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Reversible and irreversible evolution of a condensed bosonic gas

R. Walser, J. Cooper, and M. Holland
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We have formulated a kinetic theory for a condensed atomic gas in a trap, i.e., a generalized Gross-Pitaevskii
equation, as well as a quantum-Boltzmann equation for the normal and anomalous fluctuations@R. Walser
et al., Phys. Rev. A59, 3878~1999!#. In this paper, the theory is applied to the case of an isotropic configu-
ration and we present numerical and analytical results for the reversible real-time propagation, as well as
irreversible evolution towards equilibrium.
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I. INTRODUCTION

More than 70 years ago, Bose and Einstein propose
provocative hypothesis—that at ultralow temperatures
novel state of matter should exist. They predicted this s
could be attained by cooling an ordinary gas towards ab
lute zero. At a well-defined point in this process, a spon
neous transition should occur and change the state of m
from an unordered ensemble of individual particles into o
collective entity. This single object, now devoid of its man
particle character, ought to evolve as a collective ma
wave.

With the discovery of superfluidity in liquid helium in
1938 and its subsequent explanation in terms of Bo
Einstein condensation~BEC!, the hypothesis had been firml
established. In turn, this phenomenon has had a major im
on the development of modern quantum physics. Tod
BEC is fundamental to our understanding of many lo
temperature phenomena and it is the cornerstone of m
quantitative explanations. However, up to 1995, conden
tion of a weakly interacting, atomic Bose-Einstein gas h
never been achieved, as such.

With the ground-breaking accomplishment of condens
atomic87Rb by Cornell and Wiemanet al. @1#, of sodium by
Ketterleet al. @2#, and lithium by Huletet al. @3#, a chapter
of quantum statistical physics has been opened. It is n
possible to study in a table-top experiment quantum stat
cal effects of material objects on a human scale~up to 5
mm—the very phenomena that govern the otherwise mic
scopic physics of nuclear matter, macroscopic quantum
uids, or astronomical objects, such as neutron stars.

Today, more bosonic alkali-metal elements have cros
the transition temperature, in particular atomic hydrogen@4#
as well as85Rb @5#, and many more vastly improved exper
ments have been carried out. For example, it is now poss
to examine multicomponent condensates@6,7#, to create vor-
tices @8,9#, and to prepare topological modes@10#. For a list
of current experiments see Ref.@11#, or the review article in
Ref. @12#. However, the technological breakthrough of co
bining laser cooling with evaporative cooling is not limite
to bosonic species only. Most recently, the fermionic isoto
of potassium40K has also been cooled successfully belo
the Fermi temperature@13#.

Instigated by these spectacular experiments, strongly
newed interest has developed in their quantitative desc
1050-2947/2000/63~1!/013607~14!/$15.00 63 0136
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tion. While cold quantum gases had been studied extensi
in the 1950–60’s, they were mainly considered as precu
theories for strongly interacting systems, such as liquid
lium. Thus, most of the available results were focused
spatially uniform systems in thermal equilibrium. Excelle
accounts of these standard results can be found, for exam
in the textbooks and monographs@14–19#. However, the
spatial nonuniformity, the thermal isolation resulting fro
the confinement in a ultrahigh vacuum trap, as well as
large disparity of collision and relaxation time scales, a
indispensable ingredients for a quantitative description of
day’s experiments.

To account for these differences that distinguish
present experimental situation from the homogeneous B
Einstein gas@20–23#, a growing number of equilibrium and
nonequilibrium kinetic theories have been recently presen
@24–29#. However, the effort to go beyond the mean-fie
description of the Gross-Pitaevskii equation@30# is consider-
able. Thus, the research for a unified description of the e
librium and nonequilibrium situation is still very active.

In this paper, we explore numerically and analytica
some of the implications of the reversible and irreversi
evolution of a condensed gas immersed in the nonconden
cloud. The points discussed are organized as follows. Sec
II revisits the main results of our kinetic theory@31#, i.e., the
two-particle Hamiltonian and the energy and number c
serving collisional kinetic equations for the condensate,
well as the normal and anomalous fluctuations. In Sec.
we specialize these kinetic equations for a completely iso
pic situation. Based on these prerequisites, we discuss in
IV the results of propagating the collisionless mean-field a
the Hartree-Fock-Bogoliubov~HFB! equations in real time.
Finally, in Sec. V, we study the evolution of an ergod
distribution towards equilibrium in the presence of col
sions.

II. KINETIC MASTER EQUATIONS

A. Master variables

The kinetic master equation of the weakly interacting
lute atomic gas describes the coupled evolution of the c
densed fraction immersed in the quantum fluctuations. In
context, we associate the condensate with ac number field
ax(t) that represents the expectation value of the quan
©2000 The American Physical Society07-1



re

et
e

i

,

m
t

e

ag
ns

ri-
in
Si
el
uc
m

tor

ee-

e,
ials
ch

nt
ly
e
-

-
er-

ds

al-
d to
l,

of

t of
of
en-
for
iliar

on-
n-

l to

e-

er-

po-

na
els

R. WALSER, J. COOPER, AND M. HOLLAND PHYSICAL REVIEW A63 013607
field ^âx(t)&. The field operatorâx removes a particle from
point x and satisfies the scalar, equal-time commutation
lation,

@ âx ,ây
†#5d~x2y!, ~1!

of a boson. The position representation$ux&% used above is
not necessarily the most suitable basis to formulate a kin
theory. It proves to be more useful to postpone the choic
a particular representation and to formulate the theory
terms of a general single-particle basis$u i 1&% that spans the
same single-particle Hilbert space:

âx5(
i 1

âi 1
^xu i 1&. ~2!

In the case of an unstructured~scalar! atomic condensate
three external quantum labels (i 1) are sufficient to describe
its motional state in space, completely.1 In this manner, we
can expand any field as

^â&5(
i 1

a i 1
u i 1&[a1u1&[a. ~3!

Here we have simplified the notation by dropping the na
of the dummy variable, i.e.,i 1[1, and by assuming implici
summation over repeated indices, as usual.

In an analogous fashion, we can describe the normal d
sity of the atomic gasf 5^â†â&5 f (c)1 f̃ by a Hermitian ten-
sor operator of rank~1,1!:

f̃ 5 f̃ 12u1&^2u, f ~c!5a2* a1u1&^2u. ~4!

Moreover, we will always decompose any quantum aver
into a mean-field contribution and the remaining fluctuatio
Similarly, we define the anomalous averagesm5^ââ&
5m(c)1m̃ as symmetric tensors of rank~2,0!,

m̃5m̃12u1&u2&, m~c!5a2a1u1&u2&, ~5!

and their symmetric conjugates asn5m12* ^1u^2u.

B. Dynamical evolution

The kinetic evolution of a weakly interacting gas is p
marily governed by the motion of the individual particles
the external trapping potential and by binary collisions.
multaneous collisions of more than two particles are unlik
events in a dilute gas. Consequently, we will disregard s
processes and use the following number-conserving Ha
tonian operator:

Ĥ5Ĥ ~0!1Ĥ ~1!5H ~0!12
â1

†â21f1234â1
†â2

†â3â4 . ~6!

