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Abstract. Josephson junctions (JJs) and junction arrays are well-studied
devices in superconductivity. With external magnetic fields one can modulate the
phase in a long junction and create traveling, solitonic waves of magnetic flux,
called fluxons. Today, it is also possible to devise two different types of junctions:
depending on the sign of the critical current densityjc≷ 0, they are called 0- or
π -junctions. In turn, a 0–π junction is formed by joining two of these junctions.
As a result, one obtains a pinned Josephson vortex of fractional magnetic flux,
at the 0–π boundary. Here, we analyze this arrangement of superconducting
junctions in the context of an atomic bosonic quantum gas, where two-state
atoms in a double well trap are coupled in an analogous fashion. There, an
all-optical 0–π JJ is created by the phase of a complex valued Rabi frequency
and we derive a discrete four-mode model for this situation, which qualitatively
resembles a semifluxon.
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1. Introduction

During the past two decades, the field of cold atomic gases has come a long way starting from
almost lossless trapping and cooling techniques [1] to reaching quantum degeneracy of bosons
and fermions [2]. Many phenomena that are the hallmarks of condensed matter physics, whether
in superfluid or superconducting materials [3], are revisited within this novel context. Due to the
remarkable ease with which it is possible to isolate the key mechanisms from rogue processes,
one can clearly identify phase transitions, for example, Bose–Einstein condensation (BEC),
the Mott phase transition or the BEC–BCS crossover. Today however, degenerate gases are
still at a disadvantage if we consider robustness, portability or the ability for mass production
compared to solid-state devices, which is a great achievement of the semiconductor industry.
Strong attempts to miniaturize cold gas experiments ([4]; [5] and references therein) and to
make them portable [6]–[9] are currently under way in many laboratories.

Due to the great importance and practical relevance of the Josephson effect to
superconducting systems [10]–[12], it also received immediate attention after the first
realization of BECs [13]–[26] and superfluid atomic fermions [27], more recently. In particular,
the combination of optical lattices with ultracold gases [28, 29] has boosted the possibilities of
investigating junction arrays experimentally. Remarkably, even the absence of phase-coherence
between neighboring sites can lead to interference as demonstrated in [30]. The possibility of
studying atomic Josephson vortices in the mean field description was raised first in connection
with the sine-Gordon equation [31, 32].

In the present paper, we will report on such a transfer of concepts from a superconducting
device [33], i.e. in various realizations of Josephson junction (JJ) arrays and their unusual state
properties of traveling (fluxons) and pinned (semifluxons) magnetic flux quanta, to an analogous
set-up for neutral bosonic atoms in a trap. In particular, we will investigate an all-optical 0–π JJ
that can be created with a jumping phase of an optical laser.

This paper is organized as follows: in section2, we give a brief review of the current status
of the superconductor physics of JJs. In particular, we refer to the most relevant publications in
this thriving field of fluxon and semifluxon physics; in section3, we discuss a similar set-up,
which allows us to find a pinned semifluxon in an atomic 0–π JJ and we compare the results.
Finally, we discuss further open questions in section4.
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2. Fluxons and semifluxons in superconductivity

The Josephson effect is a well-established phenomenon in solid-state physics. A JJ consists of
two weakly coupled superconducting condensates. JJs are usually fabricated artificially using
low- or high-Tc superconducting electrodes separated by a thin insulating (tunnel), normal
metal, or some other (exotic) barrier. JJs can also be present intrinsically in an anisotropic
layered high-Tc superconductor such as Bi2Sr2Ca1Cu2O8 [34, 35].

The dc Josephson effect (flow of current through a JJ without producing a voltage drop, i.e.
without dissipation) is expressed using the first Josephson relation, which in the simplest case
has the form

Is = Ic sin(φ), (1)

where Is is the supercurrent flowing through the junction,Ic is the critical current, i.e. the
maximum supercurrent which can pass through the JJ, andφ = θ2 − θ1 is the difference between
the phases of the quantum mechanical macroscopic wavefunctionsψ1,2 =

√
nseiθ1,2 of the

superconducting condensates in the electrodes.
Recent advances in physics and technology allow the fabrication and study of the so-

called π -JJs—junctions which formally have negative critical currentIc < 0. This can be
achieved by using a ferromagnetic barrier, i.e. in superconductor–ferromagnet–superconductor
(SFS) [36]–[40] or superconductor–insulator–ferromagnet–superconductor (SIFS) [41, 42]
structures. One can also achieve the same effect using a barrier which effectively flips the spin
of a tunneling electron, e.g. when the barrier is made of a ferromagnetic insulator [43], of a
carbon nanotube [44] or of a quantum dot created by gating a semiconducting nanowire [45].

