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We consider the superfluid phase transition that arises when a Feshbach
resonance pairing occurs in a dilute Fermi gas. This is related to the phe-
nomenon of superconductivity described by the seminal Bardeen—Cooper—
Schrieffer theory. In superconductivity, the phase transition is caused by a
coupling between pairs of electrons within the medium. This coupling is per-
turbative and leads to a critical temperature 7¢ which is small compared to
the Fermi temperature Tx. Even high-T. superconductors typically have a
critical temperature which is two orders of magnitude below T+. Here we de-
scribe a resonance pairing mechanism in a quantum degenerate gas of potas-
sium (*°K) atoms which leads to superfluidity in a novel regime — a regime
that promises the unique opportunity to experimentally study the cross-over
from the Bardeen—Cooper—Schrieffer phase of weakly-coupled fermions to
the Bose—Einstein condensate of strongly-bound composite bosons. We find
that the transition to a superfluid phase is possible at the high critical tem-
perature of about 0.57%. It should be straightforward to verify this predic-
tion, since these temperatures can already be achieved experimentally.

PACS numbers: 03.75.F1, 67.60.—g, 74.20.—z

1. Introduction

The phenomenon of superfluidity is closely related to Bose—Einstein con-
densation (BEC), as was shown in the foundation of the microscopic theory of
superfluid “He in the 1960’s. In bosonic fluids the phase transition is marked by
the appearance of a macroscopic number of bosons in the lowest quantum state.
In fermionic systems the occurrence of superconductivity and superfluidity in su-
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perconductors and liquid 2He, is due to the rise of a pairing field and thereby, in
a generalized sense, to a condensation of Cooper pairs.

The study of superfluid phase transitions in fermion and boson systems has
played an important role in the development of many areas of quantum physics.
Their characteristics determine the observed properties of some of the most distinct
systems imaginable, including the cosmology of neutron stars, the non-viscous flow
of superfluid liquid helium, the non-resistive currents in superconductors, and the
structure and dynamics of microscopic elemental nuclei. Recently, physicists have
succeeded in demonstrating the creation of weakly interacting quantum fluids by
cooling dilute gases to temperatures in the nanokelvin scale. For these near ideal
gases, reaching such incredibly low temperatures is required in order to cross the
threshold for superfluid properties to emerge. These systems offer great opportuni-
ties for study since they can be created in table-top experiments, manipulated by
laser and magnetic fields which can be controlled with high precision, and directly
observed using conventional optics. Furthermore their microscopic behavior can
be understood theoretically from first principles. Observations of Bose-Einstein
condensation [1], and demonstrations of the near ideal degenerate Fermi gas [2],
are becoming fairly routine in atomic physics — something which would have been
hard to foresee even ten years ago.

The phenomenology of superfluid dilute gases can be quite distinct from that
of condensed matter systems. In this letter, we present a striking illustration of this
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Fig. 1. A log-log plot showing six distinct regimes for quantum fluids. The transition
temperature T¢ is shown as a function of the relevant gap energy 2A. Both quantities are
normalized by an effective Fermi temperature 7%. For the BCS systems in region (a),
and the systems in the cross-over region (b), 24 is the energy needed to break up a
fermion pair, and 73 is the Fermi energy. For the systems in region (c), which are all
strongly bound composite bosons and exhibit BEC phenomenology, 24 is the smallest
energy needed to break the composite boson up into two fermions, i.e. ionization to a

charged atomic core and an electron, and Ty is the ionic Fermi temperature.