1This is readily generalized to accommodate multiple inter
electronic configurations ifi 1 encompasses more quantum lab
accordingly, i.e.,u i 1&5un1 ,l 1 ,m1 ;F1 ,M1 ,...&.
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Here, Ĥ (0) denotes a single-particle Hamiltonian opera
with matrix elementsH (0)12

5^1up2/(2m)1Vext(x)u2&. For
the external trapping potential, we assume a thr
dimensional isotropic harmonic oscillator,Vext(x)5mv2(x2

1y21z2)/2. In most of the present experiments with larg
stable condensates, the two-body interaction potent
Vbin(x12x2) are repulsive and of short range. From su
potentials, we can obtain two-particle matrix elements as

f12345
1

2
~S!^1u ^ ^2uVbin~x12x2!u3& ^ u4&, ~7!

f12345f12435f21345f2143. ~8!

Only the symmetric part of the two-particle matrix eleme
f1234 is physically relevant. Therefore, we have explicit
~S! symmetrized it. In the low kinetic energy range that w
are interested in,s-wave scattering is the dominant two
particle scattering event@32–34#. Thus, by discarding all de
tails of the two-particle potential, we can describe the int
action strength with a single parameterV0 related to the
scattering lengthas by V054p\2as /m. This limit corre-
sponds to a singular interaction potential, i.e.,Vbin(x1 ,x2)
5V0d(x12x2). In the case of this delta potential, one fin
for the two-body matrix elements:

f12345
V0

2 E d3x^1ux&^2ux&^xu3&^xu4&, ~9!

which need not be symmetrized, as they are symmetric
ready. However, considering the caveats that are relate
the singular functional form of the two-particle potentia
@35#, we will only rely on the existence and symmetry
the two-particle matrix elements as defined in Eq.~7!.

C. Mean-field equations

Based on these assumptions, we have derived a se
kinetic equations that describe the dynamical evolution
the condensate fraction immersed in a cloud of noncond
sate particles. By discarding all of the interactions except
the condensate’s self-interaction, they reduce to the fam
Gross-Pitaevskii~GP! equation for the mean fielda. How-
ever, due to the presence of anomalous fluctuationsm̃, this
nonlinear, but otherwise unitary GP equation acquires a c
tribution proportional to the time-reversed or complex co
jugated fielda* .

To represent these equations compactly, it is usefu
arrange them in a 232 matrix form. Moreover, we transform
this field equation to a frame corotating with a positive fr
quencym defined bya(t)5exp(2imt)ā(t). However, in or-
der not to overload the notation, we will suppress the ov
line in the following generalized GP equation:

d

dt
x5~2 iP1Y,2Y.!x. ~10!

The two-component state vectorx5(a,a* )T, introduced
above keeps track of the forward and time-reversed com

l

7-2



sa
f
A
o

at

to

a

sa
u

tw

in

iae

in
e.
ar

,

ve
l
tot-

lli-
-

sive
trix

ce

cer-

un-
e
ra-
e

ccu-
en-

ifts.

ally
sity

at
the
lity
n

ed

to

REVERSIBLE AND IRREVERSIBLE EVOLUTION OF A . . . PHYSICAL REVIEW A63 013607
nents of the mean field. It is symmetric under time rever
i.e.,x5s1x* . The Pauli matrixs1 achieves the exchange o
upper and lower components and is defined in Appendix

Two distinct processes govern the real-time evolution
the mean field. First, there is the generalized GP propag
that is defined as

P5S PN PA
2PA* 2PN*

D . ~11!

The two contributions that define this symplectic propaga
are a normal Hermitian Hamiltonian operator

PN 5H ~0!11U f ~c!12U f̃2m, ~12!

as well as a symmetric anomalous coupling strength

PA5Vm̃ . ~13!

It is easy to identifyPN with the well-known unitary GP
propagator that accounts for the free evolution of the me
field (H (0)2m), its self-interactionU f (c), as well as the en-
ergy shift U f̃ caused by the presence of the nonconden
cloud. However, due to the existence of the anomalous fl
tuations there is also a coupling throughPA to the time-
reversed field. For convenience, we have introduced
auxiliary operatorsU f and Vm . Explicitly, they are defined
in terms of the two-body matrix elements, such as

U f52f1283848 f 3828u1&^48u, ~14!

and a first-order anomalous coupling strength

Vm52f1283848m3848u1&u28&. ~15!

Second, there are all of the collisional second-order damp
rates and energy shifts@20–23# that are given by

Y,5S YN
, YA

,

2YA
.* 2YN

.* D , ~16!

and the time-reversed contributionY.52s1Y,* s1 . It can
be shown that they are equivalent to the extended Bel
rates@36#.

The forward and backward transition ratesYN
, , YA

, ,
YA

. , andYN
. , describe the bosonically enhanced scatter

of noncondensate particles into and out of the condensat
turn, these transition rates are formed from various bin
scattering processesG, and are given by

YN
,5G f̃ f̃ ~11 f̃ !12G f̃ m̃ñ , ~17!

YN
.5G~11 f̃ !~11 f̃ ! f̃12G~11 f̃ !m̃ñ , ~18!

and

YA
,5Gm̃m̃ñ12G f̃ m̃~11 f̃ ! , ~19!

YA
.5Gm̃m̃ñ12G~11 f̃ !m̃f̃ . ~20!
01360
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Within the Born-Markov approximation of kinetic theory
we define these elemental collision processes as

G f f f58f1283848fh
19293949 f 3819 f 4829 f 4928u1&^39u,

G f m f58f1283848fh
19293949 f 3819m4839 f 4928u1&u29&,

~21!

G f mn58f1283848fh
19293949 f 3819m4839n2928u1&^49u,

Gmmn58f1283848fh
19293949m3849m4839n2928u1&u19&.

During a binary collision event, two particles can conser
their energy only approximately. After all, the individua
scattering event happens within a medium and the asymp
ics cannot be reached within the finite duration of the co
sion. Thus, within the limits of the Born-Markov approxima
tion, any second-order collision operator accrues a disper
as well as a dissipative part from the complex valued ma
element:

fh
192939495f19293949

1

h2 iD19293949
. ~22!

It is essentially nonzero only if the energy differen
D192939495«19(t)1«29(t)2«39(t)2«49(t) between the pre-
and post-collision energies is smaller than an energy un
tainty h:

lim
h→01

1

h2 iD
5pdh~D!1 iPh

1

D
. ~23!

On general physical grounds, it can be argued that this
certaintyh is bracketed by the binary collision rate, on on
side, and the energy uncertainty arising from the finite du
tion of an individual collision event on the other side. As w
have shown, one has also the liberty to choose a more a
rate intermediate propagator such that the single-particle
ergies«(t) and the eigenstates incorporate mean-field sh

D. Normal and anomalous fluctuations

The normal and anomalous fluctuationsf̃ (t) andm̃(t) of
a quantum field are not independent quantities, but actu
they are the components a generalized single-time den
operatorG.(t):

G.5S f̃ m̃

ñ ~11 f̃ !*
D >0. ~24!

The non-negativity of this covariance operator implies th
the magnitude of the anomalous fluctuations is limited by
normal depletion through a Cauchy-Schwartz inequa
~see Appendix B!. In the general context of Gree
function’s,@15,16# this single-time density operatorG.(t)
can also be viewed as a particular limit of a time-order
~T!, two-time Green function G(t,t), i.e., G.(t)
5 limt→t1

TG(t,t). Consequently, it is also necessary
7-3
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R. WALSER, J. COOPER, AND M. HOLLAND PHYSICAL REVIEW A63 013607
consider the opposite limit and to define a time-revers
single-time density operator through G,(t)
5 limt→t2

TG(t,t). Explicitly, this operator is given by

G,5s1G.* s15G.1s35S 11 f̃ m̃

ñ f̃ *
D . ~25!