The change in the sign of a critical current has far-reaching consequences. For example,
analyze the Josephson energy (potential energy related to the supercurrent flow). In a
conventional JJ withIc > 0,

U (φ)= EJ(1− cosφ) (2)

and has a minimum atφ = 0 + 2πn (the ground state), whereEJ =80Ic/2π is the Josephson
energy. IfIc < 0, we defineEJ =80|Ic|/2π > 0 and

U (φ)= EJ(1 + cosφ). (3)

Obviously, the minimum of energy is reached forφ = π + 2πn. Thus, in the ground state (the
JJ is not connected to a current source, no current flows through it), the phase drop across a
conventional JJ withIc > 0 isφ = 0 + 2πn, while for a junction withIc < 0 it is φ = π + 2πn.
Therefore, one speaks about ‘0-JJs’ and ‘π -JJs’.

Further, connecting the two superconducting electrodes of aπ -JJ by a not very small
inductor L (superconducting wire), the supercurrent∝ π/L will start circulating in the loop.
Note that this supercurrent is spontaneous, i.e. it appears by itself, and has a direction randomly
chosen between clockwise and counterclockwise [46]. The magnetic flux created by this
supercurrent inside the loop is equal to80/2, where80 = h/2e≈ 2.07× 10−15 Wb is the
magnetic flux quantum. Thus, theπ -JJ works as aphase battery. This phase battery will work as
described, supplying a supercurrent through the loop with the inductor, provided the inductance
L �80/Ic. If the inductanceL is not that large, the battery will be overloaded, providing a
smaller phase drop and supporting smaller current. For very small inductance the battery will
stop working completely.
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Figure 1. Sketch of a 0–π JJ and profiles of (a) the phaseφ(x), (b) the
magnetic field∝ dφ(x)/dx and (c) the supercurrent densityjs(x)∝ sinφ(x)
corresponding to a semifluxon (blue/light gray) and antisemifluxon (pink/dark
gray). The gray shading in subplot (a) represents the Josephson (potential)
energies of equations (2) and (3), where dark is low and light means high values.

Similar effects can be observed in aπ dc superconducting quantum interference device
(SQUID; one 0-JJ, oneπ -JJ and an inductorL connected in series and closed in a loop) or in
0–π JJ. Let us focus on the latter case.

Consider a long (alongx) Josephson junction (LJJ) one half of which atx < 0 has the
properties of a 0-JJ (critical currentdensity jc > 0) and the other half atx > 0 has the properties
of a π -JJ (critical currentdensity jc < 0). Long means that the length is much larger than the
so-called Josephson lengthλJ, which characterizes the size of a Josephson vortex; typically
λJ ∼ 10–20µm. What will be the ground state of such a 0–π LJJ? It turns out that if the junction
is long enough (formally infinitely long), then far away from the 0–π boundary situated at
x = 0, i.e. atx → ±∞, the phaseφ will have the values 0 or±π (we omit 2πn here), while
in the vicinity of the 0–π boundary the phaseφ(x) smoothly changes fromφ(−∞)= 0 to
φ(+∞)= ±π , see figure1(a). The exact profile can be derived analytically [33, 47, 48]. Since
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the phase bends, the local magnetic fieldH ∝ dφ/dx will be localized in the vicinity of the 0–π
boundary and carry the total flux equal to±80/2, see figure1(b). The sign depends on whether
the phase bends fromφ(−∞)= 0 to φ(+∞)= +π or to φ(+∞)= −π . Thus, such an object
is called a semifluxon or an antisemifluxon. If one analyzes the Josephson supercurrent density
flowing though the barrierjs(x)= jc(x)sinφ(x), one can see in figure1(c) that the supercurrent
has different directions on different sides of the 0–π boundary. Since we do not apply any
external current, the flow of current should close in the top and bottom electrodes, i.e. the
supercurrent circulates (counter)clockwise in the case of (anti)semifluxon. Thus,a semifluxon
is a Josephson vortex of supercurrent. It is pinned at the0–π boundary and has two degenerate
ground states with the localized magnetic field carrying the flux±80/2.

