle

energies for a full range of particle numbers

In Fig. 9, we present the chemical potential

l(N) as well as the quasi-particle energies E as

function of the total particle number N. One can

see very clearly the energy gap E0 6¼ 0 and the ab-

sence of the Kohn mode E1 6¼ 1, which should oc-

curs only for the collective excitations of system as

whole. Moreover, one can observe how the low ly-

ing quasiparticle modes begin to coalesce with
gradually increasing particle number.

3.4. The single particle density matrix and the

pairing field

The mean-field amplitude a(x), the total single

particle density f ðx1; x2Þ ¼ f ðcÞðx1; x2Þ þ ~f ðx1; x2Þ,
as well as the pairing field ~mðx1; x2Þ have been the
central concepts of the present analysis. Thus, we

will present in the following pictures instances of

their spatial representation for a particle number

of N = 103. This gives a good qualitative impres-

sion of the universal features of the ground state.

Results obtained for different particle numbers
are similar in appearance and we will discuss the
quantitative differences next.

3.4.1. Spatial representation for 103 particles

In Fig. 10, we show the coherent contribution

to single particle density matrix f (c)(x1,x2) =

a*(x2)a(x1). As it is constructed from the order

parameter a(x), it has the full ODLRO [20,21],

which extends over the complete system size. For
the one-dimensional trap that we consider in here,

the Hamiltonian operator is real valued, thus the

ground state solution of the mean-field a(x) is a

purely real quantity, too. Consequently,

m(c)(x1,x2) = a(x2)a(x1) is identical to f (c)(x1,x2) as

depicted in Fig. 10.

In contrast to the full ODLRO which is found

in the mean-field component, one finds that the
non-condensate density ~f ðx1; x2Þ is predominantly

localized along the coordinate diagonal and

exhibits spatial variation only due to the external

confinement with a trapping potential. In the off-

diagonal direction this order parameter has only

a very short range which is determined by the bin-

ary interaction. This is depicted in Fig. 11.

Interestingly, one finds also for the pairing field
~mðx1; x2Þ a very similar spatial behavior. However,

while a single particle interpretation is sufficient to



Fig. 12. The negative pairing field �~mðx1; x2Þ as a function of

the spatial coordinates for a particle number of N = 103.
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Fig. 13. Diagonal ~f ðx; xÞ and off-diagonal j ~f ðx;�xÞj elements of

the normal density matrix versus distance x for a full range of

particle numbers N = (100,. . .,105). The individual results can be

identified easily by the spatial extension that grows propor-

tional with the particle number. The dashed-dotted line shows

the result for a homogeneous gas corresponding to a trapped

gas with N = 103 particles.

Fig. 10. Coherent contribution of the single particle density

matrix f (c)(x1, x2) as a function of the spatial coordinates for a

particle number of N = 103. The coherence extends in the

diagonal as well as in off-diagonal directions up to the TF

radius. For a real valued mean-field a(x), the coherent

contribution of the pairing field m(c)(x1, x2) is also represented

by this figure.

Fig. 11. Non-condensate density matrix ~f ðx1; x2Þ as a function

of the spatial coordinates for a particle number of N = 103.
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understand the behavior of the normal density ma-

trix, it is necessary to use two-particle physics in

the pairing field of Fig. 12. The strong negative

correlation along the diagonal show that there is

a reduced likelihood of finding two particles at

the same location. Again, this likelihood is modu-

lated by the density of particles in trap. However,

the degree of anti-correlation drops off quickly
with increasing distance between the positions at

which particles are extracted.
3.4.2. Diagonal and off-diagonal elements of ~f and