Resonance Superflurdity in a Quantum Degenerate Fermi Gas 389

point by predicting the existence of a Feshbach resonance superfluidity in a gas of
fermionic potassium atoms. This system has an ultrahigh critical phase transition
temperature in close proximity to the Fermi temperature. This is a novel regime for
quantum fluids, as illustrated in Fig. 1, where our system and others which exhibit
superfluidity or BEC are compared. Simply by modifying a control parameter, in
this case the strength of magnetic field, the system we consider can potentially
explore the cross-over regime between the Bardeen—Cooper—Schrieffer (BCS) [3]
transition of weakly-coupled fermion pairs and the Bose—Einstein condensation of
strongly-bound composite particles [4]. This is an intriguing regime for quantum
fluids as it bridges the physics of superconductors and superfluid 3He, and the
physics of superfluid “He and bosonic alkali gases. Non-resonant pairing applied
to a dilute gas yields a 7. that depends exponentially on the inverse scattering
length [5], as will be pointed out in the following section. Typically this results in
a critical temperature of order T, ~ 10~*T% or Tr ~ 1071% K, which is way out
of reach in current experiments. Many qualitative features of the nature of the
superfluid phase transition are modified in the presence of a resonance coupling,
including the participation of all fermions in the pairing field and the formation of
a Bose—Einstein condensate of molecules at the critical point. This 1s illustrated

BEC of molecules

Fig. 2. Schematic illustration of the nature of the pairing fields in the cases of reso-
nance and non-resonance coupling. The dashed circles illustrate the Fermi surface as
a two-dimensional k-space projection of the Fermi sphere (k is the wavevector). All
plots are for temperatures in the quantum degenerate regime below Ty, so that a large
number of the quantum states inside the Fermi surface are occupied. A sample of oc-
cupied quantum states are illustrated by the single dots. (a) Non-resonance-pairing for
T > T.. This situation is closely approximated by the non-interacting quantum de-
generate Fermi gas. (b) Non-resonance-pairing for 7' < Tc. Superfluidity arises from
Cooper-pairs which are composed of fermions in states near the Fermi sphere with
opposite wavevectors. Only a small band of energies near the Fermi energy partici-
pates in the pairing. (c) Resonance-pairing for 7' > Tc. In addition to the quantum
degenerate fermions, quasi-bound molecules are present and are shown by double dots.
(d) Resonance-pairing for T' < T¢. In this system 7¢ may be comparable to TF, so that
pairing 1s no longer restricted to fermions in close proximity to the Fermi sphere. The
entire distribution contributes to the superfluidity and a Bose-Einstein condensate of

molecules is present (shown as a shaded region).
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in Fig. 2, where the nature of a resonance pairing mechanism is compared to the
case of non-resonance pairing.

The system we study consists of an ensemble of fermionic *°K atoms equally
distributed between the two hyperfine states which have the lowest internal energy
in the presence of a magnetic field. We calculate the full thermodynamics for
this resonant superfluid system via a renormalized low energy field theory [6].
We treat explicitly a short range quasibound resonant state by extending the
theory given in Refs. [7]. The parameters of the theory are uniquely specified
by the known dependence of the scattering properties on magnetic field. In a
dilute gas, all interactions are assumed to occur through binary collisions described
by a two-body interaction. The properties of the scattering are determined by
the positions of the bound states in the interaction potentials. In the low energy
regime, only the highest bound states play an important role, and the scattering
is completely described by the s-wave phase shift characterized by the scattering
length a. In a two-body potential, a bound state may lie near threshold and give
rise to a very large value of the scattering length. This occurs, for example, in
the triplet potential of ®Li which yields a scattering length of about —2000a, [8].
According to the conventional BCS theory, this would imply a much larger value
for the critical temperature [9] than the typical value for nonresonant scattering
mentioned previously. Moreover, in a multi-channel system, a bound state may
cross the threshold energy as a function of magnetic field and enter the continuum,
resulting in a field-dependent Feshbach scattering resonance [10]. As this occurs,
a dramatic modification of the scattering length is observed (see Fig. 3).
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Fig. 3. Scattering length as a function of magnetic field, for a collision between *°K
atoms prepared in the two lowest hyperfine states. The resonance field value is B =
196 gauss and the width is equal to 7.7 gauss [16]. The asymptotic behavior is caused

by a Feshbach resonance.



Resonance Superflurdity in a Quantum Degenerate Fermi Gas 391

2. Problems with BCS theory close to resonance

The BCS theory of superconductivity applied to a dilute gas considers binary
interactions between particles in two distinguishable quantum states, say | 1) and
| |). For a uniform system, the fermionic field operators may be Fourier-expanded
in a box with periodic boundary conditions giving wavevector-k dependent cre-
ation and annihilation operators a;w and ag, for states |o). At low energy, the bi-
nary scattering processes are assumed to be completely characterized by the s-wave
scattering length a in terms of a contact quasipotential U = 4wh%an/m, where n
is the number density. The Hamiltonian describing such a system is given by

H = ZEk (aLTakT + aLlakl) + U Z aLTaLlakalak”, (1)
k ki ks
where ¢, = h2k2/2m is the kinetic energy, m is the mass, and the constraint

ky = k1 4 ko — k3 gives momentum conservation.

