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Quantum kinetic theory for a condensed bosonic gas
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We present a kinetic theory for Bose-Einstein condensation of a weakly interacting atomic gas in a trap.
Starting from first principles, we establish a Markovian kinetic description for the evolution towards equilib-
rium. In particular, we obtain a set of self-consistent master equations for mean fields, normal densities, and
anomalous fluctuations. These kinetic equations generalize the Gross-Pitaevskii mean-field equations, and
merge them consistently with a quantum-Boltzmann-equation approach.@S1050-2947~99!08505-4#

PACS number~s!: 03.75.Fi, 05.30.Jp, 05.70.Ln, 42.55.Ah
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I. INTRODUCTION

With the experimental realization of Bose-Einstein co
densation with neutral atomic gases@1–3#, it has become
possible to observe fundamental properties of quantum
tistics directly. While there are numerous well-establish
fields of low-temperature quantum physics that deal w
many-particle systems, most of the salient features relate
the paradigm of indistinguishablility are masked by stro
interactions, or contact with thermalizing reservoirs. T
newly gained ability to isolate the condensate fraction fr
its environment to a high degree, as well as the tight spa
confinement of the macroscopic quantum field, has ope
up ways to selectively manipulate the mean-field, and st
its temporal evolution towards equilibrium almostin vivo.

The motion of trapped atoms in a dilute gas consists
free oscillations within the external potential that are int
rupted by short binary collision events. Conventionally, th
interaction strength is measured by the range of the repul
two-particle potential, i.e., the scattering lengthas . The du-
ration of a collision eventt0 is given by the time a particle
of average velocityv spends in the interaction region, i.e
t05as /v. On the other hand, the inverse collision ra
tc51/(nas

2v) is an estimate of the time between success
collisions wheren denotes a particle density. As we are i
terested in low kinetic energies and the weak interact
limit, one finds a characteristic separation of time scales,

tc@t0 or nas
3!1. ~1!

It is this separation of time-scales that gives raise to a kin
stage of evolution, preceding any equilibrium situation. F
example, such a kinetic stage is absent in strongly interac
systems where a local equilibrium is established immedia
(tc't0, hydrodynamic stage!. Any individual collision
event creates a quantum-mechanical entanglement bet
collision partners. However, due to the long separation
tween successive collisions and the presence of interme
weak fluctuations these temporal correlations decay rap
~Markov approximation!.

Based on this microscopic picture of the weakly intera
ing bosonic gas, we derive a generalized kinetic theory fo
coarse-grained Markovian many-particle density operator
discussed by Akhiezer and Peletminskii@4#. The quintessen-
tial assumption behind this approximation is a coarse-grai
PRA 591050-2947/99/59~5!/3878~12!/$15.00
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density operator that depends only on a few selected v
ables. These quantities will serve as master variables
determine the system’s evolution on a coarse-grained t
scale. From a perturbative expansion of this density opera
we obtain kinetic equations that describe the temporal e
lution of the expectation value of any~single-time! observ-
able. As a specific application of this formulation, we th
assume that the condensed gas can be described esse
by the dynamic evolution of mean fields and normal a
anomalous fluctuations. In particular, we obtain kinetic eq
tions that comprise the Gross-Pitaevskii equation and
quantum-Boltzmann equation as special instances. Thes
netic equations are formulated basis independently and
sider all second-order processes which give raise to c
sional energy shifts and damping rates. It is also notewor
that the present theory can be applied readily to multico
ponent bosonic gases, provided the two-particle scatte
matrix is interpreted accordingly.

However, considering the rapid development of this fie
of physics, it is also of great importance to compare
predictions of this and other kinetic theories@5–15# ~mean-
field equations and kinetic theories! with the results obtained
from finite-temperature calculations based on the Hartr
Fock-Bogoliubov formulation@16–25# ~collective excitation
frequencies and damping rates!, direct approaches to solv
the many-particle Schro¨dinger equation@26,27# ~configura-
tion interaction, hyper-spherical coordinates!, renormaliza-
tion group techniques@28#, and, above all, to gauge them
against physical reality@29–31#. Further references on th
extensive literature can be found in recent review articles
literature compilations@32–34#.

