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Reversible and irreversible evolution of a condensed bosonic gas
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We have formulated a kinetic theory for a condensed atomic gas in a trap, i.e., a generalized Gross-Pitaevskii
equation, as well as a quantum-Boltzmann equation for the normal and anomalous fluctiRtidvalser
et al, Phys. Rev. A59, 3878(1999]. In this paper, the theory is applied to the case of an isotropic configu-
ration and we present numerical and analytical results for the reversible real-time propagation, as well as
irreversible evolution towards equilibrium.
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[. INTRODUCTION tion. While cold quantum gases had been studied extensively
in the 1950-60's, they were mainly considered as precursor

More than 70 years ago, Bose and Einstein proposed theories for strongly interacting systems, such as liquid he-
provocative hypothesis—that at ultralow temperatures dium. Thus, most of the available results were focused on
novel state of matter should exist. They predicted this statépatially uniform systems in thermal equilibrium. Excellent
could be attained by cooling an ordinary gas towards absoaccounts of these standard results can be found, for example,
lute zero. At a well-defined point in this process, a spontain the textbooks and monograph$4-19. However, the
neous transition should occur and change the state of mattépatial nonuniformity, the thermal isolation resulting from
from an unordered ensemble of individual particles into onghe confinement in a ultrahigh vacuum trap, as well as the
collective entity. This single object, now devoid of its many- large disparity of collision and relaxation time scales, are
particle character, ought to evolve as a collective matteindispensable ingredients for a quantitative description of to-
wave. day’s experiments.

With the discovery of superfluidity in liquid helium in To account for these differences that distinguish the
1938 and its subsequent explanation in terms of BosePresent experimental situation from the homogeneous Bose-
Einstein condensatiofBEC), the hypothesis had been firmly Einstein gag20—23, a growing number of equilibrium and
established. In turn, this phenomenon has had a major impatenequilibrium kinetic theories have been recently presented
on the development of modern quantum physics. Today,24—29. However, the effort to go beyond the mean-field
BEC is fundamental to our understanding of many low-description of the Gross-Pitaevskii equat{@Q] is consider-
temperature phenomena and it is the cornerstone of margble. Thus, the research for a unified description of the equi-
quantitative explanations. However, up to 1995, condensdibrium and nonequilibrium situation is still very active.
tion of a weakly interacting, atomic Bose-Einstein gas had In this paper, we explore numerically and analytically
never been achieved, as such. some of the implications of the reversible and irreversible

With the ground-breaking accomplishment of condensinggVvolution of a condensed gas immersed in the noncondensate
atomic®’Rb by Cornell and Wiemast al.[1], of sodium by  cloud. The points discussed are organized as follows. Section
Ketterleet al.[2], and lithium by Huletet al. [3], a chapter Il revisits the main results of our kinetic thediy1], i.e., the
of quantum statistical physics has been opened. It is nowwo-particle Hamiltonian and the energy and number con-
possible to study in a table-top experiment quantum statistiserving collisional kinetic equations for the condensate, as
cal effects of material objects on a human scalp to 5 Well as the normal and anomalous fluctuations. In Sec. IlI,
mm—the very phenomena that govern the otherwise microwe specialize these kinetic equations for a completely isotro-
scopic physics of nuclear matter, macroscopic quantum ligRic situation. Based on these prerequisites, we discuss in Sec.
uids, or astronomical objects, such as neutron stars. IV the results of propagating the collisionless mean-field and

Today, more bosonic alkali-metal elements have crossethe Hartree-Fock-Bogoliubo(HFB) equations in real time.
the transition temperature, in particular atomic hydrofgn ~ Finally, in Sec. V, we study the evolution of an ergodic
as well as®®Rb [5], and many more vastly improved experi- distribution towards equilibrium in the presence of colli-
ments have been carried out. For example, it is now possibl8ions.
to examine multicomponent condensdi@d], to create vor-
tices[8,9], and to prepare topological modgk)]. For a list
of current experiments see RE11], or the review article in Il. KINETIC MASTER EQUATIONS
Ref.[12]. However, the technological breakthrough of com-
bining laser cooling with evaporative cooling is not limited
to bosonic species only. Most recently, the fermionic isotope The kinetic master equation of the weakly interacting di-
of potassium*) has also been cooled successfully belowlute atomic gas describes the coupled evolution of the con-
the Fermi temperaturgl3]. densed fraction immersed in the quantum fluctuations. In this

Instigated by these spectacular experiments, strongly resontext, we associate the condensate with raimber field
newed interest has developed in their quantitative descripa,(t) that represents the expectation value of the quantum

A. Master variables
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field (&,(t)). The field operatod, removes a particle from Here, H®) denotes a single-particle Hamiltonian operator
point x and satisfies the scalar, equal-time commutation regith matrix element9—|(°)12=(1|p2/(2m)+Vext(x)|2). For

lation, the external trapping potential, we assume a three-
A At dimensional isotropic harmonic oscillatdf (X)) = mw?(x?
[a)(1ay]_5(x_y)1 (1) 2 2 H H
+y“+2z)/2. In most of the present experiments with large,
stable condensates, the two-body interaction potentials
Vpin(X1—X,) are repulsive and of short range. From such
otentials, we can obtain two-particle matrix elements as

of a boson. The position representatigr)} used above is
not necessarily the most suitable basis to formulate a kineti
theory. It proves to be more useful to postpone the choice
a particular representation and to formulate the theory in 1

terms of a general single-particle bagis,)} that spans the ¢1234:§(S)<1|®<2|Vbin(x1—x2)|3)®|4), (7)
same single-particle Hilbert space:

¢1234: ¢1243: ¢2134: ¢2143_ (8
a,=2 & (xliy). 2) _ . .
1 Only the symmetric part of the two-particle matrix element

_ $1%*is physically relevant. Therefore, we have explicitly
In the case of an unstructuréscalay atomic condensate, (s) symmetrized it. In the low kinetic energy range that we

three external quantum labels ( are sufficient to describe  are interested inswave scattering is the dominant two-
its motional state in space, completéljn this manner, we particle scattering evefi82—34. Thus, by discarding all de-

can expand any field as tails of the two-particle potential, we can describe the inter-
action strength with a single parametég related to the
<é>:2 i i) =al)=a. 3) scattering lengthag by Vo=4mh2as/m. This limit corre-
PR sponds to a singular interaction potential, i.¥pi(X1,X>)

=V;8(X1—X5). In the case of this delta potential, one finds
Here we have simplified the notation by dropping the naméor the two-body matrix elements:
of the dummy variable, i.ei;=1, and by assuming implicit

summation over repeated indices, as usual. 0
In an analogous fashion, we can describe the normal den- ¢1234:7f d*x(L[x)(2|x)(x|3)(x|4), ©)
sity of the atomic ga$=(a'a)=1(+f by a Hermitian ten-
sor operator of rankl,1): which need not be symmetrized, as they are symmetric al-
ready. However, considering the caveats that are related to
T=T1)(2|, 1©O=0a%ay|1)(2|. (4)  the singular functional form of the two-particle potential,

[35], we will only rely on the existence and symmetry of

Moreover, we will always decompose any quantum averagéhe two-particle matrix elements as defined in Eq.
into a mean-field contribution and the remaining fluctuations.