~m for a full range of particle numbers

In this section, we have compiled the quantita-

tive results for the spatial variation of the diagonal
~f ðx; xÞ, ~mðx; xÞ and the off-diagonal ~f ðx;�xÞ,
~mðx;�xÞ elements of the normal density matrix

and the pairing field, respectively, for a full range

of particle numbers N = (100,. . .,105). The double
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logarithmic representation used in Figs. 13 and 14

reveals clearly that there is a separation of the bulk

physics in the center of the trap and the physics

dominated by the boundary at the rim of the con-

densate. We have verified this separation of scales
by turning off the trap potential. In this case, one

recovers the homogeneous limit. In order to make

a quantitative comparison with the trapped sys-

tem, we have chosen a homogeneous mean-field

density n = N/(2L) = 82.62 that matches the

mean-field density at the center of the trapped

gas for a particle number of N = 103. This leads

to very similar chemical potentials for the homoge-
neous system of lhom = 40.47 and for the trapped

gas of ltrap = 40.61, respectively. The dashed dot-

ted lines in Figs. 13 and 14, do represent the homo-

geneous results and compare very well with the

trapped gas for N = 103. This proves that the local

density approximation (LDA) yields a good

approximation for the transverse correlation

length. A detailed comparison of the critical expo-
nents and their dependence on temperature is

currently under investigation.

3.5. Effective coupling constants

In Sec. 2.6, we have discussed formally the

renormalization of the binary interaction to an

effective T-matrix, which takes place in any self-
consistent calculation. In particular, we upgraded
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Fig. 14. Diagonal �~mðx; xÞ and off-diagonal j~mðx;�xÞj elements

of the pairing field versus distance x as in Fig. 13.
the anomalous potential of Eq. (53) and related

it to an anomalous many-body T-matrix. As we

have calculated the SCHFB equations in here, we

can now revisit this question and find out what

the effective renormalized coupling constant is

TAð2l; xÞmðcÞðx; xÞ ¼ g½mðcÞðx; xÞ þ ~mðx; xÞ�; ð88Þ

TN ð2l; xÞf ðcÞðx; xÞ ¼ 2g½f ðcÞðx; xÞ þ ~f ðx; xÞ�: ð89Þ
From the numerical results of Fig. 15, we can draw

three conclusions: (a) the effective coupling is posi-

tion (or momentum) dependent and decreases rap-

idly outside of the range of the condensate; (b) the

effective coupling constant is in general less than

the bare interaction constant, which may be under-

stood in terms of a second order perturbation the-

ory and (c) the effective coupling constant at the
center of the trap becomes gradually less for smal-

ler particle numbers.

3.6. First and second order correlations functions

3.6.1. Spatial representation for 103 particles

Quantum fluctuations around the classical

mean-field amplitude are the central topic of this
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article. In the previous sections, we have examined

the single particle density fx ¼ f ðcÞ þ ~f , which is di-

rectly an observable quantity and the pair correla-

tion function ~mðx1; x2Þ, which is not. The questions

of how to quantify and to measure quantum corre-
lations has always been a central theme for any

quantized field theory, whether in condensed mat-

ter physics [20,21,32] or in quantum optics [76,77].

In essence, first order coherence is measured by

the correlation function

gð1Þðx1; x2Þ ¼
hâyx2 âx1iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðx1Þnðx2Þ

p
¼ f ðcÞðx1; x2Þ þ ~f ðx1; x2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðx1Þnðx2Þ
p ; ð90Þ

where nðxÞ ¼ f ðcÞðx; xÞ þ ~f ðx; xÞ denotes the total

density. Primarily, it is sensitive only to spatial

phase correlations or, in other words, off-diagonal

order. This can bee seen easily by disregarding the
quantum depletion ~f for the moment. In the case

of a mean-field a(x) = |a(x)|e�iU(x), it is only pro-

portional to the phase gradients U(x) = U(0) +
dU(x). Moreover, if a(x) is a static ground state

without a phase gradient (irrotational), one finds

the definition of full coherence, i.e., g(1)(x1,x2) = 1.

In Fig. 16, we have evaluated the first order cor-

relation function for a trapped gas with N = 103

particles. By definition, it must be exactly 1 along

the diagonal. As expected, there is only a very

weak influence of the quantum fluctuations notice-
Fig. 16. First order correlation function g(1)(x1, x2) versus

spatial position for 103 particles.
able, since f ðcÞðx1; x2Þ � ~f ðx1; x2Þ, which can be

seen explicitly in Fig. 6 and Fig. 11. Consequently,

one finds that first order coherence is not a very

sensitive probe for the quantum aspects of a field.