With the help of these definitions, we can now present
results of the kinetic theory as a generalized Boltzma
equation for the single-time density operatorG.(t) as

d

dt
G.52 iSG.1G,G,2G.G.1H.c. ~26!

In analogy to the previous discussion of the mean-fi
dynamics, we again find that the evolution of the dens
operator is ruled by two types of propagators. First, ther
the Hartree-Fock-Bogoliubov~HFB! self-energy operatorS
that can be obtained also by variational methods@16#. In
detail, this symplectic self-energy is given by

S5S SN SA
2SA* 2SN*

D , ~27!

where we have introduced Hermitian Hamiltonian operat
and symmetric anomalous coupling potentials as

SN5H ~0!12U f ~c!12U f̃2m, ~28!

SA5V~m~c!1m̃! . ~29!

It is important to note the different weighing factors of th
mean-field potential in Eqs.~12! and ~28!, as well as the
appearance of the anomalous condensate densitym(c) in Eq.
~29!. This HFB operator is the usual starting point of a
finite-temperature calculations. Depending on additio
considerations, i.e., ‘‘gapless vs conserving approximatio
~see Refs.@22# and @37–40#!, the anomalous couplingsVm̃
are usually discarded from Eqs.~13! and ~29!. However,
since we do go beyond a first-order calculation, we need
retain all contributions for consistency.

Second, the Boltzmann equation, Eq.~26!, introduces for-
ward and backward collision operatorsG, andG.. They are
responsible for particle transfer out of and into the cond
sate on one hand, and lead to thermal equilibration within
noncondensate cloud, on the other hand. These forward
backward collision operator are defined by

G,5S GN
, GA

,

2GA
.* 2GN

.* D , ~30!

andG.52s1G,* s1 , where

GN
,5G~ f̃ 1 f ~c!! f̃ ~11 f̃ !1G f̃ f ~c!~11 f̃ !1G f̃ f̃ f ~c!

12~G~ f̃ 1 f ~c!!m̃ñ1G f̃ m~c!ñ1G f̃ m̃n~c!!, ~31!
01360
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GN
.5G~11 f̃ 1 f ~c!!~11 f̃ ! f̃1G~11 f̃ ! f ~c! f̃1G~11 f̃ !~11 f̃ ! f ~c!

12~G~11 f̃ 1 f ~c!!m̃ñ1G~11 f̃ !m~c!ñ1G~11 f̃ !m̃n~c!!,

~32!

and

GA
,5G~m̃1m~c!!m̃ñ1Gm̃m~c!ñ1Gm̃m̃n~c!

12~G~ f̃ 1 f ~c!!m̃~11 f̃ !1G f̃ m~c!~11 f̃ !1G f̃ m̃f ~c!!, ~33!

GA
.5G~m̃1m~c!!m̃ñ1Gm̃m~c!ñ1Gm̃m̃n~c!

12~G~11 f̃ 1 f ~c!!m̃f̃1G~11 f̃ !m~c! f̃1G~11 f̃ !m̃f ~c!!.

~34!

It is interesting to note that all of the collision processes t
contribute to the Boltzmann equation, Eq.~26!, are of the
same basic structure as the collision operators in the
equation, Eq.~10!. In particular, one can generate all of th
processesG, andG. by functional differentiation fromY,

and Y.. This very fact is actually the key principle to th
functional-analytic Green functions method described in R
@15# and, for example, leads to the gapless Beliaev appr
mation @22,41#.

E. Conservation laws

1. Number

The total particle numberN̂ is a conserved quantity if the
atoms evolve under the generic two-particle Hamiltonian
eratorĤ given by Eq.~6!, i.e., @Ĥ,N̂#50. This conservation
law implies that the system is invariant under a global ph
changeâ→â exp(iw). By using this continuous symmetry
i.e., a→a exp(iw), f̃→ f̃ , and m̃→m̃ exp(2iw), it is easy to
see that kinetic Eqs.~10! and~26! are also explicitly number
conserving at all times:

^N̂~ t !&5Tr$ f ~c!~ t !%1Tr$ f̃ ~ t !%5const. ~35!

Nevertheless, it is important to note that there are alw
coherent and incoherent processes present that do tra
particles between the condensate and the nonconden
clouds, continuously.

2. Energy

In the absence of any time-dependent external driv
fields, such as optical lasers or magnetic rf fields, the ove
energyĤ must be conserved as well. To find the expectat
value of the total system energyE5^Ĥ&5Tr$Ĥs(t)%, one
can use the same power-series expansion of the coa
grained many-particle density matrixs(t) that leads to the
kinetic equations. Thus, within the limits of the Born
Markov approximation and the systematic application
Wick’s theorem, we have obtained first- and second-or
contributions for the energyE5Tr$Ĥ(s$g(t)%

(0) 1s$g(t)%
(1) )%

1O @3#. Explicitly, this energy functionalE5E(c)1E@ f̃ #
1E@m̃#, is given as
7-4
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E~c!5TrH FH ~0!1
1

2
[1U f ~c!12U f̃1 i (YN

,2YN
.)] G f ~c!

1
1

2
[Vm̃1 i (YA

,2YA
.)n~c!J , ~36!

E@ f̃ #5TrH FH ~0!1
1

2
@2U f ~c!12U f̃1 i ~GN

,2GN
.!#G f̃ J ,

~37!

E@m̃#5TrH 1

2
@Vm~c!1m̃1 i ~Ga

,2GA
.!#ñJ . ~38!

For example, the same first-order results can be found in
@16#, derived by a variational procedure.

III. A COMPLETELY ISOTROPIC SYSTEM

In the previous section, we have reviewed the main res
of the kinetic theory that describes the coupled evolution
the condensate immersed in the noncondensate. The fo
derivation did not rely on a particular trapping geometry, n
a special form for the binary interaction potential. In order
gain deeper understanding of the intricate interactions,
will now specialize the theory to the most simple, thou
realistic, three-dimensional model: a completely isotro
configuration, a spherically symmetric harmonic trapping p
tential, and a binary short-ranges-wave scattering potential

A. Irreducible tensor fields

Complete isotropy is easily achieved for the mean field
decomposing it in terms of a few zero angular moment
partial waves. For this purpose, we will use a set of ba
states$u1&% that can be characterized by radial and angu
momentum quantum numbers~n,l,m!, i.e., ^xu1&
5Rl 1

n1(r )Ym1

l 1 (u,w).

However, in order to isolate the isotropic components
the noncondensate fluctuations,f̃ andm̃, we need to gener
alize the concept of partial waves and introduce an irred
ible set of tensor fields. Furthermore, by only selecting
scalar component (l 50), we can enforce the desired radi
symmetry. Thus, according to Refs.@42# and@43#, we intro-
duce irreducible representations of tensor fields of ra
~2,0!, ~1,1!, ~0,2! as

Tm
l ~ 1̄2̄!5 (

m1 ,m2

~21! l 22m2Cm12m2m
l 1l 2l un1l 1m1&^n2l 2m2u,

~39!

Sm
l ~ 1̄2̄!5 (

m1 ,m2

~21! l 2Cm1m2m
l 1l 2l un1l 1m1&un2l 2m2&.

The quantum labels carry additional overlines or underli
to indicate whether a function depends only on two of
three quantum labels, for example, 1[̄(n1 ,l 1) or 2I
[( l 2 ,m2). With these definitions, it is easy to verify th
following orthogonality relationships:
01360
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l ~ 1̄2̄!Tm8

l 8 ~ 3̄4̄!†%5d 1̄3̄d 2̄4̄d l l 8dmm8 , ~40!