Similarly, we define the anomalous averages={aa) C. Mean-field equations
=m(®+m as symmetric tensors of rariR,0), Based on these assumptions, we have derived a set of
o ©_ kinetic equations that describe the dynamical evolution of
Mm=m,[1)|2), m=aza|1)[2), (®  the condensate fraction immersed in a cloud of nonconden-
. ) . sate particles. By discarding all of the interactions except for
and their symmetric conjugates as- my,1[(2|. the condensate’s self-interaction, they reduce to the familiar
Gross-Pitaevski{GP) equation for the mean field. How-
B. Dynamical evolution ever, due to the presence of anomalous fluctuatibnshis

nonlinear, but otherwise unitary GP equation acquires a con-

T_he Kinetic evolution of a weakly Interacting gas 1s pri- tribution proportional to the time-reversed or complex con-
marily governed by the motion of the individual particles in jugated fielda*

the external trapping potential and by binary collisions. Si- To represent these equations compactly, it is useful to

multaneous collisions of more than two particles are unlikely, . )
rrange them in a2 2 matrix form. Moreover, we transform

events in a dilute gas. Consequently, we will disregard sucﬁf . . : . "
! : -this field equation to a frame corotating with a positive fre-
processes and use the following number-conserving Hamil-

tonian operator: guencyu defined bya(t) =exp(—iut)a(t). However, in or-
P ' der not to overload the notation, we will suppress the over-

A=R0O 4 I3|(1)=H(°>12r§1132+ ¢1234é*{é;é3é4. 6) line in the following generalized GP equation:

d :
&XZ(—IH+Y<—Y>)X. (10)
1This is readily generalized to accommodate multiple internal

electronic configurations if, encompasses more quantum labels The two-component state vectgr=(a,a*)", introduced
accordingly, i.e.]i;)=|ny,l1,my;F1,Mq,...). above keeps track of the forward and time-reversed compo-
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nents of the mean field. It is symmetric under time reversalWithin the Born-Markov approximation of kinetic theory,
i.e., x=o1x*. The Pauli matrixo; achieves the exchange of we define these elemental collision processes as
upper and lower components and is defined in Appendix A.

Two distinct processes govern the real-time evolution of [‘fff:8¢12'3'4/¢1””2"3”4//f3,1,,f4,2,,f4,,2,|]_><3”|’
the mean field. First, there is the generalized GP propagator
that is defined as Ffmf=8¢12'3'4'¢},"2"3"4"f3,1,,m4,3~f4n2,|1>|2”>,

M, Iy (21)

= ral gl !!2”3" n ,
1_‘[ _H; _HX/- . (11) Ffmn:8¢12 3 4 ¢%] 4 f3/l//m4/3//n2"2/|1><4, |,
The two contributions that define this symplectic propagator Ty, =8¢ %4 ¢ 2% 4 Mg oMy gy [1)[17).
are a normal Hermitian Hamiltonian operator

During a binary collision event, two particles can conserve

I\ =HP+1Us0+2Ui— u, (12 their energy only approximately. After all, the individual
i ) scattering event happens within a medium and the asymptot-
as well as a symmetric anomalous coupling strength ics cannot be reached within the finite duration of the colli-

sion. Thus, within the limits of the Born-Markov approxima-
tion, any second-order collision operator accrues a dispersive

It is easy to identifyll - with the well-known unitary GP as well as a dissipative part from the complex valued matrix
N element:

propagator that accounts for the free evolution of the mean=
field (H(®— ), its self-interactiorlJ¢(¢), as well as the en- 1
ergy shift U7 caused by the presence of the noncondensate LIV —prAIY (22)
cloud. However, due to the existence of the anomalous fluc- K n—1Aynongrgn

tuations there is also a coupling through, to the time- . . _ )
reversed field. For convenience, we have introduced twdét iS essentially nonzero only if the energy difference
auxiliary operatord; andV,,. Explicitly, they are defined A172737ar=81/(t) +e2/(t) —3/(t) — 24(t) between the pre-

in terms of the two-body matrix elements, such as and post-collision energies is smaller than an energy uncer-
’ tainty #:
Uf:2¢12’3/4ff3,2,|1><4/|, (14) 1
i . i — = +iP, —.
and a first-order anomalous coupling strength lim n—iA mo,(A)HIP, A (23
7—04
V=203 my,4/|1)]2"). (159  On general physical grounds, it can be argued that this un-

. _ certainty » is bracketed by the binary collision rate, on one
Second, there are all of the collisional second-order dampingije and the energy uncertainty arising from the finite dura-
rates and energy shiff20-23 that are given by tion of an individual collision event on the other side. As we
have shown, one has also the liberty to choose a more accu-

< <
Y<=( Yy Y4 ) (16) rate intermediate propagator such that the single-particle en-
—Yj* —Yf/* ' ergiese(t) and the eigenstates incorporate mean-field shifts.
and the time-reversed contributidh™ = — o, Y ~*o,. It can D. Normal and anomalous fluctuations
be shown that they are equivalent to the extended Beliaev _
rates[36]. The normal and anomalous fluctuatioi($) andm(t) of
The forward and backward transition rasy, Y3, a quantum field are not independent quantities, but actually

Y7, andY3, describe the bosonically enhanced scatteringhey are the components a generalized single-time density

> .
of noncondensate particles into and out of the condensate. RPeratorG=(t):
turn, these transition rates are formed from various binary

scattering processd§ and are given by G = f m ~0 (24)
< e - - Ho(1+T)*
Y =T+ 1)+ 20 R, (17)
The non-negativity of this covariance operator implies that
Y= 147 )a+T i+ 20 (147 i (18 the magnitude of the anomalous fluctuations is limited by the
normal depletion through a Cauchy-Schwartz inequality
and (see Appendix B In the general context of Green
_ L function’s[15,16 this single-time density operatds~ (t)
Y 1 =Taan+ 2017 (19) can also be viewed as a particular limit of a time-ordered
- (), two-time Green function G(7,t), ie., G7(t)
Y 1= i+ 20 (147 i - (20) =lim,_, 7G(r,t). Consequently, it is also necessary to
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consider the opposite limit and to define a time-reversed,
single-time density operator through G=(t)
=lim,_, 7G(~,t). Explicitly, this operator is given by +2(F 45+ renmmt T a+7 ymen+ 47 )mne©),

