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We analyze the evolution of a degenerate quantum gas �bosons and fermions� falling in Earth’s gravity
during long times �10 s� and over large distances �100 m�. This models an experiment that is currently
performed by the QUANTUS Collaboration at ZARM drop tower in Bremen, Germany. Starting from the
classical mechanics of the drop capsule and a single particle trapped within, we develop a quantum field
theoretical description for this experimental situation in an inertial frame, the corotating frame of the Earth, as
well as the comoving frame of the drop capsule. Suitable transformations eliminate noninertial forces, provided
all external potentials �trap, gravity� can be approximated with a second-order Taylor expansion around the
instantaneous trap center. This is an excellent assumption, and the harmonic potential theorem applies. As a
first application, we study the quantum dynamics of a cigar-shaped Bose-Einstein condensate in the Gross-
Pitaevskii mean-field approximation. Due to the instantaneous transformation to the rest frame of the superfluid
wave packet, the long-distance drop can be studied easily on a numerical grid.
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I. INTRODUCTION

Dropping toys on the floor is one of the earliest childhood
experiences and remains a source of endless joy. Modern
physics, as we know it today, is also based on the consequent
pursuit of this naive amazement about the gravitational at-
traction between material bodies. The contributions of Gali-
leo, Newton, and Einstein to the understanding of the free
fall have fundamentally changed the way we understand
modern physics.

Nowadays, the gravitational field of the Earth is under
more intense scrutiny than ever before. One research branch
focuses on the complex geodynamics of the classical gravi-
tational field of the Earth. From tide movements of the
oceans and the atmospheric mass flows to minute wobbling
of the instantaneous Earth rotation axes due to liquid core
motion, all such effects become measurable. This is either
done with ground-based gravitometers that measure the time-
dependent local acceleration g �1,2�, Earth’s rotation �3–8�,
or in space where satellite-based geodesic measurements
�9–13� put tighter limits on the higher-multipole moments of
the gravitational potential �14�. Another research direction
focuses more on the fundamental aspects of gravity which
follows from general relativity—for example, the current
measurement of the gravitomagnetic field with orbiting gy-
roscopes by the “Gravity probe B” experiment �2,15�. This
gravitational science on Earth and in space connects different
branches of physics—on the atomic, macroscopic, and cos-
mological level. It is vigorously pursued by American, Rus-
sian, European, as well as Chinese space agencies.

The discovery of Bose-Einstein condensation �16,17� and
fermionic superfluidity �18–20� in dilute atomic vapors has
introduced new members to the family of superfluid
condensed-matter systems. Outstanding features of atomic
vapors are that they exist at the lowest possible
temperatures—i.e., on the nanokelvin and picokelvin scale—

and their dynamic properties can be engineered externally.
These unique features are now combined in an experiment

to study Bose-Einstein condensates �BECs� in �-gravity. At
the drop tower facility of ZARM �Center of Applied Space
Technology and Microgravity, University of Bremen, Ger-
many�, the QUANTUS Collaboration �21� focuses currently
on the implementation of a fully self-contained 87Rb-BEC
experiment that fits into a small drop capsule and falls re-
peatedly over a distance of 100 m. This is performed inside
an evacuated drop tower tube and results in a residual gravi-
tational acceleration of �g /g=10−6. The current status of the
experiment is described in Refs. �22,23�.

The physics that can be explored with the falling BEC
naturally splits into two topics. First, one can consider the
extension of atom interferometry �24–27� for high-precision
inertial and rotation sensing. Due to the long unperturbed
free-fall times of up to 10 s, it can be expected that precision
of measurements can be improved accordingly. Second, fun-
damental questions regarding the quantum nature of degen-
erate gases can be studied. Due to the possibility of decreas-
ing the trapping potential significantly in a microgravity
environment without the need of external levitation fields to
compensate for gravity, lower ground-state energies than
ever should be accessible and the picokelvin physics could
be entered �28�. In the resulting ultralarge condensates
�10 mm�, it is possible to gain absolute control of the mac-
roscopic matter wave as optical readout and manipulation
can be performed with very high relative spatial resolution.
Furthermore, a long-time unconstraint expansion of a BEC
allows for a measurement of the macroscopic wave function,
its higher correlations �29,30�, and probes the very concept
of long-range order. Exact symmetries of the system such as
the Kohn mode �31–33� or the breathing mode �34� can be
studied in unprecedented detail.

The theoretical description of any of the previously men-
tioned topics requires a detailed modeling of the launch pro-
cedure, the subsequent motion of the drop capsule, and the
dynamics of the comoving condensate and its time-
dependent trapping geometry. This requires a numerical so-*gerrit.nandi@uni-ulm.de
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lution of the Gross-Pitaevskii equation for the semiclassical
field amplitude. If we describe it on a numerical grid, which
rests in the comoving frame of the BEC wave packet, then
this task becomes most simple. Obviously, there is the need
to describe the mapping between this particular noninertial
frame and other possible reference frames used for observa-
tion.

These considerations can be generalized easily to ex-
tended mean-field theories that deal with higher-order corre-
lation functions such as quantum depletion and the pair cor-
relation function in the case of bosons �35–38� or fermions
�39,40�.

This article is organized as follows: In Sec. II we shortly
review the classical physics of a single harmonically trapped
particle falling within the drop capsule. Section III is dedi-
cated to a quantum mechanical description of a many-
particle system, whether bosons or fermions, trapped in a
harmonic potential and falling within a capsule in the gravi-
tational field. We consider the unitary representations of the
coordinate transformations on many-particle Fock space. We
derive a harmonic potential theorem �32� and obtain the
many-particle quantum evolution in the reference frame of
the capsule, which decouples from the free-fall motion ac-
cording to the equivalence principle. As an application, we
study the quantum dynamics of a BEC in the Gross-
Pitaevskii �GP� mean-field approximation. Due to the instan-
taneous transformation to the rest frame of the capsule, the
long-distance drop �100 m� can be studied easily on a nu-
merical grid. In the previous sections, we have deliberately
disregarded the rotation of the Earth. This is rectified in Sec.
IV. There, we obtain the main result of the article—i.e., a
complete quantum mechanical description of the drop tower
experiment, as well as the transformation rules for observ-
ables between the tower and drop capsule frames. In Sec. V,
we extend the theory for structureless particles to two-level
atoms, which can be coupled via an external, off-resonant
laser. In the special case of equal scattering lengths �e.g.,
87Rb�, we show that the internal dynamics decouples from
the external motion.

II. CLASSICAL PHYSICS OF A PARTICLE FALLING
WITHIN THE DROP CAPSULE

In this section, we consider the classical physics of a
single harmonically trapped particle in a free-fall experi-
ment. Therefore, we need to understand the classical motion
of the drop capsule first.

A. Drop capsule

1. Experimental configuration

The drop capsule is a cylindrical container that houses the
complete setup studied in the release experiment �41�. It is
shaped like a projectile, with a diameter of 80 cm, a height
of 2.4 m, and a gross mass M of up to 500 kg. Either, it is
lifted 110 m to the top of the depressurized tower tube
��10 Pa� and released to fall freely �4.74 s�, or it can be shot
up from the ground with a powerful air-gun-driven catapult,
thus doubling the time available for ballistic motion. On im-

pact, it is decelerated smoothly with a container full of poly-
styrene pellets. The same experiment can be repeated up to
three times per day.

Irrespective of which specific launch procedure is chosen,
it is clearly necessary to briefly review the basic Newtonian
physics of the drop capsule. In the simplest scenario, we may
safely disregard any tumbling micromotion of the capsule
along its flight path, causing gyromechanical effects. Thus,
we will model the capsule solely by its center-of-mass coor-
dinate �=�i=1

3 �iei. We assume that a Cartesian coordinate
system, fixed to the center of the Earth, is a good inertial
reference frame with basis vectors denoted by �e1 ,e2 ,e3�.
This configuration is shown in Fig. 1. For the moment, we
will also “freeze” the rotation of the Earth and consider those
effects explicitly in Sec. IV.