For example, sending a classical optical field
through an semi-opaque or noisy medium immedi-

ately leads to a reduction coherence, which is as

such a purely classical phenomenon.

Actually, a sensitive probe for the quantum nat-

ure of a field is the second order correlation func-

tion g(2). If g(1) basically responds to uncertainty in

the phase quadrature, then g(2) is affected by den-

sity fluctuations âyxâx ¼ nðxÞ þ dn̂ðxÞ. Intuitively
speaking, this is the conjugate variable to the

phase gradient. More succinctly speaking, this

can be examined by studying a Heisenberg uncer-

tainty product (see Appendix A) for all the field

quadratures as in Eq. (46). Explicitly, it is defined

as the normal ordered density-density correlation

function:

gð2Þðx1;x2Þ¼
hâyx1 â

y
x2
âx2 âx1i

nðx1Þnðx2Þ

¼ 1þ 1

nðx1Þnðx2Þ
2R f ðcÞðx1;x2Þ� ~f ðx2;x1Þ

�

þmðcÞðx1;x2Þ� ~mðx2;x1Þ
�
þ ~f ðx1;x2Þ ~f ðx2;x1Þ

þ ~mðx1;x2Þ� ~mðx2;x1Þg; ð91Þ

which is shown in Fig. 17 for 103 particles. While

g(2) it is mostly equal to 1, it can be seen clearly

that along the diagonal g(2)(x,x) < 1. This is a
Fig. 17. Second order correlation function g(2)(x1, x2) versus

spatial position for 103 particles.
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unique signature a non-classical state of the

quantum field with a sub-poisonian statistic of

number fluctuations or, in other words, a number
squeezed state [34]. The suppression of number

fluctuations has its origin the binary interaction

potential of Eq. (1). By reducing the local density

fluctuations, one can remove more energy than

what is regained by the kinetic energy due to

the increased phase uncertainty. At its extreme

this is also the physical mechanism that leads to

the Mott phase transition [11–13,78] where on-
site interactions compete with nearest neighbor

tunneling.
3.6.2. Diagonal and off-diagonal elements of the

first and second order correlation function for a

full range of particle numbers

Finally, we summarize the results for the first

and second order correlation function in Figs.
18 and 19 for the full range of particle numbers

N = (100,. . .,105). As before, we have also com-

puted the result for a homogeneous gas in the lo-

cal density approximation, which corresponds to

a trapped gas of 103 particles. The insets in the

pictures magnify both of those curves in the cen-
tral region where they do agree very well. How-

ever, at the rim of the condensate the trapped
gas does exhibit features that are absent in the

LDA.

It is physically most important to see in Figs. 19

that the suppression density fluctuations becomes

stronger for smaller particle numbers. At its limit,

this anti-correlation of two bosonic particles leads

to an effective fermionization and is the hall mark

of the Tonks–Girardeau regime [18,37,50]. If this
argument is applied to the situation of an inhomo-

geneous trapped gas, then this means that the

number squeezing is larger at the rim than in the

center of the cloud.
4. Conclusions and outlook

In this article, we have given a basic overview of

the premises and concepts of a number-symmetry

broken non-equilibrium kinetic theory of a

trapped bosonic gas. By extending the successful

mean-field concept of the Gross-Pitaevskii equa-

tion with the effects of non-local, two particle

quantum correlations, one obtains a renormalized

binary interaction T-matrix and allows for the
dynamic establishment of non-classical many-

particle quantum correlations. At very low temper-

atures, we can disregard the equilibrating effects of
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elastic two-particle collisions, in contrast to previ-

ous work [23,24,71]. In this limit, we have proven

that the important physical constants of motion,

like particle number, energy or the entropy are

conserved. Obviously, the inclusion of collision
processes is desirable from a fundamental point

of view, as this will break the micro-reversibility

and lead to a thermal relaxation towards the most

probable distribution as dictated by thermody-

namics. In preliminary study [31], we have already

studied the effects of collisions and the conse-

quences of various approximations in the absence

of a mean-field in a model system, but further
work is necessary.