For a negative scattering length, the thermodynamic properties of the gas
show a superfluid phase transition at a critical temperature 7. which arises due to
an instability towards the formation of Cooper-pairs. When the gas is dilute, as
characterized by the inequality n|a|® < 1 (or equivalently kr|a| < 1, where kp is
the Fermi wavenumber), the application of mean-field theory gives a well-known
solution for the ratio of 7 to the Fermi temperature 1% [5]

T T
T " (‘2|a|kF) ' )

The exact prefactor to the exponential depends on the precise form of the analytic
integral approximations made in the derivation. Several papers have pointed out
that the presence of a scattering resonance in dilute alkali gases can be used to
obtain a very large negative value for the scattering length [9]. This promises the
opportunity for the system to enter the high-T¢ superfluidity regime as the ratio in
Eq. (2) approaches unity. However, direct application of the BCS theory close to
resonance then becomes speculative due to the potential breakdown of a number
of underlying assumptions:

1. Exactly on resonance the theory fails as the scattering length passes through
+oo and the Hamiltonian in Eq. (1) cannot be defined.

2. For the mean field approach to be accurate it is required that there are many
particles inside a volume associated with the spatial scale of a Cooper-pair.
This condition begins to break down as 7. approaches Tx.

3. The theory of the dilute gas i1s formulated on a perturbation approach based

°.

on an expansion in the small parameter n|a|?>. When this parameter ap-

proaches unity the perturbation theory fails to converge.

These points show that care should be taken in applying Eq. (2) near the
point of resonance where the basis for the conventional mean-field theory is not
well founded.
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Despite these limitations, on general grounds, one would expect to be able to
derive a renormalizable low-energy effective field theory even in close proximity to
a resonance. This statement is based on the identification that at relevant densities
the range of the interparticle potential is always orders of magnitude smaller than
the interparticle spacing. Here we present a theory of superfluidity in a gas of dilute
fermionic atoms which handles correctly the scattering resonance and places the
transition temperature to the superfluid state in the experimentally accessible
range.

While the scattering length a usually characterizes the range of the inter-
atomic potential for a collision, this is a poor approximation in the vicinity of
a scattering resonance. The scattering properties are completely determined by
the positions of the bound states in the interaction potentials. In a multichannel
system, a bound state may cross the threshold as a function of magnetic field
and enter the continuum, resulting in a field-dependent Feshbach scattering res-
onance [10]. As this occurs, the scattering length becomes strongly dependent on
the field, and exactly at threshold it changes sign by passing through +oo.

3. Resonance pairing theory

When such resonance processes occur, it s necessary to formulate the Hamil-
tonian by separating out the resonance state and treating it explicitly. This is mo-
tivated by the microscopic identification of two types of scattering contributions:
one from the scattering resonance, and one from the background non-resonant
processes that includes the contributions from all the other bound states. The
non-resonant contributions give rise to a background scattering length ay,g which
is a good characterization of the potential range. The corresponding quasipoten-
tial in that case is given by Upg = 47Th2abgn/m. The Feshbach resonance occurs
due to a coupling with a molecular state, that is long-lived in comparison with
characteristic non-resonant collision timescales. This state is a composite boson
which is described by bosonic annihilation operators bg. It is parameterized by a
detuning energy from threshold, denoted by 2v, that is dependent on the value of
the magnetic field. The coupling strength of bg to the two-particle continuum is
well characterized by a single coupling constant ¢, independent of k. These consid-
erations imply that the Hamiltonian given in Eq. (1) is not sufficient to account for
the important resonance processes and must be extended to incorporate explicitly
the coupling between the atomic and molecular gases