(32

> ~ ~ o~ ~ ~ ~ ~
=Tty it DastrertaT)asteo

1+f and
| (25

G<:0'16>*0'1:G>+O'3:

T3=T @+ moyint L iamen+ in©
With the help of these definitions, we can now present the
results of the kinetic theory as a generalized Boltzmann
equation for the single-time density opera@®r (t) as

+2(I F+eyma+t) T Dimoa+7)t Fimee), (33
I 2=T @+ moyint L imen+ Dimn©

%G>=—iEG>+F<G<—F>G>+H.C. 26) +2(T 1471 0)ymit LT ymei LT Hme).
(39

In analogy to the previous discussion of the mean-fieldt is interesting to note that all of the collision processes that
dynamics, we again find that the evolution of the densitycontribute to the Boltzmann equation, E@6), are of the
operator is ruled by two types of propagators. First, there isame basic structure as the collision operators in the GP
the Hartree-Fock-BogoliubotHFB) self-energy operatof, ~ equation, Eq(10). In particular, one can generate all of the
that can be obtained also by variational methdi§]. In processed = andI'~ by functional differentiation fron =

detail, this symplectic self-energy is given by andY~. This very fact is actually the key principle to the
functional-analytic Green functions method described in Ref.
Sy 24 [15] and, for example, leads to the gapless Beliaev approxi-
2= _yx _2*), (277 mation[22,41].
A N

. o . . E. Conservation laws
where we have introduced Hermitian Hamiltonian operators

and symmetric anomalous coupling potentials as 1. Number
S =HO 12U 0+ 2Ui— (29) The total particle numbeX is a conserved quantity if the
N f re atoms evolve under the generic two-particle Hamiltonian op-
S o =Vimers s (29 eratorH given by Eq.(6), i.e.,[H,N]=0. This conservation
- m“+m) -

law implies that the system is invariant under a global phase

It is important to note the different weighing factors of the F:hangea—>aexp@<p). By using this continuous symmetry,

mean-field potential in Eqg12) and (29), as well as the -8 @—aexple), f—f, andm—mexp(d¢), it is easy to
appearance of the anomalous condensate deméfyin Eq. see that. kinetic Eq:{lO) and(26) are also explicitly number
(29). This HFB operator is the usual starting point of any Conserving at all times:

finite-temperature calculations. Depending on additional
considerations, i.e., “gapless vs conserving approximations”
(see Refs[22] and[37-40Q), the anomalous couplingés,
are usually discarded from Eq§l3) and (29). However,
since we do go beyond a first-order calculation, we need t
retain all contributions for consistency.

Second, the Boltzmann equation, E26), introduces for-
ward and backward collision operatdts andI’~. They are
responsible for particle transfer out of and into the conden- ) o
sate on one hand, and lead to thermal equilibration within the In the absence of any time-dependent external driving
noncondensate cloud, on the other hand. These forward arilds, such as optical lasers or magnetic rf fields, the overall
backward collision operator are defined by energyH must be conserved as well. To find the expectation

value of the total system enerdy=(H)=Tr{Ho(t)}, one
Iy r; can use the same power-series expansion of the coarse-
_[E* 7o (30 grained many-particle density matrix(t) that leads to the
A N kinetic equations. Thus, within the limits of the Born-
Markov approximation and the systematic application of
Wick’s theorem, we have obtained first- and second-order

contributions for the energyE=Tr{H(o{)),+ o))}

+0 [3]. Explicitly, this energy functionaE=E© + E[]
+2(I G4yt Timent Timne©), (31 +E[M], is given as

(N())=Tr{f©(t)}+ Tr{f(t)} =const. (35)
Nevertheless, it is important to note that there are always
coherent and incoherent processes present that do transfer
?)articles between the condensate and the noncondensate
clouds, continuously.

2. Energy

r<=

andl'”=—o,I'"~* o, where

< ~ ~ ~ —~ ~ .
=T teniast) T iroat) o
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E(C):Tr[ [ H(O + %[lUf(cH— 2U7+i (Y;[_ Yf/)] (e Tr{TIm(l_Z)Tlmr(3_4)T}: 613624011 Sy » (40
1 TH{S(12)S,,(34) "} = 65365201 6y - (41)

+ 5 Vati(Y3=Y)n, (36) ' o
In the case of a scalar field=0), one can simplify Eq(39)

1 by the following relation for the Clebsch-Gordan coefficients
~ ~ 11,0 1. — .
E[T] =Tr( [ HO 4+ E[2Uf(c)+ 2U+i(Fy— F;)]} f] , Cnﬁlfnzo— 5|1,25m1,_m2(— 1)'17™M/{2],+1. Provided the ba-
37) sis states transform under a coordinate rotation, here denoted

by R, according to the finite dimensional representation of
the rotation grouD'(R) [43],

E[m]=TrE[Vm(c>+ﬁq+i(l“(f—l“j)]”ﬁ]. (39
Ug[nimy=> |nim")yD}, (R); (42)
For example, the same first-order results can be found in Ref. m
[16], derived by a variational procedure. it follows that the set of tensors{T.|/m/<I} and
{S,/l[m|=<I} are irreducible as well:
lll. A COMPLETELY ISOTROPIC SYSTEM

In the previous section, we have reviewed the main results Up®Up Th(12)=> T,,(12)D, (R), (43
of the kinetic theory that describes the coupled evolution of m’
the condensate immersed in the noncondensate. The formal
derivation did not rely on a particular trapping geometry, nor UR(X)URslm(l_z) = 2 s:“,(l—z)p'm,m(n)_ (44)
a special form for the binary interaction potential. In order to m’
gain deeper understanding of the intricate interactions, we
will now specialize the theory to the most simple, though B. Isotropic two-particle matrix element
realistic, three-dimensional model: a completely isotropic .
configuration, a spherically symmetric harmonic trapping po- The most commonly used model for a short-range binary

tential, and a binary short-rangavave scattering potential. interaction potential is the-wave hard-core delta potential
' Vpin(X1,X2) =V8(X1—X5). This model potential is most