In the second section of the paper, we have

focused on the specific properties of the zero-

temperature ground state correlations of a trapped,

quasi-one dimensional bosonic gas. This maxi-

mizes the role played by quantum fluctuations,

due to the dimensional reduction of the available

phase-space volume. With a fully self-consistent
numerical calculation, we have evaluated, the

mean-field amplitudes, the quantum depletion,

the pairing field as well as the first and second or-

der ground state quantum correlations for a full

range of particle numbers N = (100,. . .,105). Most

interestingly, we do get a strong suppression of

the density fluctuations or, in other words, an en-

hanced number squeezing with decreasing particle
density. This generic feature is in general agree-

ment with the predictions that are found with ex-

actly solvable one-dimensional models such as

the Tonks–Girardeau gas or the Bose–Hubbard

gas on an optical lattice. A detailed analytical

comparison with those models [37–39] and the

experimental results [40,42] is currently work in

progress. In conclusion, we find that the general
non-equilibrium kinetic theory also reproduces

the ground state correlations of a quasi one-

dimensional bosonic gas well.
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Appendix A. Cauchy–Schwartz inequality

For a positive semi-definite density operator r
and an arbitrary operator L̂ it follows that the

expectation value

hL̂L̂yi ¼ TrfrL̂L̂yg P 0 ðA:1Þ
is never negative. Consequently, the co-variance

matrix G of Eq. (14) must be positive semi-definite

u�Gu P 0, as well. This can be easily seen, by con-

sidering a linear combination of two arbitrary

operators Â and B̂, i.e., L ¼ aÂþ bB̂. By minimiz-

ing the positive expression Eq. (A.1), one obtains
the Cauchy–Schwartz inequality as

hÂÂyihB̂B̂yi P hB̂ÂyihÂB̂yi: ðA:2Þ
In particular, for the special choice of Â ¼ dâ1 and
B̂ ¼ dâ2, this implies that the magnitude of the

anomalous fluctuations is limited by

ð1þ ~f 11Þ ~f 22 P j~m12j2: ðA:3Þ
Appendix B. Pauli matrices

In this paper, we use the following standard

representation for the Pauli matrices:

r1 ¼
0 1

1 0

� �
; r2 ¼ i

0 �1

1 0

� �
;

r3 ¼
1 0

0 �1

� �
: ðB:1Þ

They satisfy the ordinary commutation relation of

an angular momentum operator [r1,r2] = ir3 and
all cyclic permutations thereof. If n is the dimen-

sion of the vector space, then rk acts in a 2n-

dimensional symplectic vector space [58].
Appendix C. Canonical transformations

A canonical transformation is an inhomoge-
neous linear combination of creation and destruc-

tion operators that preserves the commutation

relation [58]. In particular, if ây and ây denotes a

pair of hermitian conjugated bosonic operators,

such that
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½â1; ây2� ¼ d1;2; ðC:1Þ
then any affine linear transformation defines a new

set of operators b and �b by

b
�b

� �
¼ T

â

ây

� �
þ d: ðC:2Þ

In an n-dimensional vector space, T represents a

2n · 2n dimensional matrix and d is a 2n dimen-
sional vector. Such a transformation is canonical

if the new pair of operators also satisfies the com-

mutation relation:

½b1; �b2� ¼ d1;2: ðC:3Þ
More specifically, the transformation is unitary

canonical if the new operators are hermitian con-

jugate pairs, i.e., �b ¼ by. By inserting Eq. (C.2) into

Eq. (C.3), one finds that the transformation matri-

ces are a representation of the symplectic group

Sp(2n):

Tr3T y ¼ r3: ðC:4Þ
In addition, it can be shown that T* = r1Tr1 and
T�1 = r3T

�r3.
Appendix D. Quantum limit for the ground state

correlations

The state of the interacting many-body system

is described within the set of approximations by
a mean-field amplitude a and a generalized G ma-

trix. At finite temperature or out of equilibrium,

there is a finite occupation number of particles of

positive energy excited states. However, in the low-

est energy configuration all allocatable real parti-

cles occupy the mean-field amplitude and the

generalized density matrix only holds the vacuum.