In general, the gravitational potential of the Earth, Vg, is
not circular symmetric or stationary. From a geophysical
viewpoint, Earth resembles a drop of a viscous fluid. During
the past eons, it evolved into an oblate ellipsoid due to its
rotation. Consequently, the local gravitational acceleration g
is orthogonal to the surface of the Earth, but does not point
towards the center, except for the equator and the poles �42�.
Even today, the geodynamic activity has not subsided but
remains noticeable in the form of tidal oscillations and liquid
core wobble. Thus, for the purpose of modeling high-
precision drop experiments, one needs to consider a general
expression for the gravitational potential,

Vg��,t� = − G�
E

d3x
m#�x,t�
	� − x	

, �1�

where G=6.6742�10−11 m3 s−2 kg−1 represents the gravita-
tional constant �43� and m# denotes the mass density of the
Earth. Currently, experimental data in the form of a multi-
pole expansion to the 360th degree is available �14� and
more satellite-based geodetic measurements are on the way
�9–11�. Despite this remarkable precision in the gravitomet-
ric data, it remains nevertheless true that the monopole is the
dominant contribution to the gravitational potential. It is pro-

FIG. 1. A harmonically trapped particle with position r and
mass m falls towards the Earth in a drop capsule with position � and
mass M. The center of mass of the drop capsule � and its major
axes coincide also with the origin of the harmonic trap and its
principal axes ẽi.
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portional to the standard gravitational constant—i.e., the
product of the gravitational constant and the total mass of the
Earth, G
Ed3x m#�x , t�=3.986�105 km3 s−2.

2. Hamiltonian dynamics

In considering the mass M of the drop capsule, it is clear
that classical mechanics rules its dynamics. The succinct for-
mulation of analytical mechanics follows from Hamilton’s
principle, which demands that the trajectory defined by po-
sition � and orientation of the capsule n extremize the clas-
sical action,

Sc��,n� = �
t0

t

dt�Lc���t��,�̇�t��,ṅ�t��,t�� , �2�

subject to appropriate boundary conditions �44�. The La-
grangian for the drop capsule, Lc, with respect to an inertial
frame is given by

Lc��,�̇,ṅ,t� = M� �̇2

2
− Vg��,t�� +

1

2
ṅIṅ . �3�

Here, we introduced the tensor of inertia, I. The rate of
change of n corresponds to the angular velocity or spinning
of the capsule. As mentioned in the Introduction, we will
disregard possible torques, which arise due to weak gravity
inhomogeneities. Thus, the internal angular momentum of
the drop capsule is conserved Iṅ=const; in other words, n is
a cyclic variable in the Lagrangian, Eq. �3�. To simplify the
following discussion, we will also drop the energy offset
ṅIṅ /2, which has no dynamical consequences.

The global extremum of the action Sc is attained when the
trajectory satisfies locally the Euler-Lagrange equations

d

dt

�Lc

��̇
=

�Lc

��
. �4�

The transition from the Lagrangian to the Hamiltonian for-
mulation is based on the introduction of the canonical mo-
menta

���̇� =
�Lc

��̇
= M�̇ . �5�

Provided the canonical momenta can be expressed uniquely
via velocities, then the Legendre transformation of the La-
grangian is invertible, Det��2Lc /��̇i��̇ j��0. It defines a
Hamiltonian function in phase space,

Hc��,�,t� = ��̇��� − Lc, �6�

and the Hamiltonian equations of motion represent the dy-
namics

�̇ =
�Hc

��
, �̇ = −

�Hc

��
. �7�

In particular, applying analytical mechanics to the drop cap-
sule in vacuum, falling in gravity, we find

�̇ =
�

M
, �̇ = − M �

��
Vg��,t� , �8�

or simply Newton’s equation

�̈ = −
�

��
Vg��,t� . �9�

B. Single classical particle trapped in the drop capsule

For our considerations the inertial frame of reference and
the comoving frame of the drop capsule are of significance.
Therefore, we will briefly discuss them in the following sec-
tions.

1. Inertial frame

The situation considered in Fig. 1 is almost analogous to
Newton’s proverbial apple dropping in the falling elevator.
However, in addition to the gravitational acceleration, our
particle with coordinate r experiences a linear trapping force,
possibly time dependent. This force is derived from a har-
monic oscillator potential

Vt��,t� =
1

2
�� � �� · vt

�2��t� , �10�

vt
�2��t� = �

i=1

3

�i
2�t�ẽi � ẽi, �11�

which is tied to the center of mass of the drop capsule � and
is rigidly aligned along the symmetry axes of the capsule
�ẽ1 , ẽ2 , ẽ3�. In general, the potential can be anisotropic with
time-dependent trap frequencies �i�t�. Both information is
incorporated in the definition of the symmetric tensor
vt

�2��t�.
As before, the equation of motion for the falling, trapped

particle follows straight from the Lagrangian of the drop cap-
sule, Eq. �3�, by adding the corresponding Lagrangian of the
trapped particle:

L��,�̇,r, ṙ,t� = Lc��,�̇,t� + Lsp�r, ṙ,t� , �12�

Lsp�r, ṙ,t� = m� ṙ2

2
− Vt�r − ��t�,t� − Vg�r,t�� . �13�

It almost goes without saying that the back-action of the
particle on the drop capsule is negligible, since the mass of
the drop capsule M�m is much larger than the mass m of
the atomic particle.

In the inertial frame, the atomic canonical momentum p is
identical with the kinetic momentum:

p =
�Lsp

�ṙ
= mṙ . �14�

Thus, the Hamiltonian function for the single trapped particle
is obtained immediately as

Hsp�r,p,t� =
p2

2m
+ m�Vt�r − ��t�,t� + Vg�r,t�� �15�

and the equations of motion read as
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ṙ =
p

m
, ṗ = − m

�

�r
�Vt�r − ��t�,t� + Vg�r,t�� . �16�

This yields Newton’s equation for the particle coordinates r:

r̈ = −
�

�r
�Vt�r − ��t�,t� + Vg�r,t�� . �17�

2. Comoving frame

The particle can deviate only a tiny distance from the
center of the drop capsule. It is of the order of 1 cm, hence
much less than the radius of the Earth. Consequently, it is
prudent to make a coordinate transformation to the comov-
ing, accelerated frame and also to introduce relative veloci-
ties

r� = r − ��t�, ṙ� = ṙ − �̇ . �18�

The Lagrangian of the particle now reads

Lsp� �r�, ṙ�,t� = m� �ṙ� + �̇�2

2
− Vt�r�,t� − Vg�r� + �,t��

�19�

and induces a canonical momentum as

p� =
�Lsp�

�ṙ�
= m�ṙ� + �̇� . �20�

Now, the Hamiltonian in the accelerated frame is given by

Hsp� �r�,p�,t� =
p�2

2m
+ m�Vt�r�,t� + Vg�r� + �,t�� − p��̇

�21�

and leads to the following equations of motion:

ṙ� =
�Hsp�

�p�
=

p�

m
− �̇ , �22�

ṗ� = −
�Hsp�

�r�
= − m

�

�r�
�Vt�r�,t� + Vg�r� + �,t�� , �23�

or Newton’s equation

r̈� = −
�

�r�
�Vt�r�,t� + Vg�r� + �,t�� − �̈ . �24�

Due to the smallness of the possible deviation of the
trapped particle from the trap center, we can safely expand
the gravitational potential at each instant in a Taylor series
along the trajectory of the drop capsule ��t�,

Vg�r� + �,t� = 1 + r�
�

��
+

1

2!
�r�

�

��
�2

+ ¯ �Vg��,t�

= Vg��,t� + Vg
�1��r�,�,t� + Vg

�2��r�,�,t� + 	Vg
�3�.

�25�

This expansion defines the gradient field and a linear poten-
tial contribution,

vg
�1���,t� =

�

��
Vg��,t� ,

Vg
�1��r�,�,t� = r�vg

�1���,t� , �26�

the symmetric Hessian tensor and its complete contraction
into a quadratic potential energy,

vg
�2���,t� = � �

��
�

�

��
�Vg��,t� ,

Vg
�2��r�,�,t� =

1

2
�r� � r�� · vg

�2���,t� , �27�

as well as a residual correction 	Vg
�3�, given in Appendix A.

Due to its smallness, we will tacitly disregard corrections of
this order in all of the following considerations.

3. Prerelease dynamics

Prior to the release at t0, the capsule is statically attached
to the top of the tower—i.e., �̇�t� t0�=0—at some height �0.
Note that the vanishing velocity implies that we have delib-
erately “frozen” the rotation of the Earth. This is rectified in
Sec. IV. Then, we can approximate Newton’s equation �24�
as

r̈� = −
�

�r�
Ṽt�r�,�0,t� − vg

�1���0,t� ,

=− ṽt
�2���0,t��r� − req� �t�� . �28�

The equilibrium position req� reflects the gravitational sag of
the particle with respect to the trap center �0 at some instant
and is given by

ṽt
�2���0,t�req� �t� = − vg

�1���0,t� . �29�

Presumably, its time dependence is very slow. Furthermore,
we have gathered all quadratic potential energy contributions
into a renormalized harmonic trapping potential as

ṽt
�2���,t� = vt

�2��t� + vg
�2���,t� ,

Ṽt��,�,t� =
1

2
�� � �� · ṽt

�2���,t� . �30�

It is interesting to note that the trapping force is weakened in
the direction of gravity as the curvature coefficients vg

�2� are
negative.

