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The most salient features of the Bose-Einstein condensation of a magnetically con-
fined alkali vapor is the diluteness of the gas and the extremely weak effective in-
teractions. From a theoretical point of view, the interesting aspect is the potential
formulation of the many-body quantum theory for a non-uniform and potentially
non-equilibrium system founded entirely on microscopic physics. The crucial pos-
tulate is the rapid attenuation of many particle quantum correlations in the dilute
system which can be motivated from universal considerations. In principle, it will
be possible to provide direct comparison between theory and experiment over all
temperature scales with no phenomenological parameters—a challenge facing the
theoretical community in the near future. The dilute gas experiments provide an
exciting stage on which to build bridges linking the theory of complex and collec-
tive phenomena in superconducting and superfluid systems, with the single particle
microscopic physics described in quantum optics and laser physics.

1 Development of a kinetic theory

Since the recent demonstration of Bose-Einstein condensation in 1995 in experi-
ments probing the physics of ultracold gases,! there has been renewed theoretical
activity investigating many novel properties of confined and weakly-interacting con-
densates. A major area of focus has been zero temperature theory where the time-
dependent Gross-Pitaevskii equation describes the evolution of the macroscopic
wave function for the condensate. There is already a tremendously rich literature
on the predictions of this equation for a variety of experimental situations—often
with strong agreement with experimental observation.?

From a broader perspective, a more fundamental problem is the description of
the non-zero temperature regime where one must consider systematically the inter-
actions between the condensate and the non-condensate components. Recent work
has considered this problem within the Hartree-Fock-Popov approximation (HFP).3
This approximation considers the dynamic evolution of the condensate in much the
same way as in the Gross-Pitaevskii equation, but includes the effects of the self-
consistent potential arising from the mutual interaction between the condensate
and non-condensate components. However, the non-condensate atoms are treated
in a completely static manner and the equilibrium form of the distribution function
of the populations is assumed. Improvements of this theoretical framework can
be made to include the effects of fluctuations in the density of the non-condensate
component with the usual random phase approximation (RPA).4

These approaches attempt to describe the collective system in the collisionless
mean-field regime but do not encapsulate all the essential physics. They do not ac-
count for population transfer between the condensate and non-condensate degrees
of freedom, nor do they incorporate the off-diagonal self-energy terms (the anoma-
lous densities) believed to be important at low temperature. While they provide a
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first step, many of the binary collisional diagrams are omitted in these simple the-
ories, essentially without justification. These diagrams must be included in order
to develop a quantitative theory for comparison with experiment. The principal
difficulty is the lack of a relevant local equilibrium approximation and the breaking
of translational invariance due to the presence of the trapping potential. Instead
the calculated mean-free path between collisions is typically longer than the size of
the system. One is therefore not able to use directly many of the well-established
techniques which are applicable to the uniform gas, and instead new theoretical
methods are required to treat aspects specific to this problem.

Our approach is based on a derivation of the quantum kinetic theory from first
principles as described in detail in Walser et al.5 The required elements are founded
on the formative historical work of Gilbert, Chapman, and Enscog® who showed
that even for complex systems, an appropriate abbreviated description may be
derived from which all relevant observables can be obtained. This approach was
extended to the quantum gas by Bogoliubov and von Neumann who developed the
use of a course-grained statistical operator for quantum Markovian systems. Recent
derivations of quantum kinetic theory founded on similar physical ideas are given
in Akheizer and Peletminskii,” Kane and Kadanoff,® Kirkpatrick and Dorfmann,®
Zubarev, Morozov, and Répke,!® and Blaizot and Ripka.!!

Based on such a microscopic picture of the weakly interacting bosonic gas, we
derive a generalized kinetic theory for a Markovian many-body density operator.
The density operator is functionally dependent on a few key variables which must
be carefully chosen as we will discuss. These quantities serve as master variables
and determine the system’s evolution on a coarse-grained time scale. The weak
interactions allow a perturbative expansion of the evolution, from which we obtain
kinetic equations that describe the dynamics of the expectation value of any single-
time observable.