) _ suited to describe the low energetic collision dynamics of
A. Irreducible tensor fields two real particles. However, it has to be used with caution in
Complete isotropy is easily achieved for the mean field byconnection with infinite summation over virtual, high-energy
decomposing it in terms of a few zero angular momentunstates. It is clear that the energy independent scattering ap-
partial waves. For this purpose, we will use a set of basigroximation fails above a certain energy range when the spa-
states{|1)} that can be characterized by radial and angulatial scale of variation of the high-energetic wave functions
momentum quantum numbers(n,l,m), i.e., (x/1) begin to sample the detailed form of the interaction potential.
- Rlnl(r)ylr% (0,0). Thus, the true value of the.interaction matrix element ought
1 1 . . . fto decrease much faster with energy than the value obtained
However, in order to |solat§ the isotropic components O%rom the simple hard-core delta-potential approximation. It is
the noncondensate fluctuatiorisandm, we need to gener- el known that indiscriminate use of the energy indepen-
alize the concept of partial waves and introduce an irreducdent approximation leads to a nonphysical ultraviolet diver-
ible set of tensor fields. Furthermore, by only selecting thegence[28,35,4é}.
scalar componentl 0), we can enforce the desired radial ~ Considering these limitations, we will use tlewave
symmetry. Thus, according to Refgi2] and[43], we intro-  scattering matrix element that is obtained from the energy-
duce irreducible representations of tensor fields of rankindependent approximation, i.e.,
(2,0, (1,1, (0,2 as

V 0
Th(12)= > (—1)'27™C?'? Injlimy)(n,lomy, ¢1234:70J’focds)((1|X><2|X><X|3><X|4>’ (49

mq,My
(39 only for energies below a certain level and truncate it appro-
p— Ll priately otherwise.
Sn(12)= > (-1) 2lemzmmll 1Mg) [Nzl ,my). By using the basis statég|1) = erl(r)Y'nﬁl(a,@), we can

my.m;
decompose the matrix elemet?®* into a reduced radial
The quantum labels carry additional overlines or underline,art 1234 and a purely geometric factof234,
to indicate whether a function depends only on two of the

three quantum labels, for example_,EI.nl,Il) or 2 p123A= 1234y 1234 (46)
=(l,,m,). With these definitions, it is easy to verify the
following orthogonality relationships: where
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s Vo [, N N N N The first-order normal mean-field potenti&l; and the
o= fo rdr RADRZNDR AR Ar) - (47) anomalous coupling strengih, are then
and Up=¢12 3491 5 | fa2TY(14"), (53
I* % | | _ 412'3'4’ 13’ 0,757
Y1234=f 2OV, Q)Y ()Y ()Y () Vm= ¢ 707 by, Merw (127 (54
= 2 lsldlile I3l Finally, the normal and anomalous collisional contributions
_2 000 000 ~m;my(my+my)~ mam,(mg+my) simplify to
= g
1=0 ATl al Aol Al ATl gt
am2+ 1| 1 @i+1) |72 Tipp= g2 34 gl 28 g2 s 811,01,
(48) X fg i ranfary TH(13"), (55)
In the context of evaluating the collision integrals, it will r =¢1_2'§'Z' ¢p§g@, 2N s s s
be necessary to consider products of two matrix elements fmn n g Tarl g Clgrlgn Dlgnl o

summed over all energetically accessible sublevels. Within o=

1 1 H 1 Xf ! Hm ! Nn n /T (14”) (56)
the isotropic model, all magnetic sublevels are energetically 3raritiargriizn2 to '
degenerate. Moreover, spherical symmetry demands an equal

population distribution and rules out the existence of coher- [y = 12’34 gL' 234 gl2'3'4 5 | 5 | 5
" . . . . 31 43 472
ences within magnetic submanifolds. Thus, it will be re- L
quired to know the magnitude ¢¥*2%| averaged over all X f3 Mz a2 So(12"), (57)
the magnetic quantum numbers. For later reference, we will
now introduce such conveniently scaled factors as 12'3'4" 41"2"3"4" 12'3'4’
- y e 92 381,080,158,
12 _ 1/2 -
1234 _ o, 212,34y~ 1 12342
g'?¥=2(m?gl2g®) "t > |vi2 IV. REVERSIBLE EVOLUTION
mymomsMmy
- '1'2'C'3'4')2 In this section, we will examine several limiting situations

:29593'42 000 ~000 (50) of the reversible evolution in order to elucidate the complex
= (21+1) behavior of the condensed gas. Since canonical transforms
- and Hartree-Fock-BogoliuboyHFB) operators are crucial
These coupling strengthg?** in Eq. (50) measure the for an understanding of the reversible evolution, we will re-
amount and principle connectivity between precollision andview the main result$16]. Subsequently, we are going to
post-collision angular momenta submanifolds 3,(,) examine the stationary equilibrium, as well as the reversible
—(l4,1,). In particular, it establishes a parity selection rule "eal-time evolution of the condensed gas.
such that the coefficients are nonvanishing only if the sum of
the angular momenta i +1,+15+1,=even. In addition, A. Structure of the generalized density matrix
transitions are allowed only if the angular momenturis

i X The definition of a generalized density matfix i.e., ei-
within a range of maXi(;—1,|,|l3—l4)<l<min(ly +1,,I5+1,).

therG~ or G=, was given in Eqs(24) and(25). Its specific
structure implies various important physical properties.
C. Scalar component of states and energies First of all, we have to assume that there is a basis that
With the help of the auxiliary results established in thediagonalizes this (@x 2n)-dimensional fluctuation matrix.
previous section, we are now able perform the desired mulExactly n of its 2n eigenvalues correspond to the positive
tipole decomposition of the kinetic equations. The postulatéccupation numbers of finding a particle or, more generally,
of complete isotropy then implies that we can focus on thed quasiparticle in a certain mode. For a given, but otherwise

scalar component of the field0) exclusively. This is arbitrary, G matrix, one can construct this basis by studying
the transformation law of the density matrix under a canoni-
a=8 odmora|1), F=T1,T5(12), cal transformatiorT (see Appendix A
(51) G'=TGT". (59

M=m;,SH(12), M= (12).
It is important to note that this is not the transformation law
Analogously, we can decompose all normal operators, SUCl 5 general matrix under coordinate change. This would
as the bare single-particle Hamiltonian operator, as require thaff =T, However, by only using the properties
of the symplectic transformations, one can show that a ca-

0)_ @ 0747
HO'=H ;. To(14"). (52 nonical eigenvalue problem is defined by

14/
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(agG)TT=TT(agG’). (60) this energy basi§V is in general distinct from the instanta-
neous basi¥&/ that diagonalizes the fluctuation mati@ in
The solution of this eigenvalue problem yields the eigenvecEq. (61). They do coincide only in equilibrium. The math-
tor matrixTT and the corresponding diagonal eigenvalue maematical properties of the eigenstatésan be derived easily
trix 03G’. Here, we have introduced standard Pauli spinfrom the intrinsic symmetries of the HFB operator:
matriceso; and o3, which exchange upper and lower com-

ponent of a & dimensional vector, or flip the sign of the S=—02%0y, (66)
lower segment, respectively. All normalizable states can be +
rescaled such thato3T"=03. Now, we are able to recon- Y'=03303. (67)

struct the positives matrix . . . .
P Thus, if W and E are the solutions of the right eigenvalue