4. Post-release dynamics

After the capsule is released—i.e., for times t
 t0—it falls
essentially according to Eq. �9�. Due to the previously men-
tioned sag in the direction of gravity, the equilibrated atomic
particle will be in a position r��t0�=req� �t0� and initiate har-
monic oscillations about the instantaneous trap center ��t�:

r̈� = −
�

�r�
Ṽt„r�,��t�,t… = − ṽt

�2�
„��t�,t…r�. �31�
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5. Hamiltonian formulation and canonical transformations

In order to obtain the transformed single-particle Hamil-
ton function Hsp� �r� ,p� , t� in terms of the old Hamilton func-
tion Hsp�r ,p , t� of Eq. �15�, we used the coordinate transfor-
mation of Eq. �18� and stepped through the Lagrangian
procedure. More elegantly, one can also employ the general
approach of canonical transformations �44�. In particular, we
will choose a time-dependent generating function

G�r,p�,t� = �r − ��t��p� +
m

M
�s�t� + r��t�� , �32�

which depends explicitly on the old particle coordinate and
the new momentum variable �r ,p��. It also depends para-
metrically on the coordinate and momentum of the drop cap-
sule ���t� ,��t��. For convenience, another, yet-undetermined
variable s�t� was introduced. This does not affect the dynam-
ics at all, but can be used to match the energy-zero level at
some instant. The new coordinate r� and the old momentum
p are obtained from the generating function as

r� =
�G

�p�
= r − ��t�, p =

�G

�r
= p� +

m

M
��t� . �33�

Note that besides the displacement of the coordinate r, we
also introduced a boost in momentum space, which differs
from the transformation described by Eq. �18�. With respect
to the transformed frame, the new Hamiltonian reads for-
mally as

Hsp� �r�,p�,t� = Hsp�r,p,t� +
�

�t
G�r,p�,t� . �34�

By inserting the coordinate transformation as well as em-
ploying the Taylor expansion of the gravitational potential,
we find the residual harmonic Hamiltonian

Hsp� �r�,p�,t� =
p�2

2m
+ mṼt„r�,��t�,t… , �35�

provided the motion of the capsule is externally determined
by the solution of Eq. �8� and s�t , t0� is an action

s�t,t0� = �
t0

t

dt�Lc���t��,�̇�t��,t�� − �	�	t0
t . �36�

By construction it is clear that we must recover the identical
equation �31� from Hamilton’s equations in the new coordi-
nates:

ṙ� =
�Hsp�

�p�
, ṗ� = −

�Hsp�

�r�
. �37�

These considerations will enlighten the analogy between the
classical treatment and the quantum mechanical description
of the falling, trapped ultracold quantum gas.

6. Order-of-magnitude estimates

In order to estimate the magnitude of the Taylor coeffi-
cients of the gravitational potential, one can evaluate them at
the surface of the Earth, �=R#=6372 km, and obtains

vg
�1�=9.81 m s−2, vg

�2�=−1.54�10−6 s−2 and vg
�3�=2.42

�10−13 m−1 s−2. In there, we made the approximation of an
isotropic gravitational potential. It is worthwhile pointing out
that vg

�1� is not yet identical to the gravitational acceleration
g, which also includes centrifugal corrections �see Sec. IV�.

The important consequence of Eq. �31� is that in first
order Vg

�1�, the internal harmonic oscillator motion is decou-
pled from the center-of-mass motion of the drop capsule.
Only when considering the weak quadratic correction Vg

�2�

can one observe a coupling of these motions as a result of the
decrease of the harmonic oscillator frequency along the gra-
dient of the gravitation. The following quantum mechanical
calculations will obviously lead to the same conclusions due
to Ehrenfest’s theorem, where in case of quadratic Hamilto-
nians expectation values coincide with the classical trajecto-
ries. Only by considering the third-order correction 	Vg

�3� will
we find an additional dynamical mixing between the classi-
cal trajectory and the quantum mechanical expectation value.

III. QUANTUM PHYSICS OF IDENTICAL ATOMS
FALLING WITHIN THE DROP CAPSULE

So far, we have considered a single classical particle that
is harmonically trapped and falling in the gravitational field.
Actually, we are interested in the behavior of a freely falling,
trapped atomic BEC, which requires a quantum field theoret-
ical description. However, we do not want to constrain our
discussion solely to condensed bosonic gases, but would
rather like to treat the general situation of an ultracold de-
generate quantum gas, whether bosonic or fermionic.

A. Quantized atomic fields

Before we proceed to the quantum field theoretical de-
scription, which is intrinsically tied to the picture of second
quantization, we briefly revisit the most prominent relations
of first quantization. In general, the commutator of position
and momentum operator r̂ and p̂ is

�r̂,p̂� = i�1 . �38�

In the remainder of this article, we will omit the carets for
operators in first quantization—e.g., write r and p. The de-
rived commutation relation for the components of the angu-
lar momentum l=r�p satisfies the standard angular momen-
tum algebra

�lk,ll� = i�klmlm, �39�

defined through the completely antisymmetric Levi-Cività
tensor klm as structure constants. Most of the time, we will
use the position representation in this article, hence will in-
terchangeably refer to r and p=−i� �

�r also as the operators of
position and momentum, when acting on Hilbert-space func-
tions.

In order to incorporate the correct quantum statistics ac-
cording to the Pauli principle, we use the language of second
quantization. The field operator in the position representation
will be denoted by â�r�, and it annihilates a particle at the
position r, while its Hermitian conjugate â†�r� creates it
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there. Thus, the quantum field satisfies a commutation rela-
tion for bosons and an anticommutation rule for fermions
���:

�â�r�, â†�r����+� = 	�r − r�� . �40�

Now, we can proceed to single-particle operators in Fock

space representing the center-of-mass coordinate R̂, the lin-

ear momentum P̂, as well as the angular momentum L̂ and

the total atom number N̂, as

R̂ =� d3r â†�r�r â�r�, P̂ =� d3r â†�r�p â�r� ,

L̂ =� d3r â†�r�lâ �r�, N̂ =� d3r â†�r�â�r� . �41�

Using the commutation or anticommutation relation of Eq.
�40�, one can easily verify that those operators form a closed
algebra

�R̂,P̂� = i�N̂, �R̂,N̂� = �P̂,N̂� = �L̂,N̂� = 0, �42�

�R̂,�L̂� = i�� � R̂, �P̂,�L̂� = i�� � P̂ . �43�

It is indicated by Eqs. �42� that this algebra of Euclidean
transformations can be represented in the N-particle sector
and � represents an arbitrary rotational axis in three-
dimensional Euclidean space.

In typical BEC experiments, as well as in recent experi-
ments involving degenerate fermions, the particle densities
are of the order 1013–1015 cm−3. Thus, we can express the
energy of a dilute atomic gas of N identical particles in the
form of a cluster expansion,

Ĥ�t� = Ĥsp�t� + V̂p,

Ĥsp�t� =� d3r â†�r�Hsp�r,p,t�â�r� ,

V̂p =
1

2
� d6r â†�r1�â†�r2�Vp�r1 − r2�â�r2�â�r1� , �44�

in terms of single-particle Hamiltonians Hsp�r ,p , t�, pairwise
interactions Vp���, and, with decreasing relevance, higher or-
der contributions, which can be neglected here �16,17�. The
recently discovered Efimov resonances �45� represent a very
unusual exception to this rule, where genuine three-body ef-
fects become important. However, the principle of transla-
tional invariance can still be assumed for those potentials.
For the present discussion, we will disregard such peculiari-
ties, however.

The quantum dynamics of the N-particle system follows
the Schrödinger equation in Fock space:

i�
d

dt
	��t�� = Ĥ�t�	��t�� . �45�

With this fundamental equation of motion, we have now es-
tablished all the basic concepts and can turn to the transfor-

mation of a wave function from an inertial frame of reference
to an accelerated, comoving frame of reference.