H= QVZI)LI)]C + ZGk(aLTakT + a;rclakl) + Ubg Z aLlTahlakalak”
k k kqi..k3

) )
-I-gaLa%_l_ma%_kl-I-bqa%_kla%_l_m. (3)
k.q

Evolution generated by this Hamiltonian conserves the particle number N =
Zk(aLTakT + a;ﬁlakl) +25 % b;rﬂbk. Note that the Hamiltonian does not contain
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a explicitly, and that the field dependence of the scattering is completely char-
acterized by the parameters: g, v, and Upg. The magnitude of g is derived in
the following way. We define x as the product of the magnetic field width of
the resonance and the magnetic moment difference of the Feshbach state and the
continuum state. For large values of v, the boson field by can be adiabatically elim-
inated from the theory, and then ¢ = \/@ is required in order for the scattering
properties to have the correct dependence on magnetic fieldf.

The essential point is that this Hamiltonian, founded on the microscopic basis
of resonance scattering, 1s well-behaved at all detunings v; even for the pathological
case of exact resonance. The diluteness criterion is now given by constraints which
require both the potential range and the spatial extent of the Feshbach resonance
state, to be much smaller than the interparticle spacing (e.g. njang|® < 1).

We apply this Hamiltonian to derive the self-consistent mean-fields for given
thermodynamic constraints by formulating a Hartree-Fock-Bogoliubov theory?.
The mean-fields present include the fermion number f = Zk<aLTakT>, the mol-
ecule field ¢, = {(br=o) taken to be a classical field, and the pairing-field
p = Zk<akTa—kl>§' It is well known that such a theory must be renormalized
in order to remove the ultraviolet divergence which arises from the incorporation
of second-order vacuum contributions. This implies replacing the physical parame-
ters in the Hamiltonian, U, ¢, and v, by renormalized values so that observables are
independent of a high momentum cut-off used in the formulation of the effective
field-theory [13]. In order to diagonalize the Hamiltonian, we construct Bogoliubov
quasiparticles according to the general canonical transformation [14]

agp cos —el7 sin 0 agt (1)
ozT_kl “ \esinf cos @ aT_kl '

Given single particle energies, Uy = € — o + U f, where p is the chemical po-
tential, and the gap parameter in the quasiparticle spectrum A = Up — g¢p,,
the two transformation angles are specified as tan(26) = |A|/U; and ¢, =
|¢m | exp(iy). The corresponding quasiparticle spectrum is Ej, = \/U? + A?. Drop-
ping terms of higher order than quadratic in the fermion operators, gives the re-
sulting many-body Hamiltonian

H— N =2(v = p)lgm* + > [Uk + Ep(akyary + ok o) — 1)} : (5)
k

which is now in diagonal form.

tThis expression for g is chosen so that a obeys the correct field dependence. For further
discussion see Ref. [11].

tAn analogous field-theory is derived for a bosonic model in Ref. [12].

§A magnetization field Zk(a;”akl) is also included in our formulation. However, we drop
this term in our discussion since it is identically zero in the spin-symmetric case considered here.

Inclusion gives a slightly more general treatment, and requires the addition of a spin-rotation
following the transformation to Bogoliubov quasiparticles.
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4. Thermodynamic solutions

The next task is to calculate the thermodynamic solutions. Equilibrium pop-
ulations for the quasiparticles are given by the Fermi-Dirac distribution. The
fermion number and pairing field are not only inputs to the Hamiltonian, but also
determine the quasiparticle spectrum. Therefore, they must be self-consistent with
the values derived by summing the relevant equilibrium density matrix elements
over all wave numbers. In practice, at a given temperature, chemical potential, and
molecule number ¢,,,, this requires an iterative method to locate self-consistent val-
ues for f and p. The value of ¢,, is calculated by minimizing the grand potential
®c = —k,TIn = at fixed temperature and chemical potential, with %, denot-
ing Boltzmann’s constant. The partition function = = Trlexp(—(H — puN)/kpuT)]
is found from Eq. (5). This procedure is mathematically equivalent to minimiz-
ing the Helmholtz free-energy at fixed temperature and density and corresponds
uniquely to the maximum entropy solution. This solution has an associated parti-
cle number, (N} = —0®¢ /0y, taken at constant temperature and volume, which
must match the actual particle density of the gas, so that the final step is to ad-
just the chemical potential until this condition is satisfied. The whole procedure is
repeated over a range of temperatures to determine the locus of thermodynamic
equilibrium points. For large positive detunings, where the molecule field could be
eliminated from the theory entirely, regular BCS theory emerges. For this case,
when the scattering length a is negative the behaviour of the critical temperature
on 1/a is given by the usual exponential law [5].