Semifluxons in various types of JJs have been actively investigated during the last few
years. In fact, the first experiments became possible because of a deeper understanding of
the symmetry of the superconducting order parameter in cuprate superconductors. This order
parameter with so-called d-wave symmetry is realized in anisotropic superconductors, such as
YBa2Cu3O7 or Nd2−xCexCuO4. It allowed the fabrication of 0–π grain boundary LJJs [49, 50]
and, later, more controllable d-wave/s-wave ramp zigzag JJs [51, 52] and the ability to directly
see and manipulate semifluxons using a SQUID microscope [53, 54].

Semifluxons are very interesting nonlinear objects: they can form a variety of ground
states [55]–[58], may flip [49, 53] emitting a fluxon [57, 59, 60], or be rearranged [61] by
a bias current. Huge arrays of semifluxons were realized [53] and predicted to behave as
tunable photonic crystals [62]. Semifluxons are also promising candidates for storage devices
in the classical or quantum domain and can be used to build qubits [63] as they behave like
macroscopic spin 1/2 particles.

Now, an interesting question arises: can one realizeπ or even 0–π JJs in an atomic
BEC? In the latter case, the degenerate ground state corresponding to a semifluxon should
have a nontrivial spatial phase profile and semifluxon physics can also be studied using BEC
implementation.

3. Semifluxons in BECs

Here, we will address this question and examine a configuration where the two-state atoms are
trapped in a quasi-one-dimensional (1D) cigar-shaped trap with an additional superimposed
double-well potential in the longitudinal direction. The spatial localization of the two-state
atoms inside the double-well potential leads to two internal atomic JJs that are driven via an
optical, complex valued ‘0–π ’ laser field and they are motionally connected via tunneling.

First, we will present details of the model and introduce the Hamiltonian of the system.
Then, we will examine the classical limit of the field theory and study the ground state of the
Gross–Pitaevskii equation. Finally, we will exploit the fact that the spatial wavefunctions are
localized inside a deep double well and study a simple four-mode quantum model derived from
a Wannier basis state representation.

3.1. 0–π -junction in a BEC

To model the 0–π -junction [31, 32] in a BEC, we are guided by the condensed matter physics
set-up depicted in figure2 and replace the two superconductors by an atomic two-level BEC
in a cigar-shaped trap. The two states of the atom, i.e. the excited state|e〉 and ground state
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(b)(a)
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x

V (x)

Ω0(x)
2δ

π0
ψe

ψg

Figure 2. Analogy of a 0–π JJ in a superconductor (a) with an atomic two-level
BEC (b) in a double well trapV(x) with a position dependent Rabi frequency
�0(x). The excited atomic level|e〉 is separated from the ground level|g〉 by the
detuning 2δ.

|g〉, couple via a position-dependent Rabi frequency�0(x), which exhibits a phase jump at the
origin of thex-axes

�0(x)=

{
�0, x < 0,
�1 = −�0, x > 0.

(4)

In this quasi-1D scenario, we will represent the two-state atoms by a spinorial bosonic
quantum field9̂, which satisfies the commutator relation

[9̂(x), 9̂†(y)] = 11δ(x − y). (5)

This field can be decomposed in any complete single particle basis|σ, l 〉, which resolves the
spatial extent of the field and the internal structure of the atoms, i.e.