B. Dynamics in comoving frames of reference

1. Frame transformation from the inertial to the comoving
frame

The Euclidean coordinate transformations of the previous
section were determined by ten static parameters
�S ,R ,P ,Q�. By considering an arbitrary time dependence
of these parameters, we can introduce a canonical frame
transformation that includes the Galilean transformation as a
special case �46�. Currently, we will focus on nonrotating
frames �Q=0� for simplicity, i.e.,

Û�t� = ÛS�t�ÛP�t�ÛR�t�, �46�

and lift this restriction in Sec. IV.
Our goal is to determine an equation of motion for this

comoving, accelerated frame such that the residual motion of
the atomic gas within the frame is free of any noninertial
forces. Given that the Schrödinger equation �45� holds in the
inertial Earth-centered frame, then we find another realiza-

tion 	��= Û�t�	��t��� in an accelerated frame of reference,

i�
d

dt
	��t��� = Ĥ��t�	��t���, �47�

with the transformed Hamiltonian

Ĥ��t� = Û†�t��− i�
d

dt
+ Ĥsp�t� + V̂p�Û�t� . �48�

In here, the first contribution to the Hamiltonian is a gauge
potential, in analogy to the fictitious forces that would appear
in the classical Hamiltonian function in terms of the time
derivative of the generating function; cf. Eq. �34�. It can be
evaluated using Eqs. �B22� and �B23�, and it generates addi-
tional gauge forces

Û†�t��− i�
d

dt
�Û�t� = �Ṡ + ṖR�N̂ + ṖR̂ − ṘP̂ . �49�

The second contribution to the Hamiltonian implements the
spatial translation and momentum boost

Û†�t�Ĥsp�t�Û�t� =� d3r�â†�r��Hsp�r� + R,p� + P,t�â�r�� ,

�50�

where it is implicitly assumed that the one-particle Hamil-
tonian Hsp�r ,p , t� can be expanded into a power series in r
and p, respectively.

The third term of the Hamiltonian �48� is not affected by

the frame transformation Û†V̂pÛ= V̂p at all, as the interaction
of Eq. �44� is Hermitian �number conserving�, a local opera-
tor, and translational invariant by construction in Fock as
well as in two-particle Hilbert space,
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�N̂,V̂p� = �R̂,V̂p� = �P̂,V̂p� = 0. �51�

This property is also the basis of Kohn’s theorem �31�—i.e.,
the exact decoupling of the center-of-mass motion and the
relative excitations in maximally quadratic single-particle
Hamiltonians. It is also known as the harmonic potential
theorem �32� and has been used in the context of cold, dilute,
quantum gases �33,47�.

Combining these results, we find the transformed Hamil-
tonian in the accelerated frame,

Ĥ��t� =� d3r�â†�r��Hsp� �r�,p�,t�â�r�� + V̂p, �52�

and all gauge contributions are contained in the single-
particle Hamiltonian

Hsp� �r�,p�,t� = Hsp�r� + R,p� + P,t�

+ S + ṖR + Ṗr� − Ṙp�. �53�

2. Application of the frame transformation in the harmonic
approximation

We will now apply the preceding considerations to the
falling trapped interacting many-particle system in the drop
tower. The single-particle Hamilton operator follows from
the classical considerations of Eq. �15� and is given by

Hsp�r,p,t� =
p2

2m
+ m�Vt„r − ��t�,t… + Vg�r,t�� . �54�

By splitting the transformed Hamiltonian �53� into constant,
linear, and higher-order polynomial contributions in terms of
the position r� and the momentum p�, as well as disregarding
	Vg

�3� corrections, one finds

Hsp� �r�,p�,t� =
p�2

2m
+ mṼt„r�,R�t�,t… , �55�

provided the frame parameters as well as the center of mass
of the drop capsule �R�t� ,P�t� ,��t�� satisfy the classical
equations of motion:

� =
�Lc

��̇
= M�̇, �̇ =

�Lc

��
, �56�

P =
�Lsp

�Ṙ
= mṘ, Ṗ =

�Lsp

�R
. �57�

We can express the latter line as Newton’s equation of mo-
tion for R,

R̈ = −
�

�R
�Vt�R − �,t� + Vg�R,t�� . �58�

With Eqs. �56� and �57�, we have recovered the Lagrangian

L�� , �̇ ,R , Ṙ , t� of Eq. �12�, and one can express the accrued
dynamical phase as an action integral

S�t,t0� = �
t0

t

dt�Lsp�R,Ṙ,t�� − PR	t0
t , �59�

as in Eq. �2�, where we started from �cf. also Eq. �36��.
The harmonic trapping potential Ṽt, which appears only in

the residual Hamiltonian, Eq. �55�, has been modified by
quadratic corrections of gravity and was defined in Eq. �30�.
The third-order correction to the gravitational potential 	Vg

�3�

is minuscule. On the time scale of the free-fall experiment,
one may safely disregard it. Thus, we are left with a qua-
dratic, time-dependent Hamilton operator and the harmonic
potential theorem applies �32�.

As before, the motion of the center-of-mass coordinate
R, Eq. �58�, can be understood much more clearly if we
expand the gravitational potential around the center of mass
of the drop capsule �. For the deviation 	R�t�=R�t�
−��t� after the release of the capsule, one finds a pure har-
monic oscillation

	R̈�t� = − ṽ�2�
„��t�,t…	R�t� . �60�

C. Ehrenfest’s theorem

At this point, we would like to confirm the physical inter-
pretation of the frame parameters R�t� and P�t� as center-
of-mass and momentum coordinates, respectively. Clearly,
they have been introduced as such with dimensions of length
and momentum. Using Ehrenfest’s theorem, we are able to
verify this.

The temporal evolution of the expectation value of any

time-independent operator Â—i.e., �Â�= ���t�	Â	��t��—
follows from the Schrödinger equation �45� and gives

i�
d

dt
�Â� = ��Â,Ĥ�t��� . �61�

By using the bosonic or fermionic commutation relation, Eq.
�40�, we can work out the commutators

i

�
�Ĥ�t�,R̂� =

P̂

m
,

i

�
�Ĥ�t�,P̂� = − vg

�1�
„��t�…N̂ − ṽ�2�

„��t�,t…�R̂ − ��t…N̂� ,

where we have discarded third-order corrections. In analogy
to Eq. �60�, we can define a deviation from the drop capsule

coordinate as 	�R̂�= �R̂�−��t�N and find that it evolves ac-
cording to

	�R̂¨ � = − ṽ�2�
„��t�,t…	�R̂�, �P̂� = m�R̂˙ � , �62�

where we have introduced the particle number N= �N̂�. In-
deed, Eqs. �31�, �60�, and �62� are identical in form, which is
just Ehrenfest’s theorem. Furthermore, if we assign the iden-
tical initial conditions to the frame parameters R�t0�
= �R̂�t0�� /N and P�t0�= �P̂�t0�� /N, then we can identify them
with the center-of-mass coordinate and total momentum of
the atomic ensemble.
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D. Application of the comoving frame transformation to
mean-field theory

All the calculations that were presented so far are gener-
ally valid on the many-particle level using the language of
second quantization. We have seen that the underlying phys-
ics of frame transformations in translational invariant sys-
tems rests exclusively on the single-particle level. If we fur-
thermore restrict our scope to harmonic potentials,
everything can be understood in terms of classical physics, in
principle.

1. From quantum fields to classical fields

For the practical purpose of studying the internal dynam-
ics of Bose-Einstein condensates or superfluid fermionic
gases in �-gravity, it is usually sufficient to restrict oneself to
the mean-field picture. However, the application of the pre-
sented frame transformations to an extended mean-field ap-
proach including the quantum depletion or pairing fields
�35–37,39,40� is straightforward.

In the case of a bosonic gas, the GP equation provides a
very successful description of many dynamical and static
properties of the BEC �48�. To derive the GP equation in the
accelerated frame, we start from Heisenberg’s equation for

an operator Â, which is time independent in the Schrödinger
picture,

i�
d

dt
ÂH�r,t� = �ÂH�r,t�,ĤH� �t�� , �63�

which can be obtained from the Schrödinger equation in
the accelerated frame, Eq. �47�, and the Hamilton operator,
Eq. �52�. The representation of operators in Heisenberg

picture—i.e., ÂH�r , t�= T̂†�t ,0�Â�r�T̂�t ,0�—requires the in-
troduction of the time-ordered �T� evolution operator

T̂�t ,0�=T exp�−i /�
0
t d�Ĥ�����. In particular, one finds for

the field operator

i�
d

dt
âH�r�,t� = Hsp� �r�,p�,t�

+� d3�âH
† ��,t�Vp�� − r��âH��,t��âH�r�,t� .

�64�

In the case of a dilute weakly correlated BEC, it is usually
sufficient to stay within the mean-field approximation. This
is the classical limit and replaces the quantum field âH�� , t�
by a complex valued field ��� , t�. This approximation is also
consistent with the use of a pseudo potential �49� for the pair
interaction, i.e.,

Vp��� =
4��2as

m
	��� = �	��� . �65�

It uses the s-wave scattering length as in vacuo and basically
summarizes all the binary scattering contributions to the
Born series that are still present in the full Heisenberg equa-
tion �64�. With these assumptions, one arrives at the GP
equation in the accelerated frame,

i��t� = �Hsp� �r�,p�,t� + �	��r�,t�	2���r�,t� , �66�

with the Hamiltonian of Eq. �55� and the classical frame
equations �57�.