There are also other approaches to finite temperature quantum theory for the
dilute Bose and Fermi gases which have been motivated by the recent alkali exper-
iments. In addition to the mean-field description mentioned previously (HFP and
RPA) there are direct attempts to solve the many-particle Schrédinger equation,'?
application of renormalization techniques,'® alternative derivation of a quantum ki-
netic master equation,!4 and formulation of the non-zero temperature theory in the
hydrodynamic limit.!> One of the difficulties has been connecting these different
methods and establishing that the approaches are isomorphic since they are formu-
lated to describe the same physical system. This difficulty arises principally from
the fact that the set of physical assumptions which are made are not necessarily
all equivalent. The quantum theory we present here is founded on an appropriate
set of assumptions for the dilute alkali gas which can be extremely well motivated.
In order to highlight this key point, we now address each of the key assumptions
individually.

1.1 Separation of time scales

The motion of trapped atoms in a dilute gas consists of free oscillations within the
external potential that are interrupted by short binary collision events (see Fig. 1).
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Figure 1. One dimensional illustration of particle trajectories in a harmonic potential. The long
periods of free oscillations are interrupted by short collision events in which the particles are
strongly correlated.

The range of the two-particle potential characterizing the collisions is given by
the scattering length as. The duration of a collision event is characteristically the
ratio of the scattering length to the average velocity v of a particle in the gas,
i.e. 79 = as/v. This time scale is extremely short, typically in the microsecond to
nanosecond range even for the ultracold gases. The other important time scale is
the inverse collision rate 7. = (na?v)~! where n is the number density of atoms
(we ignore geometrical factors such as the 87 in the collisional cross-section for the
purposes of these scaling arguments). The time 7. is typically on the order of one
second. This implies a separation of time scales given by

Te > To
which can be rearranged to give the diluteness criterion of the gas
na < 1.

The time scale separation implies the existence of a kinetic stage preceding equi-
librium. Such a kinetic stage is absent in strongly interacting systems where a
local equilibrium is established immediately and where the hydrodynamic theory
(7e = 70) is applicable.

1.2  Markov approximation

Each individual collision quantum mechanically entangles the states of the partici-
pating atoms. However, since the gas is dilute, prior to the same atoms interacting
again, they will collide with other atoms from the gas ensemble, and memory of
the original collision event will be erased. This principle is a statement of the rapid
attenuation of multiparticle quantum correlations and is founded on very universal
considerations. It is required to introduce irreversibility into the quantum the-
ory associated with relaxation towards equilibrium. The memory erasure implies
that the evolution of the system is determined only by its present state—a situa-
tion familiar whenever a Markov approximation is applicable. The attenuation of
correlations principle motivates the existence of key variables which determine the
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evolution. This is due to the fact that the information required to specify the many-
body quantum state is greatly reduced if limits are placed on the role of many-body
quantum correlations. Determining these key variables is a crucial element of the
theoretical formulation.

1.3 Course grained density operator

We course-grain the time evolution by averaging over the 79 time scale to avoid
tracking the complicated (and irrelevant) dynamics which describe the motion of
two atoms during a collision. We are interested here only in the evolution on the
relaxation time scale determined by 7.. Within the Markov approximation, the
evolution of the exact many-body density operator p(t) is given by the course-
grained statistical density operator o which has no intrinsic time dependence, but
depends functionally on a set of dynamic master variables {7;(t)}, i.e.

Pt) ~ T}

The interactions are sufficiently weak that one may develop a perturbation theory
by expanding the evolution in powers of the small parameter as (in this expansion
the effect of the mean-field must be accounted for carefully.) Truncating this cluster
expansion at first order is sufficient for the dilute gas.

1.4 Single particle basis

The theory can be formulated in any complete single particle basis. This will typ-
ically include quantum numbers for both internal states of the atom, such as the
hyperfine level F' and Zeeman state mp, as well as external spatial quantum num-
bers determined by the form of the confining potential. For the tightly confined
interacting gas, plane wave solutions are not usually appropriate, nor are the quan-
tum numbers for the three-dimensional harmonic trap ng, ny, n., since they do not
account for the effect of the mean-field. An appropriate choice is the eigenmodes
of the potential seen by the non-condensate component as illustrated in Fig. 2.

Although any complete basis may be used, a careful choice will result in a
simplified description of the dynamics.

1.5 Master variables

The master variables for the dilute gas include all single and quadratic operator
terms, i.e.

o iz = (a} — af)(al - oF),

where d; annihilates an atom in single particle state |1) and has an expectation
value of oy = (41).
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Figure 2. Potentials for the isotropic harmonic oscillator of angular frequency w = 27 x 200 Hz
for 10000 87Rb atoms. In order of increasing energy, the potentials are: the trapping potential,
the potential seen by the condensate, and the potential seen by the non-condensate. Example
eigenstates of the non-condensate potential are given in the inset. Natural harmonic oscillator
units are used: fw for energy, and (h/mw)'/2 for length, where m is the atomic mass.