Then, the following idem-potency relation holds
for the density matrix

Gr3Gþ G ¼ 0: ðD:1Þ
This follows straight from Eq. (21) when

P+ = 0. Consequently, this gives a restriction for

the components of the density matrix ~f ; ~m. In par-
ticular, one finds that the vacuum depletion is

completely determined by the pairing field

~f ¼ 1

2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~m~my

p
� 1Þ; ðD:2Þ
~f ~m ¼ ~m ~f
�
: ðD:3Þ

It is important to note that this relation also

holds out-of-equilibrium as long as thermalizing

collisions can be disregarded.
Appendix E. A generalized Wick�s theorem

Gaußian fluctuations around a well defined

mean value are the key assertion to apply Wick�s
theorem [56]. This is a set of rules to efficiently

evaluate quantum averages for multiple operator

products as

hŵ1ŵ2 � � � ŵlifa;a�; ~f ;~mg ðE:1Þ

In this average, for example, the operator ŵ1

represents either an operator â1 or ây1.
First, the displacement rule shifts any operator

ŵ1 by its c-number expectation value w1 which is

either a1 or a�1, and replaces the quantum average

by an average that has zero mean values:

hŵ1ŵ2 � � � ŵlifa;a�; ~f ;~mg ¼ hðŵ1 þ w1Þðŵ2 þ w2Þ � � �
� ðŵn þ wlÞif0;0; ~f ;~mg: ðE:2Þ

Second, after expanding the multiple products,

one can discard all averages that involve an odd

numbers of operators:

hŵ1ŵ2 � � � ŵ2sþ1if0;0; ~f ;~mg ¼ 0: ðE:3Þ

And third, for the remaining averages, one can use

the Gaußian factorization rule:

hŵ1ŵ2 � � � ŵ2sif0;0; ~f; ~mg
¼ hŵ1ŵ2if0;0; ~f; ~mghŵ3 � � � ŵ2sif0;0; ~f; ~mg
þ hŵ1ŵ3if0;0; ~f; ~mghŵ2ŵ4 � � � ŵ2sif0;0; ~f; ~mg þ � � �
þ hŵ1ŵ2sif0;0; ~f; ~mghŵ2 � � � ŵ2s�1if0;0; ~f; ~mg:

By proceeding recursively, one has finally evalu-

ated the complete multiple operator average

Eq. (E.1).
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Nature 415 (2002) 39.

[13] M. Greiner, O. Mandel, T.W. Hänsch, I. Bloch, Nature
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429 (2004) 277.

[19] K. Das, M. Girardeau, E. Wright, Phys. Rev. Lett. 89

(2002) 110402, and references therein.

[20] O. Onsager, L. Penrose, Phys. Rev 104 (1956) 576.

[21] C. Yang, Rev. Mod. Phys. 34 (1962) 694.

[22] S. Beliaev, JETP 34 (1958) 299.

[23] R. Walser, J. Williams, J. Cooper, M. Holland, Phys. Rev.

A 59 (1999) 3878.

[24] J. Wachter, R. Walser, J. Cooper, M. Holland, Phys. Rev.

A 64 (2001) 053612.

[25] H.T.C. Stoof, J. Low Temp. Phys. 114 (1999) 11.

[26] S. Giorgini, Phys. Rev. A 61 (2000) 63615.

[27] E. Zaremba, T. Nikuni, A. Griffin, J. Low. Temp. Phys.

116 (1999) 277.

[28] M. Rusch, K. Burnett, Phys. Rev. A 59 (1999) 3851.

[29] P. Hohenberg, P. Martin, Ann. Phys. 34 (1965) 291.

[30] B. Jackson, E. Zaremba, Phys. Rev. Lett. 88 (2002)

180402.

[31] S. Bhongale, R. Walser, M. Holland, Phys. Rev. A 66

(2002) 043618.

[32] M. Naraschewski, R.J. Glauber, Phys. Rev. A 59 (1999)

4595.
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