Tr$Sm
l ~ 1̄2̄!Sm8

l 8 ~ 3̄4̄!†%5d 1̄3̄d 2̄4̄d l l 8dmm8 . ~41!

In the case of a scalar field (l 50), one can simplify Eq.~39!
by the following relation for the Clebsch-Gordan coefficien
Cm1m20

l 1l 20
5d l 1l 2

dm1 ,2m2
(21)l 12m1/A2l 111. Provided the ba-

sis states transform under a coordinate rotation, here den
by R, according to the finite dimensional representation
the rotation groupDl(R) @43#,

URunlm&5(
m8

unlm8&Dm8m
l

~R!; ~42!

it follows that the set of tensors$Tm
l iumu< l % and

$Sm
l iumu< l % are irreducible as well:

UR^ UR21Tm
l ~ 1̄2̄!5(

m8
Tm8

l
~ 1̄2̄!Dm8m

l
~R!, ~43!

UR^ URSm
l ~ 1̄2̄!5(

m8
Sm8

l
~ 1̄2̄!Dm8m

l
~R!. ~44!

B. Isotropic two-particle matrix element

The most commonly used model for a short-range bin
interaction potential is thes-wave hard-core delta potentia
Vbin(x1 ,x2)5V0d(x12x2). This model potential is mos
suited to describe the low energetic collision dynamics
two real particles. However, it has to be used with caution
connection with infinite summation over virtual, high-ener
states. It is clear that the energy independent scattering
proximation fails above a certain energy range when the s
tial scale of variation of the high-energetic wave functio
begin to sample the detailed form of the interaction potent
Thus, the true value of the interaction matrix element ou
to decrease much faster with energy than the value obta
from the simple hard-core delta-potential approximation. I
well known that indiscriminate use of the energy indepe
dent approximation leads to a nonphysical ultraviolet div
gence@28,35,44#.

Considering these limitations, we will use thes-wave
scattering matrix element that is obtained from the ener
independent approximation, i.e.,

f12345
V0

2 E
2`

`

d3x^1ux&^2ux&^xu3&^xu4&, ~45!

only for energies below a certain level and truncate it app
priately otherwise.

By using the basis states^xu1&5Rl 1

n1(r )Ym1

l 1 (u,w), we can

decompose the matrix elementf1234 into a reduced radia

part f 1̄2̄3̄4̄ and a purely geometric factorY1I 2I 3I 4I ,

f12345f 1̄2̄3̄4̄Y1I 2I 3I 4I , ~46!

where
7-5
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f 1̄2̄3̄4̄5
V0

2 E
0

`

r 2dr Rl 1

n1~r !Rl 2

n2~r !Rl 3

n3~r !Rl 4

n4~r ! ~47!

and

Y1I 2I 3I 4I 5E d2VY
m1

l 1* ~V!Ym2

l 2* ~V!Ym3

l 3 ~V!Ym4

l 4 ~V!

5(
l 50

` C000
l 1l 2lC000

l 3l 4lCm1m2~m11m2!

l 1l 2l
Cm3m4~m11m2!

l 3l 4l

4p~2l 11!S )
i 51

4

~2l i11!D 21/2

.

~48!

In the context of evaluating the collision integrals, it w
be necessary to consider products of two matrix eleme
summed over all energetically accessible sublevels. Wi
the isotropic model, all magnetic sublevels are energetic
degenerate. Moreover, spherical symmetry demands an e
population distribution and rules out the existence of coh
ences within magnetic submanifolds. Thus, it will be r
quired to know the magnitude ofuY1I 2I 3I 4I u2 averaged over al
the magnetic quantum numbers. For later reference, we
now introduce such conveniently scaled factors as

g1̄2̄5„~2l 111!~2l 211!…1/2/2p, ~49!

g1̄2̄3̄4̄52~p2g1̄2̄g3̄4̄!21 (
m1m2m3m4

uY1I 2I 3I 4I u2

52g1̄2̄g3̄4̄(
l 50

` ~C000
l 1l 2lC000

l 3l 4l
!2

~2l 11!
. ~50!

These coupling strengthsg1̄2̄3̄4̄ in Eq. ~50! measure the
amount and principle connectivity between precollision a
post-collision angular momenta submanifolds (l 3 ,l 4)
→( l 1 ,l 2). In particular, it establishes a parity selection ru
such that the coefficients are nonvanishing only if the sum
the angular momenta isl 11 l 21 l 31 l 45even. In addition,
transitions are allowed only if the angular momentuml is
within a range of max(ul12l2u,ul32l4u)<l<min(l1 1l2,l31l4).

C. Scalar component of states and energies

With the help of the auxiliary results established in t
previous section, we are now able perform the desired m
tipole decomposition of the kinetic equations. The postul
of complete isotropy then implies that we can focus on
scalar component of the field (l 50) exclusively. This is

a5d l ,0dm,0a1u1&, f̃ 5 f̃ 1̄2̄T0
0~ 1̄2̄!,

~51!
m̃5m̃1̄2̄S0

0~ 1̄2̄!, ñ5ñ1̄2̄S0
0†~ 1̄2̄!.

Analogously, we can decompose all normal operators, s
as the bare single-particle Hamiltonian operator, as

H ~0!5H
1̄4̄8
~0!

T0
0~ 1̄4̄8!. ~52!
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The first-order normal mean-field potentialU f and the
anomalous coupling strengthVm are then

U f5f 1̄2̄83̄84̄8g1̄3̄8d l 28l 38
f 3̄82̄8T0

0~ 1̄4̄8!, ~53!

Vm5f 1̄2̄83̄84̄8g1̄3̄8d l 38l 48
m3̄84̄8S0

0~ 1̄2̄8!. ~54!

Finally, the normal and anomalous collisional contributio
simplify to

G f f f5f 1̄2̄83̄84̄8fh
1̄92̄93̄94̄9g1̄2̄83̄84̄8d l 38l 19

d l 48l 29
d l 49l 28

3 f 3̄81̄9 f 4̄82̄9 f 4̄92̄8T0
0~ 1̄3̄9!, ~55!

G f mn5f 1̄2̄83̄84̄8fh
1̄92̄93̄94̄9g1̄2̄83̄84̄8d l 38l 19

d l 48l 39
d l 29l 28

3 f 3̄81̄9m4̄83̄9n2̄92̄8T0
0~ 1̄4̄9!, ~56!

G f m f5f 1̄2̄83̄84̄8fh
1̄92̄93̄94̄9g1̄2̄83̄84̄8d l 38l 19

d l 48l 39
d l 49l 28

3 f 3̄81̄9m4̄83̄9 f 4̄92̄8S0
0~ 1̄2̄9!, ~57!

Gmmn5f 1̄2̄83̄84̄8fh
1̄92̄93̄94̄9g1̄2̄83̄84̄8d l 38l 49

d l 48l 39
d l 29l 28

3m3̄84̄9m4̄83̄9n2̄9 2̄8S0
0~ 1̄1̄9!, ~58!

IV. REVERSIBLE EVOLUTION

In this section, we will examine several limiting situation
of the reversible evolution in order to elucidate the comp
behavior of the condensed gas. Since canonical transfo
and Hartree-Fock-Bogoliubov~HFB! operators are crucia
for an understanding of the reversible evolution, we will r
view the main results@16#. Subsequently, we are going t
examine the stationary equilibrium, as well as the revers
real-time evolution of the condensed gas.