GZVPVT, (61) problem,
from its eigenvectors/=o,T" and the diagonal, positive TW=WE, (68)
occupation number matriR= 3G’ o3. ) i — )
Second, an important feature of an admissible fluctuatioft follows directly from Eq.(66) that W=, W*, is also a
matrix is its consistency with the commutation relation, i.e.,right eigenvector but corresponds to the eigenvaiiire

(a,a))=(aja;)+ 6,, and (4,8,)=(4,4,). This can be ex- —E*. Starting from the second symmetry in E£§7) and the
pressed compactly as right eigenvalue problem of E¢68), it is easy to construct
. the left eigenvectorsV=W'o 5 that correspond to the eigen-
7,G* 0, =G=03. 62 ajuesE=E*;

By invoking the properties of a unitary symplectic transfor-

mation, one can show that the elements of the diagonal oc-
cupation number matri are not 21 independent variables.
Actually half of them are determined by the other half

W3 =E*W. (69)

Finally, from a combination of the results for the right and
'left eigenvectors, it follows that the eigenvectors are or-
----- thogonal with respect to the metric;:

o1Po1=P=0s. 63 0=(E*—E")WLosWe/, (70)

In other words, by separating the occupation numifeand
the eigenvector matri¥/ into a first and second half, i.e.,
(P,,1+P,)=P and (V. ,V_)=V, one can then decom-

if E*#E’. On the other hand, this relation implies also that
eigenvectors that belong to complex eigenvalues must have

: - zero norm.
pose a general fluctuation matrix as The situation of a doubly degenerate zero-energy eigen-
G=V,P.VI+V_(1+P V. (64) value E=0 needs special attention. One can view this case

as a limit when two nondegenerate states approach each
other. However, as the energy gap decreases, the two eigen-
B. Structure of the Hartree-Fock-Bogoliubov operator states become more and more collinear. Thus, in the limit of
The symplectic HFB operator arises not only naturally in@ vanishing energy separation, the dimension of the spanned
kinetic theories or variational calculations, but in many othervector space collapses from 2 to 1 andvecomes defective.
contexts involving stability analysis. In the case of bosonicln the present context however, we did not encounter this
fields, the self-energy operator is of the generic form: situation(see Ref[16] for details.

Sy Sy
—3 g5 -3

C. Stationary solution of the Hartree-Fock-Bogoliubov
equations

2= . (65

" t In spite of the complex nonlinear interactions taking place
In here,X \;stands for a Hermitian operatlin =2 :and 4 \yithin the atomic gas, the kinetic evolution is completely
denotes an anomalous coupling term that has to be symmegsyersible if we disregard all collisionally induced redistribu-
ric X 4= . The relative size of the operato¥sy and> 4 tions of quasiparticles. Thus, for the moment, we will elimi-
determines the character of the energy spectrum. It can eith@gte the collision operator¥ and I' from the kinetic Egs.
be real valued with pairs of positive and negative eigenener¢10) and (26) and we will study the collisionless stationary
gies, or one finds a doubly degenerate zero eigenvalue, if thequilibrium, as well as the real-time evolution in this section.
energy difference between the smallest positive and highest Wwith these assumptions, we are left with the following set

negative vanishesgapless spectrumin the general case, of stationary equations for the mean figfcand the fluctua-
there is a mixed spectrum consisting of pairs of real signjons G™:

reversed as well as pairs of complex conjugated eigenvalues.

The eigenvectoryV are normalizable with respect to the in- 0=ITIy, (72
definite norm||W|>=W'ao3W, except for those that belong
to zero or complex eigenvalues. It is important to note that 0=3G"-G~3" (72
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FIG. 1. Self-consistent potential energy densities of the conden- F!G- 2. Position density O(fc)the mean-fiefd(r) (solid), the
sate Hamilton operatofl - (solid), the noncondensate Hamilton Thomas-Fermi approximatiofirg(r) (dashed-dot as well as the
operator?, ,; (dashed dot and the bare harmonic-oscillator potential hormal fluctuationsf(r) (solid) and the anomalous fluctuations
(dashes versus radius. Energy and length are scaled in the naturdn(r) (dashed-dot Density and length are scaled in the natural
units for a harmonic oscillator. units for a harmonic oscillator.

The self-energies of the condenshtand the noncondensate ~L/(@me7)]2= 763nm, theswave scattering lengtias

3, are nonlinearly coupled and implicitly include the rotation =5.82nm=7.63<10""a,, a very low temperature digT

frequency of the mean-fielg, =0.2hw, and a condensate number chosenl\lé_§:104.
However, the equilibrium solution to Eq&/1) and(72) is Thew isotropic particle densmgs are r_lormallzed {0}

not fully determined as it stands. From the results of the=/odr r*f(r). From the effective coupling parameter

previous section, we know that any fluctuation ma@x  =as/ay, one obtains an estimate of the mean-field energy

that is diagonal with respect to the positive and negativeshift as ure= (15N «)#%2=8.36. This gives an excellent

energy eigenvectorg/= (W, ,W_) of 3, will be a station- approximation of the self-consistent chemical potential of

ary and complete solution of E¢72) n=8.52, as can be seen in Fig. 1.
The position densities of the condens#&t(r), as well
GT=W,P. W +W_(1+P )W'. (73)  as the local densities of the normal and anomalous fluctua-

tions, i.e..f(r) andm(r), are represented in Fig. 2. First of
By choosing a canonical Bose-Einstein distributionall, it has to be noted that the solutions are real valued. This
P(E>E,) = 1[exp(BE)—1] for the quasiparticles above the important fact follows from the detailed structure of the sta-
nondegenerate ground stdg>0 and a vanishing ground- tionary Eqs(71) and(72), which are invariant under a global
state occupation numb@(E,) =0, we obtain a variationally phase change. Second, if we focus on the condensate density,
minimal energy solution for the total system at some inversene can see that it closely follows the Thomas-Fermi ap-
temperatures [16]. proximation f{2(r)=(r2.—r?)/(2«), for radii less than
r1e=2u~4.12. This limit is valid in the strong-coupling
G>= Z p(E)WEWEJr[lJFP(E)]W_EW‘LE_ (74) regime N.(C)K>1, where the kinetic energy is a negll.g|ble
E=E, contribution compared to the external trapping potential and
the self-energies. The self-consistent solutions for the normal
In order to understand the self-consistent equilibrium soand anomalous densities are depicted in the lower half of
lution of Egs.(71) and(72), it is useful to examine first the Fig. 2. While all normal densities are necessarily positive,
potentials that govern the evolution of the condensate, age anomalous fluctuations carry a negative sign. The anoma-
well as the noncondensate. In Fig. 1, we depict the potentidbus fluctuations are the response of the noncondensate me-
energy densities of the normal Hamiltonian operatdrg  dium to a phase-coherent mean field. In analogy to the po-
andX , versus radius that arise for the zero angular momentarization of an atom that is subjected to an electric field, it
tum manifold| =0, i.e., Vet LU and Vet 2U¢o), re-  tries to compensate for the external perturbation. In the
spectively. They are compared to the bare isotropieevaluation of the normal and anomalous fluctuations, we
harmonic-oscillator potentiaV.,=r?2/2, for reference. Here have truncated the finite-temperature sums beyond the radial
and in all of the subsequent results, we will use the experiand angular momentum quantum numbers 14 andl =6.
mental data of a typicai’Rb condensat@45]. All physical  This leads to fully converged values of the normal fluctua-
parameters are scaled in the natural units for a harmonitions. However, it has to be noted that the values of the
oscillator, i.e., the angular frequenay=27200Hz, the anomalous fluctuations are still subject to charifigther
atomic massmg;=86.9092 amu, the ground-state siag decrease As long as one keeps adding vacuum contribu-
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FIG. 3. Radial eigenfunctionR" (r) of the particlelike basis FIG. 4. Radial eigenfunction®" (r) of the phononlike basis