The present article is organized as follows. In Sec. II
we introduce a coarse-grained statistical density operator
derive an integral equation for it in Sec. II B. Assuming
weak two-particle collision rate, permits the development
a perturbation theory, which is described in Sec. II C. Fro
an explicit series expansion of the coarse-grained density
erator, we obtain in Sec. II D a set of kinetic equations ch
acteristic of a condensed bosonic gas. In Sec. III A, we
troduce the Hamilton operator that governs the kine
evolution of a weakly interacting, repulsive gas. A set
relevant operators is introduced in Sec. III B, i.e., mac
scopic mean fields, normal fluctuations, as well as ano
lous averages. By applying the general kinetic master eq
tions to this specific set of relevant operators, we obtain s
3878 ©1999 The American Physical Society
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PRA 59 3879QUANTUM KINETIC THEORY FOR A CONDENSED . . .
consistent kinetic master equations and give a deta
discussion in Sec. III C. Finally, in Sec. IV, we discuss t
prospects and possible implications for a numerical simu
tion of a fully quantum-mechanical self-consistent solutio

II. COARSE-GRAINED MARKOVIAN DENSITY
OPERATOR

The quantum-mechanical state of a many-particle sys
contains an overwhelming amount of data and it is the
jective of quantum-statistical mechanics to extract the
evant information from a data subset as small as poss
Such a minimal description then leads to a coarse gra
picture of the behavior of the system. The effects of coar
graining on the dynamical evolution are well known from t
quantum mechanics of open systems@35,36#. By discarding
some observable information from the unitary evolution
the complete system, one breaks the time-reversal symm
thus introducing irreversibility. However, a judicious par
tioning of the many, interacting degrees of freedom o
large system into a small relevant subsystem and a we
coupled, complementary reservoir leads to a tractable
scription of the subsystem’s evolution towards equilibriu
This equilibrium state is determined by the properties of
reservoir.

In this section, we will pursue these general ideas a
define a coarse-grained statistical density operator that
pends functionally on only a few fundamental variables, a
thus gives a raw picture of the ‘‘true’’ state of the man
particle system. Based on the definition for the coar
grained statistical density operator, we then derive an in
gral equation that determines the functional form of t
operator. In the limit of weakly interacting, dilute quantu
gases where strong collisional interaction events are w
separated in time, it is possible to solve this equation per
batively and establish a hierarchy in terms of an expans
parameter proportional to this interaction strength. Onc
perturbative expression for the functional form of the coar
grained statistical operator is determined, we then use
study the motion of expectation values of general obse
ables. These equations of motion establish a closed,
consistent set of kinetic equations for the following restric
set of fundamental variables: the mean field, the norm
single-particle density, and the anomalous fluctuations.
this method, we generalize the Gross-Pitaevskii mean-fi
equation and merge it consistently with an approach
leads to the quantum-Boltzmann equations for both nor
densities and anomalous fluctuations.

In many ways our approach is reminiscent of the class
Bogoliubov-Born-Green-Kirkwood-Yvon~BBYGK! method
@37#, for in a similar manner, higher order correlations c
also be characterized by a restricted set of variables. Spe
cally, in classical Markovian systems higher order corre
tion functions can be expressed in terms of single-part
densities.

A. Fundamental assumptions of statistical mechanics

The derivation of a coarse-grained density operator re
on the basic assumption of statistical mechanics that
nonequilibrium statistical correlation eventually deca
d
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@4,37–40#. For example, in classical kinetics, this time
typically of the order of the duration of a collision.