A. Structure of the generalized density matrix

The definition of a generalized density matrixG, i.e., ei-
therG. or G,, was given in Eqs.~24! and~25!. Its specific
structure implies various important physical properties.

First of all, we have to assume that there is a basis
diagonalizes this (2n32n)-dimensional fluctuation matrix
Exactly n of its 2n eigenvalues correspond to the positi
occupation numbers of finding a particle or, more genera
a quasiparticle in a certain mode. For a given, but otherw
arbitrary,G matrix, one can construct this basis by studyi
the transformation law of the density matrix under a cano
cal transformationT ~see Appendix A!,

G85TGT†. ~59!

It is important to note that this is not the transformation la
of a general matrix under coordinate change. This wo
require thatT†5T21. However, by only using the propertie
of the symplectic transformations, one can show that a
nonical eigenvalue problem is defined by
7-6
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REVERSIBLE AND IRREVERSIBLE EVOLUTION OF A . . . PHYSICAL REVIEW A63 013607
~s3G!T†5T†~s3G8!. ~60!

The solution of this eigenvalue problem yields the eigenv
tor matrixT† and the corresponding diagonal eigenvalue m
trix s3G8. Here, we have introduced standard Pauli s
matricess1 ands3 , which exchange upper and lower com
ponent of a 2n dimensional vector, or flip the sign of th
lower segment, respectively. All normalizable states can
rescaled such thatTs3T†5s3 . Now, we are able to recon
struct the positiveG matrix

G5VPV†, ~61!

from its eigenvectorsV5s3T† and the diagonal, positive
occupation number matrixP5s3G8s3 .

Second, an important feature of an admissible fluctua
matrix is its consistency with the commutation relation, i.
^â1â2

†&5^â2
†â1&1d12 and ^â1â2&5^â2â1&. This can be ex-

pressed compactly as

s1G* s12G5s3 . ~62!

By invoking the properties of a unitary symplectic transfo
mation, one can show that the elements of the diagonal
cupation number matrixP are not 2n independent variables
Actually half of them are determined by the other ha
P(n11,...,2n)511P(1,...,n) , or

s1Ps12P5s3 . ~63!

In other words, by separating the occupation numbersP and
the eigenvector matrixV into a first and second half, i.e
(P1,11P1)5P and (V1 ,V2)5V, one can then decom
pose a general fluctuation matrix as

G5V1P1V1
† 1V2~11P1!V2

† . ~64!

B. Structure of the Hartree-Fock-Bogoliubov operator

The symplectic HFB operator arises not only naturally
kinetic theories or variational calculations, but in many oth
contexts involving stability analysis. In the case of boso
fields, the self-energy operator is of the generic form:

S5S SN SA
2SA* 2SN* D . ~65!

In here,SN stands for a Hermitian operatorSN5SN
† andSA

denotes an anomalous coupling term that has to be sym
ric SA5SA

T . The relative size of the operatorsSN andSA
determines the character of the energy spectrum. It can e
be real valued with pairs of positive and negative eigenen
gies, or one finds a doubly degenerate zero eigenvalue, i
energy difference between the smallest positive and hig
negative vanishes~gapless spectrum!. In the general case
there is a mixed spectrum consisting of pairs of real s
reversed as well as pairs of complex conjugated eigenval
The eigenvectorsW are normalizable with respect to the in
definite normiWi25W†s3W, except for those that belon
to zero or complex eigenvalues. It is important to note t
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this energy basisW is in general distinct from the instanta
neous basisV that diagonalizes the fluctuation matrixG in
Eq. ~61!. They do coincide only in equilibrium. The math
ematical properties of the eigenstatesW can be derived easily
from the intrinsic symmetries of the HFB operator:

S52s1S* s1 , ~66!

S†5s3Ss3 . ~67!

Thus, if W and E are the solutions of the right eigenvalu
problem,

SW5WE, ~68!

it follows directly from Eq.~66! that W̄5s1W* , is also a
right eigenvector but corresponds to the eigenvalueĒ5
2E* . Starting from the second symmetry in Eq.~67! and the
right eigenvalue problem of Eq.~68!, it is easy to construct
the left eigenvectorsW̃5W†s3 that correspond to the eigen
valuesẼ5E* :

W̃S5E* W̃. ~69!

Finally, from a combination of the results for the right an
left eigenvectors, it follows that the eigenvectors are
thogonal with respect to the metrics3 :

05~E* 2E8!WE
†s3WE8 , ~70!

if E* ÞE8. On the other hand, this relation implies also th
eigenvectors that belong to complex eigenvalues must h
zero norm.

The situation of a doubly degenerate zero-energy eig
value E50 needs special attention. One can view this c
as a limit when two nondegenerate states approach e
other. However, as the energy gap decreases, the two e
states become more and more collinear. Thus, in the limi
a vanishing energy separation, the dimension of the span
vector space collapses from 2 to 1 andS becomes defective
In the present context however, we did not encounter
situation~see Ref.@16# for details!.

C. Stationary solution of the Hartree-Fock-Bogoliubov
equations

In spite of the complex nonlinear interactions taking pla
within the atomic gas, the kinetic evolution is complete
reversible if we disregard all collisionally induced redistrib
tions of quasiparticles. Thus, for the moment, we will elim
nate the collision operatorsY and G from the kinetic Eqs.
~10! and ~26! and we will study the collisionless stationar
equilibrium, as well as the real-time evolution in this sectio

With these assumptions, we are left with the following s
of stationary equations for the mean fieldx and the fluctua-
tions G.:

05Px, ~71!

05SG.2G.S†. ~72!
7-7
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R. WALSER, J. COOPER, AND M. HOLLAND PHYSICAL REVIEW A63 013607
The self-energies of the condensateP and the noncondensat
S are nonlinearly coupled and implicitly include the rotatio
frequency of the mean-fieldm.

However, the equilibrium solution to Eqs.~71! and~72! is
not fully determined as it stands. From the results of
previous section, we know that any fluctuation matrixG.

that is diagonal with respect to the positive and nega
energy eigenvectorsW5(W1 ,W2) of S, will be a station-
ary and complete solution of Eq.~72!

G.5W1P1W1
† 1W2~11P1!W2

† . ~73!

By choosing a canonical Bose-Einstein distributi
P(E.E0)51/@exp(bE)21# for the quasiparticles above th
nondegenerate ground stateE0.0 and a vanishing ground
state occupation numberP(E0)50, we obtain a variationally
minimal energy solution for the total system at some inve
temperatureb @16#.

G.5 (
E>E0

P~E!WEWE
†1@11P~E!#W2EW2E

† . ~74!

In order to understand the self-consistent equilibrium
lution of Eqs.~71! and ~72!, it is useful to examine first the
potentials that govern the evolution of the condensate
well as the noncondensate. In Fig. 1, we depict the poten
energy densities of the normal Hamiltonian operatorsPN
andSN versus radius that arise for the zero angular mom
tum manifold l 50, i.e., Vext11U f (c) and Vext12U f (c), re-
spectively. They are compared to the bare isotro
harmonic-oscillator potentialVext5r 2/2, for reference. Here
and in all of the subsequent results, we will use the exp
mental data of a typical87Rb condensate@45#. All physical
parameters are scaled in the natural units for a harm
oscillator, i.e., the angular frequencyv52p200 Hz, the
atomic massm87586.9092 amu, the ground-state sizeaH

FIG. 1. Self-consistent potential energy densities of the cond
sate Hamilton operatorPN ~solid!, the noncondensate Hamilto
operatorSN ~dashed dot!, and the bare harmonic-oscillator potenti
~dashes! versus radius. Energy and length are scaled in the nat
units for a harmonic oscillator.
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5@\/(vm87)#1/25763 nm, thes-wave scattering lengthaS
55.82 nm57.6331023aH , a very low temperature ofkBT
50.2\v, and a condensate number chosen asN(c)5104.
The isotropic particle densities are normalized toN
5*0

`dr r 2 f (r ). From the effective coupling parameterk
5aS /aH , one obtains an estimate of the mean-field ene
shift asmTF5(15N(c)k)2/5/258.36. This gives an excellen
approximation of the self-consistent chemical potential
m58.52, as can be seen in Fig. 1.