We are motivated to choose this set by the known form of the theory in the
low and high temperature limits. At high temperature, we wish to recover classical
kinetic theory as given by the Boltzmann transport equation, where the description
in terms of populations, fi; = (f11), is complete. As the temperature is decreased
below the critical temperature for Bose-Einstein condensation, it is necessary to
increase the set of master variables to include off-diagonal coherences, fi2 = (fi2),
g = (h12) and 712 = (f12), and the presence of the mean field, a;. At zero tem-
perature, we recover the Gross-Pitaevskii theory including the effects of depletion
of the condensate.

An important point is that this is the most general set containing mean values
of pairs of operators. The Gaussian form for the many-body density operator which
is implicitly assumed is

O{y;} = €Xp (Q — f12 Y12 — 1At — ﬁlem*)

where O is the free energy, and T and A are the conjugate variables (complex
numbers) associated with each of the master variables (operators). Note that we
always use the convention that repeated indices imply summation. Maintaining this
Gaussian form is necessary in order to express higher moments in terms of first and
second moments through the repeated use of Wick’s theorem.!! Therefore, if one
attempts to derive a more general theory by explicitly including operator triples or
higher order terms, the solution is typically intractable. An important feature of
the Gaussian form is that it automatically insures positive definiteness, so that all
populations of single particle states are greater than zero.
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2 Kinetic master equations

Within the limits of the Born-Markov approximations, we have derived a complete
second-order kinetic theory. By applying Wick’s theorem methodically, we were
able to obtain self-consistent equations for the mean field & = @; |1) (summation is
implied), and to generalize the quantum Boltzmann equation to normal fluctuations
f = fiz |1) (2|, anomalous fluctuations 7 = 2 |1)|2), and the adjoint anomalous
fluctuations 7 = n12 (1] (2].

2.1 Mean-field equations

The kinetic mean-field equations describe the motion of the condensed fraction
immersed in a cloud of non-condensate atoms. By discarding all of the interactions,
except the condensate’s self-interaction, these equations reduce to the single familiar
Gross-Pitaevskii equation. In general, due to the presence of the anomalous average,
the unitary, nonlinear Schrédinger equation acquires a contribution proportional
to the adjoint field a*. Interestingly this leads to the breaking of time reversal
symmetry.

To represent the equations compactly, it is useful to arrange them in a 2 x 2
matrix form. For convenience, we have transformed the field-equations to a frame
co-rotating with a frequency p defined by a(t) — exp (—iut) ae(t). The generalized
Gross-Pitaevskii equation is then given by

(o) =Moot wor ) (&) W

The mean-field a evolves according to a non-hermitian Hamiltonian operator H(¢)
and interacts through the anomalous coupling strength O(®) with the adjoint field o*

HO =HO 41U +2U; +iT5,
0©) = Vg +iT. (2)

While H© accounts for the free evolution, U, Uf and Vi arise from the self-
interaction of the condensate and the mutual interaction with the normal and
anomalous fluctuations, respectively. These operators, i.e.

U =275 fap [1) (4], |
Vm — 2¢12'314I Marg |1> |2/> , (3)

are defined explicitly in terms of the symmetrized (8) two-body matrix elements
that are derived from the binary interaction potential Viin(x1 — X2)

¢1* = (5) (1] ® (2| Vbin(x1 — x2) [3) ® |4) ,
¢1234 ¢1243 ¢2134 — ¢2143' (4)

In addition to these first order contributions, the second order damping rates and
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energy shifts are given by

@ _po. . o )
N =Tia+p T2 iz ~Tarparni — 2L aspmas

(@) .
Tw =2Tfnaeh ~2Taspmi (5)

The individual collision processes that contribute to the total scattering rates into
and out of the condensate are defined as

Typr =8¢ 234 gl 2 "4 0,1, fyron fana 1) (3",

Tpmys =8¢ 234 gL 28" fo1muzn fanay 1) [27), (6)
14l Haollqll 411
T fmn =8¢ 234 ¢1" 23" £ mygimany |1) (47],

Pmmn =8 ¢1 2'3'4’ ¢1”2”3”4"m31411m4/311n2//2’ Il) ll”)

During a binary collision event, conservation of energy is not satisfied exactly in
the Born-Markov approximation. Thus any second-order collision operator obtains
a dispersive as well as a dissipative part from the complex matrix element

11yl qll 411 Halltqll 411 1
qﬁ}, 27374 = ¢l 27374 (ﬂ(sn(All/2llsll4ll) +‘I,‘:P,,]———) . (7)
Al/l2ll3l/4ll
Here the matrix element is non-zero only if the energy difference Ajngngngn =
g1 (t) + €91 (t) — €31 (t) — €4~ (t) between the initial and final single particle energies
are within the energy shell of thickness 7, as given by the limit

i = m8(8) +%y A

(8)

where P defines the usual principal value contribution.