In the following discussion, we introduce three distin
many particle density operators. The first density opera
r(t) describes the complete state of the many-particle s
tem. Starting from an initial valuer(0), thesystem evolves
unitarily in time according to a time-independent Hamilto
operatorĤ. In analogy with the celebrated Chapman-Ensk
@38,39# procedure of classical statistical mechanics wh
was later introduced to quantum-statistics by Bogoliubov@4#,
we assume that all characteristic features of the quan
statistical stater(t) can be inferred from expectation value
of a certain, restricted set of operators$ĝ i u i PI %, where the
index i enumerates linearly independent operatorsĝ i from a
~possibly infinite! index setI.

Thus, we introduce a second coarse-grained, Markov
density operators$g i (t)u i PI % that approximates the complet

density operatorr(t)

s$g i ~ t !u i PI %'r~ t !5e2 iĤ tr~0!eiĤ t. ~2!

The set of expectations values$g i(t)u i PI % that parametrize
the coarse-grained density operator are found by a quan
averagê •••& over all states of the many-particle configur
tion space

g i~ t !5^ĝ i&5Tr$ĝ i r~ t !%5Tr$ĝ i s$g j ~ t !u j PI %%. ~3!

While the coarse-graining assumption, i.e., the restriction
a few selected variables, is a statistical statement, the M
kovian postulate concerns the separation of the time sc
that govern the processes of equilibration and the decorr
tion of fluctuations. Within this limit, the temporal evolutio
of this coarse-grained statistical density operators$g i (t)u i PI %

is solely governed by the motion of the set of expectat
values$g i(t)u i PI %. Any time dependence of the matrix e
ements ofsg(t) can be attributed to the evolution of th
restricted set of operators$ĝ i%, thus norelevantintrinsic time
dependence is unaccounted for.1 Although, the set of opera
tors is unspecified so far, it can include operators such
unity (1), number (N̂), linear momentum (P̂), angular mo-
mentum (L̂), and energy (Ĥ). The larger the set of operator
the better the quality of any subsequent approximation.

The third relevant many-particle density operator iss$g%
(0) .

It serves as a reference distribution and describes a rela
~but nonequilibrium! state of the gas between consecuti
collision events. We define it to yield the same expectat
values assg on the restricted set of operators$ĝ i%. Thus, this
reference distribution is given by

s$g%
~0!5exp~ ĝ i Y$g%

i !, ~4!

1In the absence of ambiguities, we simplify the notation of the
of operators or their corresponding expectation values by dropp
the index setI, the indexing labeli, or even the time argumentt,
completely.
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where repeated indices imply a summation over operatorĝ i

and their conjugate thermodynamic coordinatesY$g%
i . These

coordinates are defined implicitly by

g i5Tr$ĝ i s$g%%5Tr$ĝ i s$g%
~0!% . ~5!

It is of interest to note that the reference state, as given by
exponentiated form in Eq.~4!, is still of the most genera
form permitted by the principles of quantum mechanics,
long as the set of operators$ĝ i% is complete.

This ansatz for a nonequilibrium coarse-grained statist
operators$g% and a ‘‘self-adjusting’’ reference distributio
s$g%

(0) is also used in various contexts of equilibrium therm
dynamics. For example, from a finite order truncation o
quantum virial expansion@4#, one obtains a coarse-graine
approximation s$V,m,b% of the grand-canonical statistica
density operatorr5 exp(V2mN̂2bĤ). The starting point of
the iteration procedure is a reference distributions$V,m,b%

(0)

that matches the solution as closely as possible. In here
conjugate thermo-dynamic coordinates$V,m,b% correspond
to the observables unity, number, and total energy.

B. Derivation of an integral equation

To find the functional form of the postulated coars
grained Markovian density operators$g(t)% , we use a ‘‘boot-
strapping’’ method. First, by assuming a given, yet unkno
solution of Liouville’s equation

d

dt
s$g~ t !%52 i @Ĥ, s$g~ t !%# , ~6!

we can determine the dynamical evolution of the expecta
valuesg i(t)5 Tr$ĝ is$g(t)%% from

d

dt
g i~ t !5 iTr$@Ĥ, ĝ i #s$g~ t !%%. ~7!