2. Numerical study of the long-time evolution of a freely falling
condensate

In order to illustrate the benefits of the comoving frame
transformation, we present the drop of a freely expanding
three-dimensional, cylindrically symmetric BEC over T
=5 s and 122 m. Such a situation will be realized in the first
drop experiments at ZARM. Initially, the condensate �
=��r ,z , t� is in equilibrium, but it is suddenly released by
turning off the trap. Then, the accordingly scaled, dimension-
less GP equation �66� reads

i�t� = �−

�z
2 +

�rr�r

r

2
+ ��− t�

z2 + �2r2

2
+ �	�	2�� , �67�

in the comoving frame of reference and cylindrical coordi-
nates �r ,� ,z�.

This problem of releasing a condensate has been ad-
dressed already analytically in �50–52�, where time-
dependent scaling transformations are used to map the final
wave function onto an equivalent problem, which can be
approximated well in the Thomas-Fermi regime. Here, we
have chosen a numerical approach to solve the GP equation
in order to address all possible time dependences and trap-
ping potentials that might occur later in the QUANTUS ex-
periment. To be specific, we have modeled an experiment
with �=�r /�z=2.5, as the ratio of radial �r=7.8 s−1 and
longitudinal angular oscillator frequencies �z=3.1 s−1. Oth-
erwise, we chose parameters for 87Rb with a mass of m
=86.9 amu �unified atomic mass units�, an s-wave scattering
length as=5.8 nm, and N=1000 particles. This results in a
natural length unit of the longitudinal harmonic oscillator of
aHO=14.9 �m and a relative coupling �=4�as /aHO.

The density profiles of the initial ground state and of the
condensate after the free expansion are depicted in Figs. 2
and 3. In addition, we show a series of density plots at dif-
ferent instants of expansion in Fig. 4. Note that the BEC,
which is initially elongated in z direction, changes its aspect
ratio while expanding due to the nonlinearity.

IV. MANY IDENTICAL ATOMS WITHIN THE DROP
CAPSULE IN A ROTATING FRAME

In the previous sections, we have deliberately omitted the
rotation of the Earth from our discussion in order to simplify
the algebra and focus on the essential physics. In particular,
we only considered the transformation from the Earth-fixed
inertial frame �ei�, located at its origin, to the accelerated
frame of the freely falling, center-of-mass coordinate R�t�
of the atomic cloud �see Fig. 1�.
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A. Classical physics of the drop capsule in a rotating frame of
the Earth

1. Classification of the three important frames of reference

In fact, in our considerations three different frames of
reference are of significant importance. Besides the inertial
frame, a real experiment obviously requires a description in a
coordinate system that is aligned with the corotating drop
tower tube. Moreover, in the frame comoving with the drop
capsule, the experiment can be described in a most simple
way. In this frame of reference, noninertial forces can be
eliminated. It is of special importance to describe the map-
ping between the drop tower frame and the capsule frame,
since both systems can be used for observation, in principle.
In the inertial frame, a pointlike particle is characterized by
�r ,p� and the drop capsule is at position �. In the corotating
drop tower frame, with origin at the bottom of the tower, we
indicate these quantities with �r̄� , p̄�� and �̄�, while in the
drop capsule frame the particle’s coordinate and momentum
are �r� ,p��. A schematic sketch of the three systems is de-
picted in Fig. 5.

2. Characterization of the drop tower frame

In the rest frame of the drop tower, the coordinate system
is aligned with the rotating tower principal axes denoted by

�ē j�t��. This is depicted in Fig. 6. � denotes the angle be-
tween the rotational axis of the Earth and the plummet at the
geographic location �� ,�� of the drop tower R. Due to the
ellipsoidal shape of the Earth, the plummet does not point to
the center of the Earth. The oblateness is modeled by the half
axes a and b. The instantaneous principal tower axes and the
direction towards the base of the tower R�t�,

ēi�t� = M#�t�M�e3
M�e2

ei, ė̄i = �#� ēi, �68�

R�t� = M#�t�M�e3
M�e2

e3, Ṙ = �#� R , �69�

are obtained from the inertial axes of the Earth �ei� by align-
ing the ē3 axis of the tower along the direction of the plum-
met, followed by a rotation � to the longitude of the tower at
ZARM/Bremen, as well as the diurnal rotation M#�t� around
the Earth axis, �#=�#e3, with an angular frequency �#
=7.2�10−5 1 /s. No further time dependence caused by geo-
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FIG. 3. �Color online� The density 	��r ,z , t�	2 of the BEC after
the expansion over T=5 s. Density and lengths r and z are mea-
sured in natural units of aHO �see text�.

(a)

(c) (d)

(b)

FIG. 4. �Color online� Contour plot of the density 	��x ,y ,z , t�	2
of a freely expanding BEC over T=5 s. Due to the axial symmetry,
we depict the density at x=0 versus y and z. Shown are the instants
t=0 �a�, T /4 �b�, T /2 �c�, and T �d�. All scales are in natural units of
aHO. The BEC exhibits the characteristic change of aspect ratio
while expanding.
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r′′

rotating drop tower frame (r̄′,p̄′)

FIG. 5. Schematic view of the three different reference frames
as seen from above the North pole. In the inertial frame, located at
the center of the Earth, a particle is characterized by �r ,p� and the
drop capsule is at position �. In the corotating drop tower frame,
with the origin at the bottom of the tower, these quantities are
denoted by �r̄� , p̄�� and �̄�, while in the drop capsule frame the
particle’s coordinate and momentum are �r� ,p��.
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FIG. 2. �Color online� Ground-state density 	�0�r ,z�	2 of a pro-
late, cylindrically symmetric BEC with N=1000 particles versus
longitudinal length z and radius r. Density and lengths are measured
in natural units of the longitudinal harmonic oscillator length aHO

�see text�.
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physical effects, like tidal forces, precession, or wobbling
due to the liquid core motion, will be considered.

Now we are in the position to represent all vectors either
in the inertial Cartesian basis of the Earth or the corotating
frame, i.e.,

q�t� = �
i=1

3

qi�t�ei = �
j=1

3

q̄j�t�ē j�t� , �70�

qi = �
j=1

3

eiē jq̄
j = �

j=1

3

Mij�t�q̄j , �71�

by introducing the matrix representation of the orthogonal
rotation M�t�TM�t�=1 defined by Eq. �68�. It is obvious that
the components of the Earth rotation as well as the pointer to
the base of the tower,

�̄#
i = �#�− sin �,0,cos �� , �72�

R̄i = R„sin�� − ��,0,cos�� − ��… , �73�

must be time independent in this basis.

3. Dynamics of the drop capsule

All distances will be measured relative to the base of the
drop tower R�t�, i.e.,

� = �� + R = M�t��̄ = M�t���̄� + R̄� . �74�

By differentiation, one finds the relation between the veloci-
ties with respect to the two frames as

�̇ = M�t���̇̄� + �̄#� �̄� . �75�

In the rotating frame, the Lagrangian of Eq. �3� for the rela-

tive position �̄� as well as the relative velocity �̇̄� reads

L̄c���̄�, �̇̄�,t� = M� ��̇̄� + �̄#� �̄�2

2
− Vg„M�t��̄,t…�

= M� �̇̄�2

2
− Vc��̄� − Vg„M�t��̄,t…�

+ �̄#��̄ � �̇̄�M� . �76�

Here, we have introduced the centrifugal potential as

v̄c
�2� = �̄# � �̄# − �#

2,

Vc��̄� =
1

2
��̄ � �̄� · v̄c

�2�. �77�

The canonical momentum �̄�, which is conjugate to the
coordinate �̄�, is given by

�̄� =
�L̄c�

��̇̄�
= M��̇̄� + �̄#� �̄� �78�

and implies a Hamiltonian in the new coordinates

H̄c���̄�,�̄�� =
�̄�2

2M
+ MVg„M�t���,t… − �̄#l̄c�, �79�

where the angular momentum l̄c�= �̄� �̄� has been intro-
duced. Via Hamilton’s equations

�̇̄� =
�H̄c�

��̄�
=

�̄�

M
− �̄#� �̄ , �80�

�̇̄� = −
�H̄c�

��̄�
= − M �

��̄�
Vg„M�t��̄,t… − �̄#� �̄�, �81�

we are led directly to the well-known Newton equations in
the rotating frame �42�,

�̈̄� = − 2�̄#� �̇̄� −
�

��̄�
�Vc��̄� + Vg„M�t��̄,t…� , �82�

where the first term is the Coriolis force, followed by the
centrifugal force of Eq. �77� and the gravitational force as
defined before in Eq. �9�. By expanding the gravitational
potential to second order around the base of the drop tower
R �see Fig. 6�, we obtain

�̈̄� = − 2�̄#� �̇̄� − ḡ�R� − �v̄g
�2��R� + v̄c

�2���̄�. �83�

Here, we have introduced the effective gravitational accel-
eration and rotated Taylor coefficients

ḡ�R� = v̄g
�1��R� + �̄#� ��̄#� R̄� , �84�

v̄g
�1��R� = M�t�Tvg

�1��R� , �85�

v̄g
�2��R� = M�t�Tvg

�2��R�M�t� , �86�

at the surface of the Earth. ḡ is normal to the surface and
takes into account the ellipsoidal shape of the Earth. In order

FIG. 6. A harmonically trapped particle with position r� and
mass m in the drop capsule with position �� and mass M. The
position in the capsule frame is denoted by r�. The drop tower axes
�ēi� perform a diurnal rotation around the Earth axes �#. � denotes
the angle between the rotational axis of the Earth and the plummet
at the geographic location �� ,�� of the drop tower R. The oblate
ellipsoidal shape of the Earth is modeled by the half axes a and b.
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to obtain a simple solution of Eq. �83�, one can neglect the
centrifugal term, since it is of the order �#

2�10−9 m /s2;
see Appendix C. An estimate of the Coriolis deviation in the
ē2 direction after a drop distance of 100 m yields approxi-
mately 2 cm, which is not negligible.