9̂ =

∑
σ={e,g}

∞∑
l=0

|σ, l 〉 âσ,l (6)

and we denote the corresponding discrete bosonic field amplitudes byâσ,l . Here,σ characterizes
the internal states by(e, g) and the external motion in the double-well potential by a quantum
labell . The dynamical evolution of the atomic field is governed by the following Hamiltonian:

Ĥ =

∫
∞

−∞

dx 9̂†(x)

[
−∂2

x + V(x)+

(
δ �0(x)

�∗

0(x) −δ

)]
9̂(x)

+g9̂†
e(x)9̂

†
e(x)9̂e(x)9̂e(x)+ g9̂†

g(x)9̂
†
g(x)9̂g(x)9̂g(x). (7)

Here, we use dimensionless units, in particular we have seth̄ = 1 and the mass of the atom
m = 1. The energy consists of the single particle energy in a trapV(x), which is identical for
both species, the electric dipole interaction of the two-state atom [64], as well as a generic
collision energy proportional to the coupling constantg = gee= ggg. To simplify the analysis,
we have deliberately set the cross-component scattering lengthgeg = 0. No unaccounted loss
channels are present. Therefore, we have number conservation

[ Ĥ , N̂] = 0, (8)
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as a symmetry. If we denote a generic state of the many-particle system in Fock space by

|ψ(t)〉 =

∞∑
n=0

ψn(t)|n = (n0,n1, . . .)〉, (9)

then one can obtain the dynamics of the system most generally from the Lagrangian formulation

L[ψn(t), ψ̇n(t)] = 〈ψ(t)|i∂t − Ĥ |ψ(t)〉. (10)

In field theory, the canonical momentum is given byπn = δL/δψ̇n = iψ∗

n . From the Hamilton
equation ˙πn = δL/δψn, one recovers the conventional Schrödinger equation in Fock space

i∂t |ψ〉 = Ĥ |ψ〉. (11)

The Lagrangian approach is obviously a central concept in the path integral formulation of
quantum mechanics [65]. However, it is also of great utility in the approximate description
of the dynamics if we connect it with concepts of classical mechanics as we will see in the
following.

3.2. Spatially extended classical model: the Gross–Pitaevskii equation

The classical limit of the field equations [2] can be recovered quickly by approximating the state
of the system by a coherent state

9̂σ (x)|ψ〉 = ψσ (x)|ψ〉. (12)

Within this approximation, we obtain from the Lagrangian of equation (10) the two-component
Gross–Pitaevskii equationψ = (ψe(x, t), ψg(x, t))>

i∂tψ =

[
−∂2

x + V(x)+

(
δ + 2g|ψe|

2 �0(x)
�∗

0(x) −δ + 2g|ψg|
2

)]
ψ. (13)

For a macroscopically occupied field this equation models the spatial evolution of the coupled
JJs very well [17]–[21], [23]–[25], [32].

3.3. Discrete quantum model: two coupled JJs

To gain more insight into the quantum properties of the ground state of the system [63], one
can decompose the atomic field into its principal components and disregard small corrections.
Recently, the use of Wannier basis states [66] was popularized in a seminal article of Jakschet al
[67] to derive a Bose–Hubbard model for atoms in optical lattices.

In our situation, we want to consider a double-well potential as the limiting case of a
periodic lattice. While even and odd parity modes relate to delocalized Bloch states in a periodic
system, left and right localized modes, i.e.ϕ0 and rightϕ1, resemble the Wannier basis. No
particular emphasis is given to the shape of the double-well potential. Therefore, we simply
construct even and odd parity Bloch states from displaced Gaussians. By a further orthogonal
transformation, we have obtained the localized Wannier modes, which are depicted in figure3.
With respect to these basis states, we can approximate the field with four modes

9̂e(x)= ê0ϕ0(x)+ ê1ϕ1(x)+ δ9̂e, (14)

9̂g(x)= ĝ0ϕ0(x)+ ĝ1ϕ1(x)+ δ9̂g. (15)
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Figure 3. From even and odd parity modes of a double-well potential, one
can construct the leftϕ0 (solid line) and rightϕ1 (dashed-dotted line) localized
Wannier states of the system.

The four bosonic amplitudes{ĝ0, ê0, ĝ1, ê1} satisfy the usual commutation relations and we will
disregard the small corrections of orderδ9̂σ .