Second, to derive the functional form ofs$g(t)% , we now use
Eqs. ~6!, ~7!, and the fact that there is no explicit time d
pendence ins$g(t)% . Thus, by partial differentiation one ob
tains the following equation:

Tr$@Ĥ, ĝ i #s$g%%]g i
s$g%52@Ĥ, s $g%# , ~8!

where again, we have adopted the convention that repe
indices imply summation, unless stated otherwise. Moreo
by dropping the explicit time dependence of the refere
point in phase space$g i(t)%, one can consider this as
partial-differential equation with independent variables$g i%.

The total Hamilton operatorĤ that governs the evolution
of a weakly interacting, dilute gas permits a partitioning
the energy into a free partĤ (0) and a presumably weak in
teractionĤ (1)

Ĥ5Ĥ ~0!1Ĥ ~1!. ~9!

One could use the bare, single-particle energyĤ (0) that de-
termines the free kinetic evolution of the gas as a star
point of a series expansion of the coarse-grained density
he
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erator in terms of the interaction strength. However, it is w
known that the mean-field interaction will significantly affe
the single-particle energies. Anticipating this, we will sh
the expansion pointĤ (0) by an as yet undetermined single
particle energyQ̂$g%

(1) to a dressed energy

Ĥ $g%
~0!5Ĥ ~0!1Q̂$g%

~1! . ~10!

To conserve energy, we have to reduce the interaction en
by an equal amount

Ĥ $g%
~1!5Ĥ ~1!2Q̂$g%

~1! . ~11!

The shifted interaction energyĤ $g%
(1) represents the fluctua

tions about the mean-field energy and will be considered
‘‘weak,’’ or in other words, that strong fluctuations are we
separated in time. This procedure is analogous to the
order energy shift found with ordinary Schro¨dinger-Rayleigh
perturbation theory. The explicit form of this single-partic
renormalization energyQ̂$g%

(1) which is of the same order a
the interaction energy, will be determined in the course
this calculation.

By expanding Eq.~8! around the dressed single-partic
energyĤ $g%

(0) , one obtains

Tr$@Ĥ $g%
~0! , ĝ i #s$g%%]g i

s$g%1@Ĥ $g%
~0! , s$g% #5F $g%

~1! , ~12!

whereF $g%
(1) is introduced for convenience to hold the rema

ing first order contributions

F $g%
~1!52@Ĥ $g%

~1! , s$g% #2Tr$@Ĥ $g%
~1! , ĝ i #s$g%%]g i

s$g% .
~13!

There are two interesting points in considering Eq.~12!.
First, there is not one unique solutions$g% , but solution
manifolds that are labeled by the constants of motion. Th
any particular solution has to be augmented with appropr
physical boundary conditions. Second, the structure of
commutator of the single-particle HamiltonianĤ $g%

(0) with the

set of operators$ĝ i% is an intrinsic property of the system.
is determined both by the particular physical configurat
and the set of operators. If the set of operators is cho
appropriately, the commutator forms an algebra with str
ture constantsA$g% defined by

@Ĥ $g%
~0! , ĝ i #5A$g% i

j ĝ j . ~14!

If we substitute this algebraic closure relation into Eq.~12!,
one obtains

~A $g%
i j g j !]g i

s$g%1@Ĥ $g%
~0! , s$g% #5F $g%

~1! . ~15!

By the method of characteristics, one can transform this fi
order, inhomogeneous partial-differential equation into
equivalent integral equation. Although formally equivale
the later method is advantageous as it leads naturally
series expansion of the coarse-grained density operato
iteration~compare Dyson series@41#!. The characteristic tra-
jectories are parametrized curves$ḡ i(t;$g%)% along which
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the boundary value of the coarse-grained density operat
propagating in phase space according to Eq.~15!. They are
defined by

d

dt
ḡ i~t;$g%!5 iA$ḡ~t;$g%!% i

j ḡ j~t;$g%!, ~16!