B. Single classical particle in the drop capsule

1. Transformation from inertial to tower coordinates

Now, let us get back to the harmonically trapped particle
at r inside the drop capsule � and consider its motion with
respect to the rotating base of the tower at R analogous to
Eq. �18�. In this case, coordinates and velocities are given by

r = M�t�r̄ = M�t��r̄� + R̄� , �87�

ṙ = M�t��ṙ̄� + �̄#� r̄� . �88�

Note that this description refers to the tower coordinates.
The trap rests in the drop capsule, which is moving on the

classical trajectory given by Eq. �82�. From the Lagrangian
in the inertial frame, Eq. �13�, we obtain the Lagrangian for
the particle coordinates relative to the base of the drop tower:

L̄sp� �r̄�, ṙ̄�,t� = m1

2
�ṙ̄� + �̄#� r̄�2 − Vt„M�t��r� − �̄��,t…

− Vg„M�t��r̄� + R̄�,t…� . �89�

The total Lagrangian, which includes the Lagrangians both
of the drop capsule as well as the single trapped particle,
reads

L̄� = L̄c� + Lsp� , �90�

with L̄c� as defined in Eq. �76�. The linear canonical momen-
tum is

p̄� =
�L̄sp

�ṙ̄�
= m�ṙ̄� + �̄#� r̄� , �91�

and thus one finds for the Hamiltonian

H̄sp� �r̄�,p̄�,t� =
p̄�2

2m
+ Vt„M�t��r̄� − �̄��,t…

+ Vg„M�t��r̄� + R̄�,t… − p̄���̄#� r̄� .

�92�

Then Hamilton’s equations of motion read

ṙ̄� =
�H̄sp�

�p̄�
=

p̄�

m
− �̄#� r̄ , �93�

ṗ̄� = −
�H̄sp�

�r̄�
= −

�

�r̄�
�Vt + Vg� + p̄� � �̄#, �94�

correspondingly. Finally, Newton’s equation is given by

r̈̄� = −
�

�r̄�
�Vt„M�t��r̄� − �̄��,t… + Vg„M�t��r̄� + R̄�,t…�

− �̄#� ��̄#� r̄� − 2�̄#� ṙ̄�. �95�

If we expand the gravitational potential up to second order,
we obtain

r̈̄� = − 2�̄#� ṙ̄� − ḡ��̄� −
�

�r̄�
V̄
ˇ

t�r̄� − �̄�,�̄,t�

= − 2�̄#� ṙ̄� − v̌̄�2���̄,t��r̄� − r̄eq� �t�� . �96�

As in the nonrotating situation of Sec. II B 3, we get an
equilibrium position r̄eq� �t�, which is defined by

v̌̄�2���̄,t�r̄eq� �t� = − ḡ��̄� + v̌̄�2���̄,t��̄�, �97�

and a modified, appropriately rotated harmonic trapping po-
tential

v̌̄�2���̄,t� = v̄t
�2��t� + v̄g

�2���̄,t� + v̄c
�2�, �98�

v̄t
�2��t� = M�t�Tvt

�2��t�M�t� , �99�

V̄
ˇ

t��,�̄,t� =
1

2
�� � �� · v̌̄�2���̄,t� . �100�

The equilibrium position r̄eq� �t� is governed by the trajectory
of the drop capsule �̄�; however, there is a gravitational sag.

2. Hamiltonian formulation of the canonical transformation
from tower to capsule coordinates

In order to obtain the classical Hamiltonian of a single
trapped particle in capsule coordinates, we introduce the ca-
nonical transformation

G�r̄�,p�,t� = �M„r̄� − �̄��t�…�p� +
m

M
�s̄��t� + r̄��̄��t�� ,

�101�

which yields

r� =
�G

�p�
= M„r̄� − �̄��t�… , �102�

p̄� =
�G

�r̄�
= MT�t�p� +

m

M
�̄��t� . �103�

In this particular gauge, the one-particle Hamiltonian is
given by

Hsp� �r�,p�,t� = H̄sp� �r̄�,p̄�,t� +
�

�t
G�r̄�,p�,t�

=
p�2

2m
+ mṼt�r�,�,t� . �104�

provided the equations for the capsule, Eqs. �80� and �81�,
are satisfied and s̄��t , t0� is an action,
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s̄��t,t0� = �
t0

t

dt�Lc�	��̄�, �̇̄�,t� − �̄��̄�	t0
t . �105�

Obviously, this Hamiltonian is identical to Eq. �35�.

C. Many identical atoms in the drop capsule

1. Frame transformations between tower and capsule
coordinates

The calculations of Sec. III excluded the effects of rota-
tion. In here, we will rectify this and obtain a general frame
transformation that eliminates external forces and torques
from Schrödinger’s equation. In particular, this is applied to
the problem of gravitational acceleration and Earth’s rota-
tion.

We have already introduced the generic many-particle
Hamiltonian with translationally invariant, binary interac-
tions in Eq. �44�. However, we have not exploited the fact
that only the s partial wave contributes to the two-particle
scattering at low energies. Thus, we want to assume that the
relative angular momentum is a good quantum number. This
can be modeled by an interatomic potential that is only a
function of the relative distance, Vp�	�	�. In the case of fer-
mionic particles, this means there is no s-wave interaction
due to the Pauli exclusion principle and the gas becomes
ideal at low energies.

Let us start with the full many-particle Hamiltonian

H̄
ˆ
� = H̄

ˆ
sp� �t� + V̄

ˆ
p� ,

V̄
ˆ

p� =
1

2
� d6r̄�â†�r̄1��â

†�r̄2��V̄p��	r̄1� − r̄2�	�â�r̄2��â�r̄1�� ,

�106�

in the drop tower frame.
Now, we have to transform the Schrödinger state from the

drop tower frame, 	��t��, to the rest frame of the drop cap-

sule, 	��t��= Û�t�	��t���. This requires to augment the uni-
tary frame transformation from Eq. �46� of Sec. III B,

Û�t� = ÛS̄��t�ÛP̄��t�ÛR̄��t�ÛM�t�
† , �107�

ÛM�t� = e−i/�Q�t�L̂e−i/��e3L̂e−i/��e2L̂. �108�

There, we performed the same rotations as in Eq. �68�, and in
particular, the diurnal rotation around the Earth axis, Q�t�
=�t, is accounted for. Moreover, we would like to point out
again that we transform from the drop tower frame, which is
corotating with the Earth, to the instantaneous rest frame of
the drop capsule, which is not rotating. Therefore we need to

apply ÛM�t�
† rather than ÛM�t�.

The transformation rule for the Hamilton operator was
given in Eq. �48� and consists of three contributions. The first
one contains merely the gauge contributions that arise from
the time-dependent frame parameters

Û†�t��− i�
d

dt
�Û�t� = �S̄˙� + P̄˙ �R̄��N̂ + P̄˙ ��MTR̂�

− R̄˙
��MTP̂� + �#L̂ . �109�

For obtaining this result, we have used the basic equations
�42�, �B22�, and �B23�. The second contribution is the trans-
formed single-particle Hamiltonian

Û†�t�H̄ˆ sp� �t�Û�t� =� d3r�â†�r��

�H̄sp� �MTr� + R̄�,MTp� + P̄�,t�â�r�� .