= . . - (c) i iltoni (0)
states| 1) associated with the noncondensate Hamiltonian operatoistatesll ) of the mean field Hamiltonian operatH +1Uso .
ersus radius. Depicted are a few representative states for the radial

H(® 42U versus radius. Depicted are a few representative state$ v
for the radial and angular quantum numbers=1,2,10 andl  and angular quantum numbers=1, 2, 10, and =0,2.

=0,2.
terms of the HFB self-energy operatdisand 2. It can be

tions at an unaltered strength of teaevave matrix-element seen that theswave energies ofl,  and II are virtually
$M1al2n3lanils [see Eq.(46)], this would lead to the well identical. In contrast to this, one finds that the excitation

known ultraviolet divergencé28,35,44. Thus, a judicious frequencies of the fluctuatio®sare characteristically shifted

truncation, or alternatively an energy renormalization isdownwards from the energies of the noncondenSgte It is

needed to remove the nonphysical divergence that aris§so important to note that the self-energy of the fluctuations

solely from the energy-independent approximation of the®\ includes t_he energy shifts of the non_co_ndensa_te_itself.
scattering amplitudes. These numerical results compare well within the limits of

In Fig. 3, we show a few selected radial eigenfunctions"a"dity with the perturbative and semiclassical approxima-

~ r .. tions of Refs[46—48§.
_pn |
(X[1)=R{"(r)Ym(6,¢) of the noncondensate Hamiltonian "¢ spectrum of eigenvalues Bfexhibits a characteristic

operator HO+2U¢)[1)=24|1). The lowest energy state energy gap above the condensate energy lpvet is well
Rln:o (r) is localized at the rim of the condensate known that this gap energy vanishes asymptotically for a
rte=2u~4.12. It has a smaller spatial extent than the con-
densate and consequently a higher energy sAdiave func-
tions (| =0) have a finite value at the origin in contrast to the  10f
>0 states that must be vanishingrat 0. An eigenfunction of
that is characterized by quantum numbens,l) hasn'—1
nodes. Eigenfunctions corresponding to higher angular mo-
mental are shifted outwards due to the increased angular 7|
momentum barriet(1+1)/r?. The corresponding eigenen- 6
ergies are depicted in Fig. 5. In the context of spatially ho- E."s__
mogeneous condensed matter systems, these eigenfunction:
are associated with particlelike excitations.

The other relevant set of eigenstates arises from the con- 3
densate Hamiltonian operator, i.e., the stationary GP equa- 5|
tion (HO+1U©)|1©@)=¢,|1(9). The lowest self-
consistent energy eigenstate defines the condensate wave
function. A selection of these eigenstates are shown in Fig. 4. [
As these states correspond to the low energetic excitation
modes of the condensate they are referred to as phononlike.

_The_ eigenenergies of the isotropic<0) modes are shown FIG. 5. Energy spectr&!" versus radial and angular quantum
in Fig. 5. numbers (n'<8 and O<|<6 for the phononlike states dfl

We have compiled the four important positive energy(=0, only), the particlelike states of ,;, as well as the positive
spectra that arise in the problem in Fig. 5. In essence, thesgart of the energy spectrum BF (I =0, only) and HFB self- energy
are the spectra of the condensate and the noncondensate Dimensionless energies are measured in natural harmonic-
Hamiltonians Il -and>, ,,, as well as their generalization in oscillator units.
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homogeneous system in the thermodynamic limit. By delib- 10050 ;
erately excluding the anomalous couplivig strength from a 10000 = =r=-=imememrm:
first-order theory(Popov approximationor by including the o050l
second-order Beliaev correction of E6) in the self- N 9900t
energies, one can obtain a gapless approximagah 9850 b
) ) _ 9800 i i i
D. Time-dependent solution of the Hartree-Fock-Bogoliubov 0 0.5 1 15 % 25 3 35 4

equations

200 T T
After studying some aspects of the stationary solutions of 100k

the generalized HFB equations Eq%1) and (72), such as

the local densities, the eigenstates, or the energy spectra, weN

will now investigate the reversible real time evolution of the

coupled condensate and noncondensate system, i.e., -200

—xy=—illy, (75)
FIG. 6. Real-time evolution of the total particle numbisr
d =N°+N (solid), the number of particles in the condensaté
— G =—i3G"+iG~3. (76)  (dash-doy, the noncondensate particles number(solid) and the
dt trace over the anomalous fluctuations{f} (dashed-dot At t
=1, the equilibrium solution is suddenly distorted by settm(t
=1)=0. Dimensionless time is measured in natural harmonic-
oscillator periods.

In contrast to the complete kinetic Eq40) and(26), which
account for collisionally induced energy shifts and irrevers-
ible population transfer, Eq$75) and(76) contain only the
first-order reversible processes. As we will show in the fol-

s FEVETSIDIS PIOCESSES. AS We Wt SNOW | with time-evolved basis stated/(t)=T(t,tg)V. Since

lowing, this restriction implies constant occupation numbers X i i
= T(t,ty) represents a genuine symplectic transform, the eigen-

statesV'(t) o3V(t) =V'o3V= 03 remain orthogonal.