The position densities of the condensatef (c)(r ), as well
as the local densities of the normal and anomalous fluc
tions, i.e., f̃ (r ) andm̃(r ), are represented in Fig. 2. First o
all, it has to be noted that the solutions are real valued. T
important fact follows from the detailed structure of the s
tionary Eqs.~71! and~72!, which are invariant under a globa
phase change. Second, if we focus on the condensate de
one can see that it closely follows the Thomas-Fermi
proximation f TF

(c)(r )5(r TF
2 2r 2)/(2k), for radii less than

r TF5A2m'4.12. This limit is valid in the strong-coupling
regime N(c)k.1, where the kinetic energy is a negligib
contribution compared to the external trapping potential a
the self-energies. The self-consistent solutions for the nor
and anomalous densities are depicted in the lower hal
Fig. 2. While all normal densities are necessarily positi
the anomalous fluctuations carry a negative sign. The ano
lous fluctuations are the response of the noncondensate
dium to a phase-coherent mean field. In analogy to the
larization of an atom that is subjected to an electric field
tries to compensate for the external perturbation. In
evaluation of the normal and anomalous fluctuations,
have truncated the finite-temperature sums beyond the ra
and angular momentum quantum numbersnr514 andl 56.
This leads to fully converged values of the normal fluctu
tions. However, it has to be noted that the values of
anomalous fluctuations are still subject to change~further
decrease!. As long as one keeps adding vacuum contrib

n-

al

FIG. 2. Position density of the mean-fieldf (c)(r ) ~solid!, the
Thomas-Fermi approximationf TF

(c)(r ) ~dashed-dot!, as well as the

normal fluctuationsf̃ (r ) ~solid! and the anomalous fluctuation
m̃(r ) ~dashed-dot!. Density and length are scaled in the natu
units for a harmonic oscillator.
7-8
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REVERSIBLE AND IRREVERSIBLE EVOLUTION OF A . . . PHYSICAL REVIEW A63 013607
tions at an unaltered strength of thes-wave matrix-element

fn1
r l 1n2

r l 2n3
r l 3n4

r l 4 @see Eq.~46!#, this would lead to the well
known ultraviolet divergence@28,35,44#. Thus, a judicious
truncation, or alternatively an energy renormalization
needed to remove the nonphysical divergence that ar
solely from the energy-independent approximation of
scattering amplitudes.

In Fig. 3, we show a few selected radial eigenfunctio

^xu1̃&5Rl
nr

(r )Ym
l (u,w) of the noncondensate Hamiltonia

operator (H (0)12U f (c))u1̃&5«1u1̃&. The lowest energy stat

Rl 50
nr 51

(r ) is localized at the rim of the condensa
r TF5A2m'4.12. It has a smaller spatial extent than the c
densate and consequently a higher energy. Alls-wave func-
tions (l 50) have a finite value at the origin in contrast to t
l .0 states that must be vanishing atr 50. An eigenfunction
that is characterized by quantum numbers (nr ,l ) hasnr21
nodes. Eigenfunctions corresponding to higher angular
menta l are shifted outwards due to the increased ang
momentum barrierl ( l 11)/r 2. The corresponding eigenen
ergies are depicted in Fig. 5. In the context of spatially h
mogeneous condensed matter systems, these eigenfunc
are associated with particlelike excitations.

The other relevant set of eigenstates arises from the
densate Hamiltonian operator, i.e., the stationary GP eq
tion (H (0)11U f (c))u1(c)&5«1u1(c)&. The lowest self-
consistent energy eigenstate defines the condensate
function. A selection of these eigenstates are shown in Fig
As these states correspond to the low energetic excita
modes of the condensate they are referred to as phonon
The eigenenergies of the isotropic (l 50) modes are shown
in Fig. 5.

We have compiled the four important positive ener
spectra that arise in the problem in Fig. 5. In essence, th
are the spectra of the condensate and the nonconde
Hamiltonians,PN andSN , as well as their generalization i

FIG. 3. Radial eigenfunctionsRl
nr

(r ) of the particlelike basis

statesu1̃& associated with the noncondensate Hamiltonian oper
H (0)12U f (c) versus radius. Depicted are a few representative st
for the radial and angular quantum numbersnr51, 2, 10 andl
50,2.
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terms of the HFB self-energy operatorsP and S. It can be
seen that thes-wave energies ofPN and P are virtually
identical. In contrast to this, one finds that the excitati
frequencies of the fluctuationsS are characteristically shifted
downwards from the energies of the noncondensateSN . It is
also important to note that the self-energy of the fluctuatio
SN includes the energy shifts of the noncondensate its
These numerical results compare well within the limits
validity with the perturbative and semiclassical approxim
tions of Refs.@46–48#.

The spectrum of eigenvalues ofS exhibits a characteristic
energy gap above the condensate energy levelm. It is well
known that this gap energy vanishes asymptotically fo

or
es

FIG. 4. Radial eigenfunctionsRl
nr

(r ) of the phononlike basis
statesu1(c)& of the mean-field Hamiltonian operatorH (0)11U f (c)

versus radius. Depicted are a few representative states for the r
and angular quantum numbersnr51, 2, 10, andl 50,2.

FIG. 5. Energy spectraEl
nr

versus radial and angular quantu
numbers 1<nr<8 and 0< l<6 for the phononlike states ofPN
~l 50, only!, the particlelike states ofSN , as well as the positive
part of the energy spectrum ofP ~l 50, only! and HFB self- energy
S. Dimensionless energies are measured in natural harmo
oscillator units.
7-9
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R. WALSER, J. COOPER, AND M. HOLLAND PHYSICAL REVIEW A63 013607
homogeneous system in the thermodynamic limit. By de
erately excluding the anomalous couplingVm̃ strength from a
first-order theory~Popov approximation! or by including the
second-order Beliaev correction of Eq.~26! in the self-
energies, one can obtain a gapless approximation@22#.

D. Time-dependent solution of the Hartree-Fock-Bogoliubov
equations

After studying some aspects of the stationary solutions
the generalized HFB equations Eqs.~71! and ~72!, such as
the local densities, the eigenstates, or the energy spectra
will now investigate the reversible real time evolution of t
coupled condensate and noncondensate system, i.e.,

d

dt
x52 iPx, ~75!

d

dt
G.52 iSG.1 iG.S†. ~76!

In contrast to the complete kinetic Eqs.~10! and~26!, which
account for collisionally induced energy shifts and irreve
ible population transfer, Eqs.~75! and ~76! contain only the
first-order reversible processes. As we will show in the f
lowing, this restriction implies constant occupation numb
P.

In Sec. IV A, we have shown that any admissible fluctu
tion matrix G. has to be of the form

G.5V1PV1
† 1V2~11P!V2

† , ~77!

whereP represents the positive occupation numbers of
eigenstatesV1 . This property is not only to be satisfied i
equilibrium where the eigenstates coincide with the H
states@see Eq.~74!#, but in all instances.