�110�

Finally, the third contribution is simply the transformed bi-

nary interaction potential Û†�t�V̄ˆ p�Û�t�= V̄
ˆ

p�� V̂p. It is left un-
changed due to particle conservation, the local character of
the potential, as well as the translational and rotational

invariance—i.e., �N̂ , V̂p�= �R̂ , V̂p�= �P̂ , V̂p�= �L̂ , V̂p�=0.
Combining these results, we find the transformed Hamil-

tonian in the accelerated and nonrotating frame as

Ĥ��t� =� d3r�â†�r��Hsp� �r�,p�,t�â�r�� + V̂p. �111�

All gauge contributions are contained in the definition of the
modified single-particle Hamiltonian

Hsp� �r�,p�,t� = H̄sp� �MTr� + R̄�,MTp� + P̄�,t� + S̄
˙
� + P̄˙ �R̄�

+ P̄˙ ��MTr�� − R̄˙
��MTp�� + p���#� r�� .

�112�

2. Application of the frame transformation to the many-particle
Hamiltonian in harmonic approximation

We will now apply the considerations of the previous sub-
section to the falling trapped interacting many-particle sys-
tem in the rotating frame. The single-particle Hamilton op-
erator follows from the classical considerations of Eq. �92�
and is given by

H̄sp� �r̄�,p̄�,t� =
p̄�2

2m
+ Vt�M�t��r̄� − �̄��,t�

+ Vg„M�t��r̄� + R̄�,t… − p̄���̄#� r̄� .

�113�

By splitting the transformed Hamiltonian from Eq. �112� into
constant, linear, and quadratic contributions in terms of the
position r� and the momentum p�, as well as disregarding
third-order corrections, one obtains the single-particle
Hamiltonian in the accelerated frame,
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Hsp� �r�,p�,t� =
p�2

2m
+ mṼt�r�,MR̄� + R,t� , �114�

provided the frame parameters as well as the center of mass

of the drop capsule �R̄��t� ,P̄��t� , �̄��t�� satisfy the classical
equations of motion

�̄� =
�L̄c�

��̇̄�
= M��̇̄� + �̄#� �̄�, �̇̄� =

�L̄c�

��̄�
, �115�

P̄� =
�L̄sp�

�R̄˙
�

= m�R̄˙
� + �̄#� �R̄� + R̄��, P̄˙ � =

�L̄sp�

�R̄�
.

�116�

With Eqs. �115� and �116�, we have recovered the Lagrang-

ian L���̄� , �̇̄� ,R̄� ,R̄˙
� , t� of Eq. �90� and one can express the

accrued dynamical phase as an action integral

S̄��t,t0� = �
t0

t

dt�L̄sp� �R̄�,R̄˙
�,t�� − 	P̄�R̄�	t0

t . �117�

V. TWO-COMPONENT ATOMIC GAS

Let us now consider identical atoms with two internal
electronic degrees of freedom. In this section, we would like
to demonstrate that the dynamics of these internal states de-
couples from the external motion of the trapped falling ultra-
cold quantum gas, even in case of binary collisions, if the
self-scattering and the cross-component scattering properties
are identical.

A. Description in second quantization

Henceforth, the inclusion of two degrees of freedom for
the inner states in the definition of the field operators is re-
quired. These operators are denoted by â��r�, �� �1,2�, and
satisfy the commutation or anticommutation relation ���

�â��r1�, â�
†�r2���+� = 	��	�r1 − r2� . �118�

The pair potential V̂p, which is assumed to be local and ex-
hibits translational and rotational invariance, can be written
as

V̂p =
1

2
� d6r �

�1,. . .,�4=1

2

Vp
�1�2�3�4�	r1 − r2	�

�â�1

† �r1�â�2

† �r2�â�3
�r2�â�4

�r1� . �119�

The elements of Vp
�1�2�3�4 are linked to the self-species and

cross-component scattering lengths of the atom in the differ-
ent states. In 87Rb these quantities are—to a good
approximation—all equal, with a deviation of 3%–4% �53�,
so we can neglect the higher-multipole contributions beyond
the monopole �J=0� term Vp

�1�2�3�4 �	�1�3
	�2�4

	�1�2
Vp

�J=0�.

This leaves us with writing V̂p approximately as

V̂p =
1

2
� d6r�

�,�
â�

† �r1�â�
†�r2�Vp

�0��	r1 − r2	�â��r2�â��r1�

=
1

2
� d6r n̂�r1��n̂�r2� − 	�r1 − r2��Vp

�0��	r1 − r2	� .

�120�

We made use of Eq. �118� and introduced the total particle
density

n̂�r� � �
�=1

2

â�
† �r�â��r� . �121�

We would like to point out that due to our assumptions V̂p is
now SU�2� invariant �54�.

The two internal states can be coupled by a classical,
traveling-wave laser field via electric-dipole interaction �55�.
The strength of the coupling is determined by the Rabi fre-
quency ��t�, which may be time dependent if the laser is
pulsed. ��t� denotes the, possibly time-dependent, detuning
of the laser with respect to the resonant transition between
the two levels. We want to consider large detunings in order
to neglect any mechanical recoil effects of the laser on the
atoms and, as usual, we have switched to an interaction pic-
ture oscillating with the laser frequency �55�.

In order to describe the dipole interaction of identical par-
ticles in the language of second quantization, we introduce
the operators

Ŝi = �
�,�=1

2 � d3r â�
† �r�s��

�i� â��r� , �122�

with the well-known spin-1 /2 matrices s�i�, i� �1,2 ,3�, Ap-
pendix B. Explicitly, the operators read

Ŝ1 =
�

2
� d3r �â2

†�r�â1�r� + â1
†�r�â2�r�� , �123�

Ŝ2 = i
�

2
� d3r �â2

†�r�â1�r� − â1
†�r�â2�r�� , �124�

Ŝ3 =
�

2
� d3r �â1

†�r�â1�r� − â2
†�r�â2�r�� . �125�

These operators fulfill the commutation relations of the an-
gular momentum operators for spin-1 /2 particles and there-
fore represent the SU�2� symmetry. In other words, the prop-
erties of the Pauli matrices translate to the picture of the
second quantization. Clearly, the angular momentum algebra

�Ŝi, Ŝj� = i�ijkŜk �126�

holds. All the operators R̂, P̂, and L̂ commute with Ŝi, i.e.,

�Ŝi,N̂� = �Ŝi,R̂� = �Ŝi,P̂� = �Ŝi,L̂� = 0. �127�

Note that the definition of operators N̂, R̂, P̂, and L̂ has to
be modified, taking into account the two different internal
states, i.e.,
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Â = �
�=1,2

� d3r â�
† �r�Aâ��r� , �128�

where Â� �N̂ , R̂ , P̂ , L̂� and A� �1,r ,p ,r�p�.
We are now able to write down the full many-body

Hamiltonian, containing the one-particle, external dynamics

�Ĥsp�, the one-particle internal two-level dynamics �V̂d�, de-
scribing the interaction between matter and light, and the

two-particle collisions �V̂p�,

Ĥ = �Ĥsp + V̂d� + V̂p. �129�

Here,

Ĥsp = �
�=1,2

� d3r â�
† �r�Hsp�r,p�â��r� . �130�

Hsp can be chosen as in Eq. �92�, and V̂d is given by

V̂d = V̂d�t� = ��t�Ŝ1 + ��t�Ŝ3. �131�

B. Separation of two-level dynamics and center-of-mass
motion

The dynamics of the many-particle system is determined
by the Schrödinger equation

i��t	��t�� = Ĥ	��t�� , �132�

with Ĥ from Eq. �129�. As we have seen in the preceding
sections, a more efficient description of the dynamics can be
obtained by performing a frame transformation. In the
present case, we have to account for both external and inter-
nal dynamics. Therefore, it would be favorable to separate
both types of motion from each other. We choose

	��t�� = ÛdÛS̄��t�ÛP̄��t�ÛR̄��t�ÛM�t�
† 	��t���; �133�

cf. Eq. �107� and Ûd=T exp�− i
�
t0

t dt�V̂d�t���. The latter
transformation formally eliminates the two-level dynamics,

since it cancels the contribution V̂d. The decoupling of the

transformation Ûd from the remaining frame transformation

results from the fact that �V̂d , Ĥsp+ V̂p�=0, due to Eq. �127�
as well as the SU�2� invariance of V̂p; cf. preceding subsec-

tion. In principle, the propagator Ûd can be determined from
the two linearly independent solutions of the time-dependent
Rabi problem �56–58�.

VI. CONCLUSIONS AND OUTLOOK

We have described the dynamics of an ultracold quantum
gas in a long-distance free-fall experiment. Starting from the
classical mechanics of the drop capsule and a single trapped
particle, we developed a quantum field theoretical descrip-
tion of a trapped, interacting degenerate quantum gas in a
drop experiment in an inertial frame, the corotating frame of
the Earth and the comoving frame of the drop capsule. By
introducing suitable coordinate transformations, it was pos-

sible to eliminate noninertial forces and to focus on effects
that take place on the mesoscopic length scale of the Bose or
Fermi gas. The exact cancellation of noninertial forces re-
quires translational invariance, the isotropy of the binary col-
lisional potential, and the presence of a quadratic single-
particle Hamiltonian. This is well satisfied for 87Rb, and the
harmonic approximation of the gravitational potential around
the center of mass of the BEC wave packet is an excellent
assumption. Corrections to it could be easily calculated per-
turbatively.