If this approximate field is substituted in the Hamiltonian, equation (7), we can exploit the
orthogonality of the wavefunctions and obtain the two-body matrix elementsϕi jkl

δi j =

∫
∞

−∞

dx ϕi (x)ϕ j (x), ϕi jkl =

∫
∞

−∞

dx ϕi (x)ϕ j (x)ϕk(x)ϕl (x). (16)

Out of the 16 combinations forϕi jkl , we only retain the physically most relevant contributions
and disregard others deliberately. This leads to the following model Hamiltonian for two coupled
JJs:

Ĥ =3(ê†
0ê1 + ê†

1ê0 + ĝ†
0ĝ1 + ĝ†

1ĝ0)+ δ(ê†
0ê0 − ĝ†

0ĝ0)+ δ(ê†
1ê1 − ĝ†

1ĝ1)

+�0(ê
†
0ĝ0 + ĝ†

0ê0)+�1(ê
†
1ĝ1 + ĝ†

1ê1)+ g(ê†
0ê†

0ê0ê0 + ĝ†
0ĝ†

0ĝ0ĝ0 + ê†
1ê†

1ê1ê1 + ĝ†
1ĝ†

1ĝ1ĝ1),

(17)

where all coupling constants are implicitly rescaled by the corresponding single particle or
two-body matrix elements and the new parameter3 measures the spatial hopping rate between
the sites.

3.4. Fock-space representation of the four-mode model

In principle, it is possible to solve the four-mode Schrödinger equation in Fock space by
projecting it on theN-particle sector

|ψ, N〉 = δ(N̂ − N)
∞∑

n=0

ψn|n = (ne
0,n

g
0,n

e
1,n

g
1)〉. (18)

The number constraint on the state remains valid throughout the time evolution as number
conservation is encoded into our Hamiltonian from the beginning in equation (8). This reduces
the discreted = 4 dimensional eigenvalue problem to an effective 3D problem with nontrivial

New Journal of Physics 10 (2008) 045020 (http://www.njp.org/)

http://www.njp.org/


9

0

10

20

30
0 5 10 15 20 25 30

0

5

10

15

20

25

30

n
1

n
0

n 2

Figure 4. A 3D simplex represents the four-mode Fock space forN = 32
particles. The axes are labeled in a generic lexicographical order(n0,n1,n2) and
implicitly n4 = N − n0 − n1 − n2.

boundaries. We have illustrated the finite support of the amplitude fieldψn in figure 4. It is a
(d − 1)-dimensional simplex embedded into ad-dimensional Fock space. The full analysis of
this problem is an interesting problem in its own right and will be presented in a forthcoming
publication.

3.5. The classical limit of the four-mode model

It is not necessary to solve the four-mode problem in Fock space to understand the
principal features of the equilibrium configuration. Thus, we will again resort to the classical
approximation and use the number-symmetry broken coherent state approximation for the
quantum state

|ψ〉 = |α= (e0, g0,e1, g1)
>
〉, êi |ψ〉 = ei |ψ〉, ĝi |ψ〉 = gi |ψ〉. (19)

The dynamics is simply obtained from the Lagrangian

L(α, α̇)= 〈α|i∂t − Ĥ |α〉 = iα∗α̇−H(α,α∗)−
i

2

d

dt
N (α,α∗), (20)

if we introduce the classical Hamilton functionsH(α,α∗)= 〈α|Ĥ |α〉 and number expectation
valuesN (α,α∗)= 〈α|N̂|α〉 as

H(α,α∗)=3(e∗

0e1 + e∗

1e0 + g∗

0g1 + g∗

1g0)+ δ0(|e0|
2
− |g0|

2)+ δ1(|e1|
2
− |g1|

2)

+�0(e
∗

0g0 + g∗

0e0)+�1(e
∗

1g1 + g∗

1e1)+ g(|e0|
4 + |g0|

4 + |e1|
4 + |g1|

4), (21)

N (α,α∗)= |e0|
2 + |g0|

2 + |e1|
2 + |g1|

2. (22)
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If the dynamical coordinate isα, then we find the canonical momentum as

πk =
∂L
∂α̇k

= iα∗

k . (23)

Consequently, variables and momenta obey the Poisson bracket{α j , πk} = δ jk. By construction,
number conservation is satisfied dynamically as

d

dt
N = {H,N } = 0 (24)

and the Hamilton equations of motion for the coordinates read

d

dt
α= {H,α} = −iKα, (25)

K =


δ0 + 2g|α0|

2 �0 3 0
�0 −δ0 + 2g|α1|

2 0 3

3 0 δ1 + 2g|α2|
2 �1

0 3 �1 −δ1 + 2g|α3|
2

 .