By formally integrating the reversible kinetic equation
we can show that this structure of the fluctuation matrix
preserved at all times. Thus, Eqs.~75! and ~76! define a
consistent initial value problem. This simple but importa
fact can be demonstrated easily by defining the formal s
tion in terms of a time-ordered exponential:

T~ t,t0!5T expF2 i E
t0

t

dt8S~ t8!G . ~78!

It is obvious that the propagator matrixT(t,t0) can be con-
structed in two steps byT(t,t0)5T(t,t1)T(t1 ,t0) since the
self-energy is local in time~semigroup property!. Moreover,
it follows from the structure of the generator thatT(t,t0) is a
proper symplectic transformations35T(t,t0)s3T(t,t0)† at
all times. Consequently, all occupation numbers of the g
eral solution to the nonlinear, initial value problem are co
stants of motion

G.~ t !5T~ t,t0!G.~ t0!T~ t,t0!†

5V1~ t !P~ t0!V1
† ~ t !1V2~ t !„11P~ t0!…V2

† ~ t !,

~79!
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with time-evolved basis statesV(t)5T(t,t0)V. Since
T(t,t0) represents a genuine symplectic transform, the eig
statesV†(t)s3V(t)5V†s3V5s3 remain orthogonal.

In the following figures, we illustrate these fundamen
facts that effectively define reversibility for any nonline
system in the generic form of Eqs.~75! and~76!. In particu-
lar, we will use the self-consistent, finite-temperature so
tion for x(t50)5x(b) andG.(t50)5G.(b) as an initial
value for the time propagation att50. It is obvious that this
choice does not induce any change during the subseq
real-time evolution. However, att51, we suddenly distort
this equilibrium solution by setting the anomalous comp
nent of G.(t512) to zero, i.e.,m̃(t511)50 and then
propagate forward up tot54. It is important to note that the
new G.(t511) is still a valid fluctuation matrix.

In Fig. 6, we have depicted the number of particles t
occupy the condensateN(c)5Tr$ f (c)(t)%, the noncondensate
Ñ5Tr$ f̃ (t)%, and the total particle numberN5N(c)1Ñ ver-
sus time. Time is measured in units of the harmon
oscillator periodT52p/v. In contrast to these numbers th
are genuine single-particle properties, the anomalous fluc
tions are a physical measure of the degree of two-part
correlations or squeezing.@49# For example, the total particle
number fluctuationŝ(N̂2^N̂&)2& or, more specifically, the
normally ordered density fluctuationŝ: f̂ (x,x), f̂ (y,y):&
would reflect the degree of squeezing of the quadrature c
ponents along certain directionsx,y. While we have not
evaluated such observables here, we have included the a
aged strength of the anomalous fluctuations Tr$m̃% to repre-
sent their size.

The most important feature in Fig. 6 is the exact cons
vation of the total particle number during all phases of t
evolution. The instantaneous change inm̃(t51) does not
affect it directly. But it can be seen that the relative partitio

FIG. 6. Real-time evolution of the total particle numberN

5Nc1Ñ ~solid!, the number of particles in the condensateNc

~dash-dot!, the noncondensate particles numberÑ ~solid! and the
trace over the anomalous fluctuations Tr$m̃% ~dashed-dot!. At t
51, the equilibrium solution is suddenly distorted by settingm̃(t
51)50. Dimensionless time is measured in natural harmon
oscillator periods.
7-10
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REVERSIBLE AND IRREVERSIBLE EVOLUTION OF A . . . PHYSICAL REVIEW A63 013607
ing of the particles between condensate and normal non
densate is massively distorted by this sudden influx of ene
and particles start to oscillate coherently between
coupled subsystems.

In Fig. 7, we show the individual first-order contribution
to the total system energyE5E(c)1E@ f̃ #1E@m̃# as de-
scribed in Eqs.~36!–~38!. Again the most notable feature
the exact conservation of total energy during the time evo
tion. Due to the sudden change in the anomalous fluctuat
at t51, the overall energy increases instantaneously by m
than 400\v.

In Fig. 8, we show the complete spectrum of occupat
numbersP(1<nr<14,0< l<6;t) that occur in the instanta
neous fluctuation matrixG.(t), as defined by Eq.~79!.

FIG. 7. Real-time evolution of the total system energyE5E(c)

1E@ f̃ #1E@m̃# ~solid!, the energy of the particles in the condensa

E(c) ~dashed-dot!, the normal noncondensate energyE@ f̃ # and the
anomalous energyE@m̃#. At t51, the equilibrium solution is sud
denly distorted by settingm̃(t51)50. Dimensionless energy i
measured in natural harmonic oscillator units.

FIG. 8. Real-time evolution of the instantaneous occupat
numbersP(1<nr<14,0< l<6) that characterize the fluctuatio
matrix G.(t). At t51, G.(t) is suddenly distorted by settin
m̃(t51)50.
01360
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From the logarithmic plot that covers 13 decades, it can
seen that the occupation numbers are indeed numerically
act constants of motion. Due to the instantaneous chang
t51, many of the high-energy occupation numbers that
quasidegenerate before the change, split up into a multit
of nondegenerate levels afterwards. Minute changes in
occupation numbersudPu,10210 at the end of the integra
tion period identify the precision loss of the numerical c
culation.

The numerical results discussed in this section were
tained by discretizing the generalized GP Eq.~75! and the
reversible part of the Boltzmann Eq.~76! with a standard
finite element method@50# based onb-splines@51,52#. The
use of these finite-support, piecewise polynomial basis fu
tions results in matrix representations of the kinetic and
tential energy operators that are banded. Very efficient lin
algebra algorithms can be employed in this case@LAPACK
~Ref. @53#!#. In particular, we used a set of 400b-splines on
an equidistant radial grid from 0<r<25'6r TF . Eventually,
we represented the condensate wave functiona ~Fig. 2!, the
particlelike basis statesu1̃& ~Fig. 3!, as well as the phonon
like basis statesu1(c)& ~Fig. 4! in this b-spline basis. Finally,
a subset of quantum states was chosen~either u1̃& or u1(c)&!
with $(nr>1,l>0):2(nr21)1 l ,518'2m% to evaluate
the finite-temperature sums or to propagate in real time.
have verified numerically that no particular advantage can
obtained from either choice, as long as all of the relev
energies scales are resolved. The conservation of the
particle number̂ N& ~Fig. 6!, the total energyE ~Fig. 7! as
well as the instantaneous occupation numbersP ~Fig. 8! sup-
port this argument.

V. THE IRREVERSIBLE EVOLUTION

A. An ergodic equilibrium solution of the master equation

In the following discussion of the irreversible evolution
the kinetic equations, we will again try to elucidate the ma
physics by additional simplifications. In particular, we w
assume ergodicity for the normal fluctuationsf̃ 125d12f̃ «1

,

and the anomalous fluctuationsm̃50. This physical approxi-
mation is appropriate for most kinetic temperatures, exc
for a region close toT50. Within this limit, we are able to
establish an important result for the stationary behavior
the condensed atomic gas, i.e., a canonical Bose-Eins
distribution for the noncondensate particles coexisting w
an energetically lower-lying, coherent condensate mode.
imposing the restriction of vanishing anomalous fluctuatio
upon the kinetic equations,@Eqs.~10! and ~26!#, we are left
with the following equations of motion:

d

dt
a5~2 iPN1YN

,2YN
.!a, ~80!

d

dt
f̃ 5GN

, ~11 f̃ !2GN
. f̃ 1H.c. ~81!