In the following figures, we illustrate these fundamental
facts that effectively define reversibility for any nonlinear
G7=V, PV1+V_(1+ P)V’r_ ’ 77) system in_ the generic form of_EqGZ5) gr_ld(76). In particu-

lar, we will use the self-consistent, finite-temperature solu-

where P represents the positive occupation numbers of thdion for x(t=0)= x(B) andG~(t=0)=G"(p) as an initial
eigenstated/, . This property is not only to be satisfied in value for the time propagation &t 0. It is obvious that this
equilibrium where the eigenstates coincide with the HFBChoice does not induce any change during the subsequent
stateg'see Eq(74)], but in all instances. regl-nmg .evlolut|on. However, a:F:l, we suddenly distort

By formally integrating the reversible kinetic equations, tis equmkinum solution by setting the anomalous compo-
we can show that this structure of the fluctuation matrix is"e€nt of G~ (t=1_) to zero, i.e.,Mm(t=1,)=0 and then
preserved at all times. Thus, Eqd5) and (76) define a propag>ate forwqrd up tb:4'. Itis |mp0.rtant to note that the
consistent initial value problem. This simple but importantn€W G~ (t=1.) is still a valid fluctuation matrix.
fact can be demonstrated easily by defining the formal solu- N Fig. 6, we have depicted the number of particles that
tion in terms of a time-ordered exponential: occupy the condensate!® =Tr{f(°)(t)}, the noncondensate
N=Tr{f(t)}, and the total particle numb&=N©+N ver-
sus time. Time is measured in units of the harmonic-
oscillator periodT =27/ w. In contrast to these numbers that
are genuine single-particle properties, the anomalous fluctua-
It is obvious that the propagator matffxt,t,) can be con- tions are a physical measure of the degree of two-particle
structed in two steps by (t,ty) = T(t,t;) T(t;,to) since the correlations or squeegn{gQA] For example, the total particle
self-energy is local in timésemigroup property Moreover, number fluctuationg(N—(N))?) or, more specifically, the
it follows from the structure of the generator tfit,to) isa  normally ordered density fluctuationg:f(x,x),f(y.y):)
proper symplectic transformatioms=T(t,to) o3 T(t,to)" at  would reflect the degree of squeezing of the quadrature com-
all times. Consequently, all occupation numbers of the genponents along certain directionsy. While we have not
eral solution to the nonlinear, initial value problem are con-evaluated such observables here, we have included the aver-

In Sec. IV A, we have shown that any admissible fluctua-
tion matrix G~ has to be of the form

T(t,to):Texp{—i tdt’Z(t’) ) (79
to

stants of motion aged strength of the anomalous fluctuation§Trto repre-
- - : sent their size.
G (1) =T(t,te) G (to) T(t,to) The most important feature in Fig. 6 is the exact conser-

_ + t vation of the total particle number during all phases of the
V4 (OP(tVL(O+V- (O A+ Pt)V-(D), evolution. The instantaneous changefit=1) does not
(79 affect it directly. But it can be seen that the relative partition-
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From the logarithmic plot that covers 13 decades, it can be
seen that the occupation numbers are indeed numerically ex-
act constants of motion. Due to the instantaneous change at
t=1, many of the high-energy occupation numbers that are
quasidegenerate before the change, split up into a multitude
of nondegenerate levels afterwards. Minute changes in the
occupation numberksP|<10 1 at the end of the integra-
tion period identify the precision loss of the numerical cal-
culation.

The numerical results discussed in this section were ob-
tained by discretizing the generalized GP Ef5) and the
reversible part of the Boltzmann E¢76) with a standard

-~N
N
4]
wl
w
4]
H

3000
2000

E ET070)0] TR ARIRNINS Fo e s J

. TS ] finite element metho@50] based orb-splines[51,52. The
B B P s Wit Pt St o use of these finite-support, piecewise polynomial basis func-
0 05 1 52 25 3 35 4 tions results in matrix representations of the kinetic and po-

tential energy operators that are banded. Very efficient linear
FIG. 7. Real-time evolution of the total system enekgy E(© algebra algorithms can be employed in this cds&PACK
+E[T]+E[f] (solid), the energy of the particles in the condensate (Ref.[53])]. In particular, we used a set of 4@0splines on
E(© (dashed-dot the normal noncondensate eneiglf] and the ~ an equidistant radial grid from<9r <25~ 6r+. Eventually,
anomalous energg[M]. At t=1, the equilibrium solution is sud- We represented the Cogdensate wave functigfig. 2), the
denly distorted by settingn(t=1)=0. Dimensionless energy is particlelike basis stateld) (Fig. 3), as well as the phonon-
measured in natural harmonic oscillator units. like basis statefl®) (Fig. 4) in this b-spline basis. Finally,
. _ a subset of quantum states was cho@sther|1) or |1(9))
ing of the particles between condensate and normal noncoRyith {(n'=11=0):2(n"—1)+1<=18~2u} to evaluate
densate is massively distorted by this sudden influx of energy,e finjte-temperature sums or to propagate in real time. We
and particles start to oscillate coherently between thg,aye verified numerically that no particular advantage can be
coupled subsystems. , ___obtained from either choice, as long as all of the relevant
In Fig. 7, we show the individual first-order contributions energies scales are resolved. The conservation of the total
to the total system energ=E(©+E[T]+E[M] as de- particle numberN) (Fig. 6), the total energyE (Fig. 7) as
scribed in Eqs(36)—(38). Again the most notable feature is well as the instantaneous occupation numiBe(Big. 8) sup-
the exact conservation of total energy during the time evoluport this argument.
tion. Due to the sudden change in the anomalous fluctuations

att=1, the overall energy increases instantaneously by more V. THE IRREVERSIBLE EVOLUTION
than 4Q0hw. . A. An ergodic equilibrium solution of the master equation
In Fig. 8, we show the complete spectrum of occupation
numbersP(1<=n"<14,0<|<6;t) that occur in the instanta- In the following discussion of the irreversible evolution of

neous fluctuation matrixG™(t), as defined by Eq(79). the kinetic equations, we will again try to elucidate the main
physics by additional simplifications. In particular, we will

. JTPW ' ' ' ' ' | assume ergodicity for the .normal flu§tuat|of?§= 512f€1"

and the anomalous fluctuatiofis= 0. This physical approxi-

mation is appropriate for most kinetic temperatures, except

107k for a region close t@ = 0. Within this limit, we are able to
establish an important result for the stationary behavior of
10* F the condensed atomic gas, i.e., a canonical Bose-Einstein
distribution for the noncondensate particles coexisting with
P 10° | | an energetically lower-lying, coherent condensate mode. By

imposing the restriction of vanishing anomalous fluctuations
upon the kinetic equation$iEgs. (10) and (26)], we are left

10 F ] with the following equations of motion:
10 | d
10 Gro= (I YR=Y)a, (80)
10.12 e
o 05 1 15 2 25 3 35 4 d. N -
t G =Tv@+H-TiT+He (81)