In classical mechanics, we can deliberately choose new coordinates and momenta to
account for symmetries of the Hamiltonian. If a new variable of a canonical transformation
matches a conserved quantity, it follows that the conjugate variable becomes cyclic. In this spirit,
we will introduce the following pairs of action-angle variables:(8,N ) measures the global
phase and the total particle numberN = ng

0 + ne
0 + ng

1 + ne
1 of the system,(θ,M) measures the

relative phase between left and right sites and the population imbalanceM= ne
0 + ng

0 − (ne
1 + ng

1)

in between,(φ0,M0 = ne
0 − ng

0) and (φ1,M1 = ne
1 − ng

1) measure the relative internal phase
of the atoms on each site and the corresponding population difference. This coupling scheme
for the phases and population imbalances has been illustrated in figure5. By inverting the
population relations, one finds the individual occupation numbernσl per site as

ne
0 =

1
4(N +M+ 2M0), ng

0 =
1
4(N +M− 2M0),

(26)

ne
1 =

1
4(N −M+ 2M1), ng

1 =
1
4(N −M− 2M1).

Finally, we can use these physical coordinates in a canonical transformation from complex
amplitudes to real action-angle variables

e0 = e−i(8+θ+φ0)
√

ne
0, g0 = e−i(8+θ−φ0)

√
ng

0

(27)

e1 = e−i(8−θ+φ1)
√

ne
1, g1 = e−i(8−θ−φ1)

√
ng

1.

For later use it is also useful to introduce the auxiliary phasesθi , which are global phases of the
subsystem on sitei :

θ0 =8+ θ, θ1 =8− θ. (28)

By substituting field amplitudes into the Lagrangian of equation (20), one can again
identify the variables and corresponding canonical momenta as

∂L
∂8̇

=N ,
∂L
∂θ̇

=M,
∂L
∂φ̇0

=M0,
∂L
∂φ̇1

=M1. (29)
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−2φ0 2φ1

JJ0 JJ1

Λ

Λ

2θ + φ0 − φ1

−2θ + φ0 − φ1

Figure 5. Coupling pattern of two coupled JJsJ J0 and J J1 with local Rabi
frequencies�i and intersite hopping rates3. By definition, the sum of the phase
differences vanishes, but one obtains the extraπ -phase from the sign change of
the Rabi coupling�1 = −�0 = eiπ�0.

With these new coordinates(8, θ , φ0, φ1) and momenta(N ,M,M0,M1), we obtain a
transformed Hamilton function

H′
=H′(θ, φ0, φ1,N ,M,M0,M1)

=�0 cos(2φ0)

√
(N +M)2/4−M2

0 + δ0M0 + δ1M1

−�0 cos(2φ1)

√
(N −M)2/4−M2

1 +
g

4
(N 2 +M2 + 2M2

0 + 2M2
1)

+
3

2
cos(2θ +φ0 −φ1)

√
(N +M+ 2M0)(N −M+ 2M1)

+
3

2
cos(2θ −φ0 +φ1)

√
(N +M− 2M0)(N −M− 2M1). (30)

Obviously, the dynamics conserves the total energyH′ and the total particle numberN , as
neither timet nor the global phase8 appears explicitly. However, an interesting feature of
this coupled JJ Hamilton function is the negative sign of the Josephson energy in the second
line, which leads to a reversal of the current direction and is in direct analogy to equations (2)
and (3). The Josephson current relations of the 0–π junction can be obtained from the Hamilton
equations for the population change as

Ṁ0 = −
∂H′

∂φ0
= I0 sin(2φ0)+Ih, (31)

Ṁ1 = −
∂H′

∂φ1
= −I1 sin(2φ1)− Ih. (32)
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Table 1. Two stationary solutions of the Hamilton equation, energiesE0 andE1,
field amplitudes(α= (e0, g0,e1, g1) and phases. The global phase of the left
site, i.e.θ0 = 0, was chosen as the common ground.