It is worth mentioning that in the real-time evolution th
rotating frame frequencym is still an adjustable paramete
and not necessarily synonymous with the chemical poten

n
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First, let us concentrate on the equation for the mean-fi
amplitudea. From Eq.~80!, we can see that the mean-fie
evolution consists of two distinct parts: a Hermitian, numb
conserving contributionPN , and a part that accounts fo
condensate number changing collisions out of and into
noncondensate, i.e.,YN

,2YN
. . In stationarity, both pro-

cesses have to vanish identically

05~H ~0!11U f ~c!12U f̃2m!a, ~82!

05~G f̃ f̃ ~11 f̃ !2G~11 f̃ !~11 f̃ ! f̃ !a. ~83!

Given the constraint on the condensate particle number,
in principle, straightforward to solve the Hermitian eige
value problem of Eq.~82! and obtain an eigenvaluem. The
later equation Eq.~83! poses a much more challenging co
straint on the coupled system. In order to maintain a stat
ary state, the mean-field has to be ‘‘orthogonal’’ to all nu
ber changing processes. This means that the nor
fluctuations have to adjust self-consistently with respec
the condensate wave function. It is interesting to note that
solutions of this system are infinitely degenerate with resp
to a global phase rotation. In other words, the condensa
phase is not pinned down by any restoring force and is
to drift, consequently. However, the later, vector-valued c
dition of Eq. ~83! is satisfied identically if

05f4912919f19293949dh~«191«292m2«49!

3~11 f̃ «19
!~11 f̃ «29

!a39~11 f̃ «49
!

3F f̃ «19

~11 f̃ «19
!

f̃ «29

~11 f̃ «29
!
2

f̃ «49

~11 f̃ «49

G , ~84!

vanishes for all components 1. Provided that energy con
vation is satisfied exactly, i.e.,«191«295m1«49 , it is
straightforward to verify that a canonical Bose-Einstein d
tribution

f̃ «5
1

eb~«2m!21
, ~85!

with an inverse temperatureb, is the equilibrium solution. In
addition to this functional form of the distribution that
dictated by detailed balance, it is required that all of t
excitation energies are above the condensate energy,
«1.m. Thus the eigenenergy spectrum exhibits a finite g
From Fig. 5 it can be seen that both the positive ene
spectrum of the HFB operatorS as well as the eigenenergie
of SN , are suitable candidates within this approximation

Second, the generalized Boltzmann equation, Eq.~81!, is
stationary if

05~G f̃ f̃ ~11 f̃ !12G f ~c! f̃ ~11 f̃ !1G f̃ f̃ f ~c!!~11 f̃ !

2~G~11 f̃ !~11 f̃ ! f̃12G f ~c!~11 f̃ ! f̃1G~11 f̃ !~11 f̃ ! f ~c!! f̃ .

~86!
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Within the ergodic approximation, the Hermitian part is s
isfied identically. On the other hand, there are two disti
types of collisional relaxation processes in Eq.~86!. There
are the number-conserving in and out rates of the conv
tional quantum-Boltzmann equation, i.e.,G f̃ f̃ (11 f̃ )(11 f̃ )
2G (11 f̃ )(11 f̃ ) f̃ f̃ . Obviously, both rates match identically un
der the detailed balance conditions of Eq.~85!

05f4912919f1929249dh~«191«292«492«2!

3~11 f̃ «19
!~11 f̃ «29

!~11 f̃ «49
!~11 f̃ «2

!

3F f̃ «19

~11 f̃ «19
!

f̃ «29

~11 f̃ «29
!
2

f̃ «49

~11 f̃ «49
!

f̃ «2

~11 f̃ «2
!
G .

~87!

Both of the two remaining distinct processes in Eq.~86!, i.e.,
2G f (c) f̃ (11 f̃ )(11 f̃ )22G f (c)(11 f̃ ) f̃ f̃ , as well as the proces
G f̃ f̃ f (c)(11 f̃ )2G (11 f̃ )(11 f̃ ) f (c) f̃ , involve a condensate par
ticle in the precollision or post-collision channels. Thus, re
particles will be transfered between the condensate and
noncondensate, until the rates are balanced. Analogous t
arguments that lead to Eq.~84!, it can be shown that a ca
nonical Bose-Einstein distribution is attained in equilibrium

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have studied aspects of the revers
and irreversible evolution of a condensed atomic gas
mersed in the noncondensate. By specializing the kin
equations@31# for a simple isotropic model, we were able
analyze the equilibrium solution, as well as the dynamic n
equilibrium behavior numerically. In particular, we obtaine
the excitation spectra of a finite-temperature equilibriu
Moreover, we demonstrated the reversibility of the tim
dependent HFB equations far from equilibrium and in t
collisionless regime. This is tantamount to noting that t
instantaneous occupation numbers of the HFB modes
constants of motion. Finally, we studied the collisional r
gime for an ergodic distribution of quasiparticles and show
that detailed balance is obtained in the full quantum kine
theory with a self-consistent canonical Bose-Einstein dis
bution.

Based on this isotropic model, we can also obtain
collision rates that lead to a self-consistent equilibriu
However, such an analysis is still work in progress and
sults will be presented in future publications.
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APPENDIX A: CANONICAL TRANSFORMATIONS

A canonical transformation is an inhomogeneous lin
combination of creation and destruction operators that p
serves the commutation relation@16#. In particular, if â and
â† denotes a pair of Hermitian conjugated bosonic operat
such that

@ â1 ,â2
†#5d1,2, ~A1!

then any affine linear transformation defines a new se
operatorsb and b̄ by

S b

b̄D 5TS â
â†D1d. ~A2!

In an n-dimensional vector space,T represents a (2n32n)
dimensional matrix andd is a (2n)-dimensional vector. Such
a transformation is canonical if the new pair of operators a
satisfies the commutation relation:

@b1 ,b̄2#5d1,2. ~A3!

More specifically, the transformation is unitary canonica
the new operators are Hermitian conjugate pairs, i.e.b̄
5b†. By inserting Eq.~A2! into Eq. ~A3!, one finds that the
transformation matrices are a representation of the symp
tic groupSp(2n):

Ts3T†5s3 . ~A4!
et

’’
y

s

:

01360
r
e-

s,

f

o

f

c-

In addition, it can be shown thatT* 5s1Ts1 and T21

5s3T†s3 . Here, we have introduced the (2n)-dimensional
Pauli matricess1 ands3 as

s15S 0 1

1 0D , s35S 1 0

0 21D . ~A5!

APPENDIX B: CAUCHY-SCHWARTZ INEQUALITY

For a positive semidefinite density operators and a gen-
eral operatorL̂ it follows that the expectation value

^L̂L̂†&5Tr$sL̂L̂†%>0 ~B1!

is never negative. Consequently, the covariance matrixG.

of Eq. ~24! must be positive semidefiniteu†G.u>0, as well.
This can be easily seen, by considering a linear combina
of two arbitrary operatorsÂ and B̂, i.e., L5aÂ1bB̂. By
minimizing the positive expression Eq.~B1!, one obtains the
Cauchy-Schwartz inequality as

^ÂÂ†&^B̂B̂†&>^B̂Â†&^ÂB̂†&. ~B2!

In particular, for the special choice ofÂ5â12a1 and B̂
5â2

†2a2* , this implies that the magnitude of the anomalo
fluctuations is limited by

~11 f̃ 11! f̃ 22>um̃12u2. ~B3!
d,
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