FIG. 8. Real-time evolution of the instantaneous occupation
numbersP(1<n'=<14,0<|<6) that characterize the fluctuation It is worth mentioning that in the real-time evolution the
matrix G~ (t). At t=1, G”(t) is suddenly distorted by setting rotating frame frequency is still an adjustable parameter
m(t=1)=0. and not necessarily synonymous with the chemical potential.
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First, let us concentrate on the equation for the mean-fiel#Vithin the ergodic approximation, the Hermitian part is sat-
amplitudea. From Eq.(80), we can see that the mean-field isfied identically. On the other hand, there are two distinct
evolution consists of two distinct parts: a Hermitian, number-types of collisional relaxation processes in Eg§6). There
conserving contributiorll,,, and a part that accounts for are the number-conserving in and out rates of the conven-

condensate number changing collisions out of and into th@onal quantum-Boltzmann equation, i.eEﬁ(l+;)(1+?)

noncondensate, i.eYy—Yy. In stationarity, both pro- —T' (1% @+ Tyif - Obviously, both rates match identically un-
cesses have to vanish identically der the detailed balance conditions of E85)
O: H(O)+ 1U ( )+ 2U~_ o, 82 naogran Mollo
( e f ILL) ( ) O:¢4 121 ¢1 2n24 5n(81//+8271_84u_82)
0=Ifi1+HTushHa+hi e 83 ~ ~ ~ ~
(Ifia+h ~Tarhaspia ®3 x(1+%,,)(1+F, ) (14T, )(1+7,)
Given the constraint on the condensate particle number, it is, _ _ _ _
in principle, straightforward to solve the Hermitian eigen- fo feoy fop ey
value problem of Eq(82) and obtain an eigenvalye. The X = —~ = - .
later equation Eq(83) poses a much more challenging con- (1+f.,) (A+f.,) (A+f,,) (1+f,)
straint on the coupled system. In order to maintain a station- 87)

ary state, the mean-field has to be “orthogonal” to all num-

ber changing processes. This means that the normal L . . .

fluctuations have to adjust self-consistently with respect tg>°th Of the two remaining distinct processes in E8§), i.e.,

the condensate wave function. It is interesting to note that th@l @7(1+7)(1+f) = 2T+ 7)if, as well as the process

solutions of this system are infinitely degenerate with respedf77¢(c)(1+f) —F(H})(H;)f(cﬁ, involve a condensate par-

to a global phase rotation. In other words, the condensate'scle in the precollision or post-collision channels. Thus, real

phase is not pinned down by any restoring force and is fre@articles will be transfered between the condensate and the

to drift, consequently. However, the later, vector-valued connoncondensate, until the rates are balanced. Analogous to the

dition of Eq. (83 is satisfied identically if arguments that lead to E¢84), it can be shown that a ca-
nonical Bose-Einstein distribution is attained in equilibrium.

naogran ot an 4
0:¢4 121 ¢1 2734 577(817/+82/r_ﬂ_84rr)

VI. CONCLUSIONS AND OUTLOOK

x(1+F, ) (1+T, ) az(1+T,,)
In this paper, we have studied aspects of the reversible
T T T and irreversible evolution of a condensed atomic gas im-
X v M 84y  mersed in the noncondensate. By specializing the kinetic
(1+"f'81”) (1+?82”) (1+"f'84” equationg31] for a simple isotropic model, we were able to

analyze the equilibrium solution, as well as the dynamic non-

vanishes for all components 1. Provided that energy consefauilibrium behavior numerically. In particular, we obtained
vation is satisfied exactly, i.egy+sm=pu+eq, it is the excitation spectra of a finite-temperature equilibrium.

straightforward to verify that a canonical Bose-Einstein dis-Voreover, we demonstrated the reversibility of the time-
tribution dependent HFB equations far from equilibrium and in the
collisionless regime. This is tantamount to noting that the
5 1 instantaneous occupation numbers of the HFB modes are
(85) constants of motion. Finally, we studied the collisional re-
gime for an ergodic distribution of quasiparticles and showed
that detailed balance is obtained in the full quantum Kinetic
theory with a self-consistent canonical Bose-Einstein distri-
bution.
Based on this isotropic model, we can also obtain the
lision rates that lead to a self-consistent equilibrium.
However, such an analysis is still work in progress and re-
%ults will be presented in future publications.

fo=gpem_1

with an inverse temperatugg is the equilibrium solution. In
addition to this functional form of the distribution that is
dictated by detailed balance, it is required that all of the
excitation energies are above the condensate energy, i'%‘ol
£1>u. Thus the eigenenergy spectrum exhibits a finite gap,
From Fig. 5 it can be seen that both the positive energ
spectrum of the HFB operat@r as well as the eigenenergies
of 3., are suitable candidates within this approximation.
Second, the generalized Boltzmann equation, (B, is ACKNOWLEDGMENTS
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APPENDIX A: CANONICAL TRANSFORMATIONS In a_ddition it can be shown that*=o0,To; and T1
=03TTo5. Here, we have introduced the r{dimensional

A canonical transformation is an inhomogeneous linear
Pauli matricesr; ando; as

combination of creation and destruction operators that pre-

serves the commutation relatiph6]. In particular, ifa and 0 1 1 0
a' denotes a pair of Hermitian conjugated bosonic operators, o= , 3= ) . (A5)
such that 10 0 -1
a af1—
[&1,82]= 012, (A1) APPENDIX B: CAUCHY-SCHWARTZ INEQUALITY

then any affine linear transformation defines a new set of For a positive semidefinite density operatoand a gen-
operatorsh andb by eral operatonﬂ it follows that the expectation value

b T
o=
. . is never negative. Consequently, the covariance marix
In an n-dimensional vector spacé, represents a (i2<2n) of Eq. (24) must be positive semidefinitd G"u=0, as well.
dimensional matrix and is a (2n)-dimensional vector. Such This can be easily seen, by considering a linear combination
a transformation is canonical if the new pair of operators alsqy 4,0 arbitrary operatordé\ and B, i.e., L=aA+ BB. By
satisfies the commutation relation: minimizing the positive expression E(Bl), one obtains the
— Cauchy-Schwartz inequality as
[by bz]= 51, (A3) Y R

a

ot (A2) (LLY=Tr{oLLT}=0 (B1)

+d.

More specifically, the transformation is unitary canonical if (AAT)(BBT)=(BAT)(ABT). (B2)

the new operators are Hermitian conjugate pairs, be.

=b'. By inserting Eq(A2) into Eq.(A3), one finds that the In particular, for the special choice &=a,—«; and B

At % - - .
transformation matrices are a representation of the symple¢- &2~ @2 » this implies that the magnitude of the anomalous

tic groupSp(2n): quctuatlons is limited by

TosT'=03. (A4) (1+T,)T =My (B3)
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