E e0 g0 e1 g1 8 φ0 φ1 θ θ0 θ1

−129.84 2.82 −6.48 2.82 6.48 π
4

π
2 0 −

π
4 0 π

2
−117.00 3.16 −6.32 −3.16 −6.32 −

π
4

π
2 0 π

4 0 −
π
2

Here, we have introduced critical currentsIi , as well as a hopping currentIh by

I0 = 2�0

√
(N +M)2/4−M2

0 (33)

I1 = 2�0

√
(N −M)2/4−M2

1 (34)

Ih =
3

2
sin(2θ +φ0 −φ1)

√
(N +M+ 2M0)(N −M+ 2M1)

−
3

2
sin(2θ −φ0 +φ1)

√
(N +M− 2M0)(N −M− 2M1). (35)

For the parametersδ = 1, �0 = 1, �1 = −1, 3= 0.1, g = 0.005 andN = 100, we have
numerically minimized the energy of equation (21), which is equivalent to the action-angle
variable Hamilton function of equation (30) but is more easily accomplished by the method of
steepest descent using equation (25). A nonvanishing detuning,δ, was chosen to avoid numerical
problems with degeneracies. Consequently, we find two minima with energiesE0 < E1. Please
note that the amplitudes of the solutionsα are real valued. Due to the invariance of the solutions
under global phase change, we can deliberately modify them and choose the global phase of the
left site as the common groundθ0 = 0. In table1, we have listed the closely spaced energies, the
real valued amplitudes and the phases calculated according to equations (27) and (28).

In figure6, we present the phases for the two states listed in table1graphically and compare
them with the solution of the sine-Gordon equation [63] already presented in figure1(b). The
gray level represents the value of the Josephson (potential) energy, which is obtained from
equations (2) and (3) or equation (30) by keeping the momenta constant and varying the phases
θi around their equilibrium values. While the solution of the discrete model clearly lacks the
smoothness of the continuum model at the 0–π boundary, it represents the asymptotics well.
On one hand, this can be rectified by discussing the extended two-component Gross–Pitaevskii
equation (13). On the other hand, a few mode quantum model can be very useful for studying
the effects of macroscopic tunneling.

4. Conclusion and perspectives

In the present paper, we have briefly summarized the status of fluxon and semifluxon physics in
superconductivity. In particular, we have focused on an effect that exists in a long 0–π geometry
where two JJs were in the ground state and one obtains a Josephson vortex of fractional magnetic
flux, pinned at the 0–π boundary. Depending on the preparation procedure, this ‘classical’ state
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Figure 6. Comparison of a spatially extended 0–π -junction in a superconductor
(left panel) calculated according to the sine-Gordon equation [63] to an analog,
two-site junction in an atomic BEC (right panel). We have plotted the scaled
global phaseθi versus the site indexi = 0,1. The gray level represents the value
of the Josephson (potential) energy, where dark means low values and light
means high values.

of the superconducting device can occur in two different configurations: with the magnetic flux
equal to +80/2 or−80/2.

This arrangement of superconducting junctions has been analyzed and transferred to the
context of an atomic bosonic quantum gas, where two-state atoms in a double well trap are
coupled in a similar fashion. There, the optical 0–π junction is represented by the left/right
localized internal atomic JJs and a jumping phase of the complex-valued Rabi frequency.
We have derived a simple four-mode model for this case and showed that in the ‘classical’
approximation it qualitatively resembles the semifluxons seen in superconductivity.

In the superconducting case, one observes a smooth spatial behavior of the phase across
the 0–π boundary. In the atomic case, this will emerge also by a more realistic modeling for the
Rabi-frequency and spatial motion. This is currently under investigation. Eventually, the four-
mode, 0–π Josephson model will also be instrumental in examining the quantum properties of
these macroscopic semifluxon states and we will explore the macroscopic tunneling between
them [63]. This is also a work in progress and will be reported in a forthcoming publication.
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