2.2 Normal and anomalous fluctuations

The normal and anomalous fluctuations of a quantum field are not independent
quantities, but together they form a positive semi-definite co-variance matrix G

=(fulpr) 2o ©)

Within the approximation of the kinetic theory, this co-variance matrix evolves as
d ~ ~
Zi—tG=—iZG+z’GZ"+I (10)

with a non-hermitian second-order self-energy operator ¥ and recycling terms I.
In detail, this self-energy is

r= (fiaﬁ _(ﬁ?__ m) ) (11)
where we have introduced non-hermitian Hamilton operators and anomalous cou-
pling potentials;

H=H® 42Uz +2Uf+iT,
0 = Vi@ ) +ila, (12)
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Figure 3. Schematic illustration of the quantum mechanical state space. In the lower energy
region, the condensate (big circles), as well as the normal and anomalous fluctuations (small
circles) overlap and interact coherently. Above this region in energy space (3> 2u), there is the

ergodic domain where energy levels are occupied incoherently.

collision rates;

In=Tfia+f) +Tifpo + 2050 fasf)
“Tarparpni—Tarparnse —2Troarp 7
+ 2T @4y T 2T fane — 24 fme+mys — 2L asfmne

La=2Tfmomya+rp T2 r0marp + 20 fm s
2T pmemyi — 2l jomf — 2Ty pase

and recycling terms;

I —Ix
I=(_/ = RINT
It (I; - T =)

that correspond to feeding and loss;

If=Tiraep +Ufipo T2l far )

+ 2T fme1mym + 2T fane + 2T j0mz + hee,
Iz =2 Ff(m(c)+fﬁ)(l+f) + 2Ff771f(¢) + 2I‘f(c)'r7z,(1+f)

.
+(2Quﬁmwwmﬁ+2nuﬂmﬂd+zﬁwma

T
+ Fﬁw‘ﬁ(n(c)-!-’ﬁ) + Qme(c)ﬁ + (Fﬁzﬁz(n(“)+ﬁ) + 2rmm(c)ﬁ)

(13)

(14)

(15)
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Figure 4. Real time evolution of the s-wave condensate interacting with the non-condensate. The
upper two quadrants depict the populations f,(fr), ar1=0 = |0n~ |2 and the real part of the coherences
f,(fr),nr 4+1 = Refanraj,r )] of the condensate as a function of time in units of the harmonic
oscillator period T}, = 27/w . In the lower two segments, we show the corresponding populations
far nr,i1=0,2, and one set of off-diagonal elements f,,r nr41,1=0,2 of the normal fluctuations. The
parameters used were the same as for Fig. 2.

3 Numerical solutions

To understand the implication of the quantum mechanical nature of the conden-
sate interacting with the non-condensate fluctuations, it is necessary to solve these
equations numerically. For simplicity, we assume a completely isotropic three-
dimensional configuration, which makes it possible to decompose the equations in
terms of angular momentum sub-manifolds. To study the low energy behavior, it
is possible separate the state space into a quantum regime and an ergodic domain.
We have illustrated this schematically in Fig. 3.

The first task in studying the dynamics of the system is to evolve the system in
real time towards equilibrium. In Fig. 4, we show a characteristic trajectory that
exemplifies the quantum mechanical nature of the solution. In particular, we have
chosen a set of 3 interacting angular-momentum manifolds (I = 0,1,2) and used
the lowest energy seven radial basis states (n” = 1...7 as illustrated in Fig. 2) to
propagate the condensate and non-condensate.

As this simulation illustrates, while the populations relax towards their ergodic
detailed balance solution, coherences persist for long times. The role of anomalous
fluctuations and low energy coherences is determined from the form of the steady-
state solution. Note that the theory here is a time-dependent one, and transient
phenomena as well as the rate of phase diffusion of the broken symmetry can be
investigated within our framework.
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