If the atoms are two-level systems and coupled by an
off-resonant traveling-wave laser field, this internal dynam-
ics can be separated from the external motion, provided all
scattering lengths are identical �SU�2� invariance�.

This formalism provides us with an efficient way to de-
scribe free-fall experiments, especially for numerical studies.
It almost goes without saying that it is in particular valid and
useful on the mean-field level.

While we have discussed the Euclidean transformations
corresponding to translation and rotation, we have omitted
the scaling transformations �34,50–52�, which are very use-
ful to model the evolution of a BEC under variations of the
confining trap potential. The consideration of the complete
set of generalized canonical transformations in a time-
dependent way will ultimately separate all “trivial” dynam-
ics, including wave-packet spreading, from the essential
many-particle physics. This is work in progress. We have
also not touched questions of relativity. This was done by
intention in order to clarify all nonrelativistic effects first,
which by themselves are highly nontrivial and presumably
dominant.
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APPENDIX A: TAYLOR EXPANSION OF THE
GRAVITATIONAL POTENTIAL

The Taylor expansion of the gravitational potential,

Vg�r� + �,t� = 1 + r�
�

��
+

1

2!
�r�

�

��
�2

+ ¯ �Vg��,t�

= Vg��,t� + Vg
�1��r�,�,t� + Vg

�2��r�,�,t�

+ 	Vg
�3��r�,�,t� , �A1�

around the center of mass of the wave packet defines a gra-
dient field, Eq. �26�, and a symmetric Hessian tensor, Eq.
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�27�, and the remainder forms a residual potential

	Vg
�3��r�,�� = �

i=3

�

Vg
�i��r�,�� , �A2�

which starts off with a leading third-order correction as

Vg
�3��r�,�� =

1

3!
�r� � r� � r�� · vg

�3���� ,

vg
�3���� =

�

��
�

�

��
�

�

��
Vg��� . �A3�

In order to obtain estimates for the Taylor coefficients at
the surface of the Earth, we use the isotropic gravitational
potential and its derivatives:

Vg�r� = −
GM#

r
,

dn

drnVg = �− 1�n+1n!
GM#
rn+1 . �A4�

Now, if this potential is expanded around a point �, we ob-
tain the well-known multipole expansion in terms of scalar,
dipolar, and quadrupolar components:

Vg�r� = Vg�	r� + �	� = Vg��� + r�
�

�

dVg

d�

+
1

2
�r� � r��1

1

�

dVg

d�
+

� � �

�2 �d2Vg

d�2 −
1

�

dVg

d�
��

= Vg����1 −
r��

�2 +
1

2
�r� � r��3

� � �

�4 −
1

�2�� .

�A5�

APPENDIX B: STATIC REPRESENTATION OF STATES
UNDER TRANSLATION AND ROTATION

We will briefly summarize the transformation rules of
wave functions under spatial translations and rotations of the
coordinate system �46,59–62�.

1. Euclidean space

The basic operation of a translation in space is given by

TR�r� = r + R �B1�

and forms an Abelian group—i.e., TR1
TR2

=TR1+R2
. Each el-

ement of this continuous Lie group is indexed by a three-
dimensional vector R.

A rotation around an axis Q is denoted by MQ. The set of
all those isometric, linear transformations forms the Lie
group SO�3�, which excludes the possibility of reflections.
The entirety of operations establishes the Euclidean group
and a particular element is denoted by

r� = TR�MQr� = MQr + R . �B2�

If we represent the basic position vector in Cartesian coordi-
nates as r=�i=1

3 riei, then one finds a three-dimensional or-
thogonal rotational matrix

MQr = e−i/�Q�r = r + Q � r + ¯ . �B3�

The angular momentum matrices �L=1� �i=1,2,3 satisfy the
angular momentum algebra �55� of Eq. �39�. In a Cartesian
basis, the matrix representation is ��l� jk=−i�ljk or explicitly

�1 = ��0 0 0

0 0 − i

0 i 0
�, �2 = �� 0 0 i

0 0 0

− i 0 0
� , �B4�

�3 = ��0 − i 0

i 0 0

0 0 0
� . �B5�

For L=1 /2, the spin matrices s�i�=� /2��i� are given by

��1� = �0 1

1 0
�, ��2� = �0 − i

i 0
�, ��3� = �1 0

0 − 1
� .

�B6�

2. Single-particle Hilbert space

The action of the translational operator UR=e−i/�Rp in
single-particle Hilbert space can be seen most clearly by ap-
plying it to position eigenstates:

	r�� = UR	r� = 	TR�r�� = 	r + R� . �B7�

Obviously, the operation UP=ei/�Pr is just a boost in mo-
mentum space when acting on momentum eigenstates, i.e.,

	p�� = UP	p� = 	TP�p�� = 	p + P� . �B8�

The unitary representation of the rotation, UQ=e−i/�Ql, is in-
duced by the angular momentum operator l of Eq. �39�.
When acting on position as well as momentum eigenstates,
one gets

	r�� = UQ	r� = 	MQr� , �B9�

	p�� = UQ	p� = 	MQp� . �B10�

Thus, a representation of a general element of the Euclidean
group in Hilbert space is

U = USUPURUQ, US = ei/�S. �B11�

This definition of a general group element is not unique, but
admits the inclusion of an arbitrary phase factor US, such
that the transformed position state reads

	r�� = U	r� = ei/��S+P�MQr+R��	MQr + R� . �B12�

Such a ray representation will become physically important
when considering the dynamic evolution of a quantum state,
and the accumulated phase will reflect the classical action.

If the unitary operators act on the Heisenberg position and
momentum operator, we find

UR
† r UR = r + R, UP

† pUP = p + P , �B13�

UQ
† rUQ = MQr, UQ

† pUQ = MQp . �B14�
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Note that we have suppressed here extraneous carets to
distinguish them from ordinary vectors in Euclidean space.

3. Many-particle Fock space

In the course of our calculations, we make use of some
more basic commutator relations

�â�r�,N̂� = â�r�, �â�r�,R̂� = râ�r� , �B15�

�â�r�,P̂� = pâ�r�, �â�r�,L̂� = lâ�r� . �B16�

They induce the unitary representations of the translational
and rotational group

ÛS = ei/�SN̂, ÛP = ei/�PR̂, �B17�

ÛR = e−i/�RP̂, ÛQ = e−i/�QL̂, �B18�

and we obtain again a representation of the group operations

ÛS
† â�r�ÛS = US â�r�, ÛP

† â�r�ÛP = UP â�r� , �B19�

ÛR
† â�r�ÛR = UR â�r� = â�TR

−1r� = â�r − R� , �B20�

ÛQ
† â�r�ÛQ = UQ â�r� = â�MQ

−1r� , �B21�

as well as

ÛR
† R̂ÛR = R̂ + RN̂, ÛP

† P̂ÛP = P̂ + PN̂ , �B22�

ÛQ
† R̂ÛQ = MQR̂, ÛQ

† P̂ÛQ = MQP̂ . �B23�

APPENDIX C: CLASSICAL TRAJECTORY OF THE DROP
CAPSULE IN A ROTATING FRAME

In Sec. IV, the free-fall experiment in a rotating frame is
discussed. A sketch of the physical situation is given in Fig.
6. � and � are linked via

tan � =
b

a
tan � . �C1�

The classical trajectory of the drop capsule in the rotating
frame of the Earth is given by

�̄x��t� = ḡ sin � cos � � t2

2
−

1 − cos�2�#t�
4�#

2 � , �C2�

�̄y��t� = ḡ
sin �

2�#
�t −

sin�2�#t�
2�#

� , �C3�

�̄z��t� = h −
ḡ

2
t2 + ḡ sin2 � � t2

2
−

1 − cos�2�#t�
�#

2 � , �C4�

where �#= 	�̄#	 and ḡ= 	ḡ	. ���t� solves Eq. �83�, if the
capsule is released with the initial conditions ���t=0�
= �0,0 ,h�T, �̇̄��t=0�=0, and if the centrifugal term is ne-
glected.

The rotation matrix MQ evolves around the axis �# with
an angle Q=�t �see Fig. 6�. Explicitly, it is given by

MQ = �cos Q cos � − sin Q cos Q sin �

sin Q cos � cos Q sin Q sin �

− sin � 0 cos �
� . �C5�
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