In this paper, we use fermionic “°K atoms as an example of the applica-
tion of this theory. The values of our interaction parameters apg = 176ap and
k/ky = 657 pK are obtained from [15]. We fix the total density to be
n = 10" em™3, a typical experimental value expected for this quantum degen-
erate gas in an optical trap. We set the detuning to be v = +EF, so that the
quasi-bound state is detuned slightly above the atomic resonance. For a tempera-
ture above Tt the grand potential surface is shaped like a bowl, and the value of ¢,
which minimizes the grand potential is ¢,,, = 0, associated with the self-consistent
solution p = 0. For T' < T, the grand potential surface is shaped like a Mexican
hat, and its minimum is given by ¢, with a non-zero amplitude and an undeter-
mined phase. The superfluid phase transition therefore leads to a spontaneously
broken symmetry. The value of Tt can be clearly found from Figs. 4 and 5, where
we show the chemical potential, the molecular density, and the gap as a function
of temperature. We find for our parameter set for **K and almost zero detuning a
remarkably high value for the critical temperature 7. = 0.57F, i.e. Tz =~ 0.6 K.
Furthermore, we find a weak dependence of T’ & 0.5TF on the density, so that the
value of 7. has more-or-less the same density behavior as Tr. When we increase
the detuning to v = +17.6E% (this corresponds to a magnetic field detuning of
0.5 Gs away from the Feshbach resonance), the value of 7¢ drops to approximately
0.25T%.
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Fig. 4. Chemical potential as a function of temperature for the system of resonance
pairing (solid line). The second order phase transition occurs at T = 0.57F, where a

clear cusp is visible. The dashed line shows the chemical potential of a non-interacting
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Fig. 5. The temperature at the phase transition is also visible from the amplitude of
the molecular field. This amplitude is non-zero only when the broken symmetry exists
in the region 7' < Tc. For T = 0, the molecules form a Bose condensed fraction of 1.5%
of the total gas sample. The inset shows the behaviour of the gap A = Up — g¢,. The
critical temperature 7T¢ can be related to the value of the gap at 7' = 0. For comparison,

in superconductors the analogous gap is simply the binding energy of a fermion pair.

The system of °K atoms, equally distributed among the two lowest hyper-
fine states, is a good candidate for demonstrating the superfluid phase transition.
It not only exhibits a Feshbach resonance, but also, the inelastic binary collision
events are energetically forbidden. Three-body interactions are highly suppressed,
since the asymptotic three-body wave function should consist of a product of
three s-wave two-body scattering wave functions. In a three-body interaction,
two-particles are always in the same initial hyperfine state, and therefore the cor-
responding s-wave state is forbidden. The only three-body relaxation could come
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from asymptotic p-waves, but these have very little contribution at the low tem-
peratures considered. Although the detailed three-body collision problem is an
intricate one, this asymptotic statistical effect should lead to a large suppression
of the vibrational relaxation of quasi-bound molecules.

Current experimental techniques for ultracold gases do not produce samples
which are spatially uniform. An optical dipole trap may be needed to confine the
high field seeking atoms, and the conditions for the superfluid phase transition
would be satisfied first in the trap center where the density is highest. The pres-
ence of the quasi-bound molecules may be a very useful aspect allowing direct
observation of the phase transition through imaging the molecular field.

In conclusion, we have shown that resonance pairing in an alkali gas yields
a quantum fluid that can undergo a superfluid phase transition at a temperature
comparable to the Fermi temperature. This extraordinary property places this
system in a regime which lies in between BCS-like superconductors, and bosonic
systems which may undergo BEC. Since the transition temperature is larger than
the lowest temperatures already achieved in a degenerate Fermi gas, it should be
possible to study this new type of quantum matter and to quantitatively compare
with our predictions.
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