ḡ i~t50;$g%!5g i , ~17!

and the corresponding boundary conditions. Formally,
solution of the differential equation defines a mapK $g%(t)
from regions in phase space connected by the characteris
i.e.,

ḡ i~t;$g%!5K $g%~t! i
jg j . ~18!

This map is obtained from the equation defining the char
teristics Eq.~16!, i.e.,

d

dt
K $g%~t! i

j5 iA
ˆḡ~t;$g%!‰i

l
K $g%~t! l

j , ~19!

K $g%~t50!51. ~20!

As the coarse-grained density operator is transported a
the characteristics from its boundary value to its final val
it also evolves freely according to Eq.~15!. To account for
this evolution, we also define a unitary propagatorÛ $g%

(0)(t)
by

d

dt
Û $g%

~0!~t !52 iĤ
$ḡ~t;$g%!%
~0! Û $g%

~0!~t !, ~21!

Û $g%
~0!~t50!51. ~22!

The solution for the inhomogeneous partial-differential eq
tion Eq. ~15! is now obtained from an interaction-pictur
representation of the density operators$g%(t) that is defined
by

s$g%~t!5Û $g%
~0!†

~t! s
ˆḡ~t;$g%!‰ Û $g%

~0!~t !. ~23!

At t50, it coincides with the Schro¨dinger-picture value

s$g%~t50!5s$g% , ~24!

and, if our reference distribution, as defined in Eq.~4!
matches the input state in the remote past asymptotic
i.e.,

lim
t→2`

s
ˆḡ~t;$g%!‰' lim

t→2`

s
$ḡ~t;$g%!%
~0! , ~25!

then we find for the initial condition that

lim
t→2`

s$g%~t!5s$g%
~0! . ~26!

Finally, by differentiating the interaction-picture represen
tion Eq. ~23!, the use of Eq.~15! and a subsequent integra
tion subject to the boundary conditions given in Eq
~24!,~26!, the integral equation for the coarse-grained den
operator is obtained:
is

e

cs,

c-

ng
,

-

ly,

-

.
y

s$g%5s$g%
~0!2 i E

2`

0

dteht Û $g%
~0!†

~t!~@Ĥ $g%
~1! , s$g% #

1Tr$@Ĥ $g%
~1! , ĝ i #s$g%%]g i

s$g%! uḡ~t;$g%!Û $g%
~0!~t !.

~27!

This expression links the interacting coarse-grained den
operator to its noninteracting value by evaluating the in
grand along its collision history. A regularizing functio
(h→01) has been introduced and suppresses higher-o
correlations, built up in individual collisional events.

C. The limit of weakly interacting, dilute gases

In the case of a weakly interacting system, we can s
the solution to the integral equation Eq.~27! in the form of a
power series of the density operator. The expansion par
eter is given by the interaction strength

s$g%5(
l 50

`

s$g%
~ l ! . ~28!

If this series is inserted into the integral equation for t
coarse-grained density operator, then one finds for the fi
order correction

s$g%
~1!52 i E

2`

0

dteht Û $g%
~0!†

~t!~@Ĥ $g%
~1! , s$g%

~0! #

1Tr$@Ĥ $g%
~1! , ĝ i #s$g%

~0!%]g i
s$g%

~0! ! uḡ~t;$g%!Û $g%
~0!~t !.

~29!

We will show that the first two terms of the series Eq.~28!
are sufficient to determine the kinetic equations for the
pectation values of the set of operators$ĝ i% including
second-order~collisional! contributions.

It is important to note that the integrand has to be eva
ated along the trajectories to the past. However, it can
further simplified by using again the interaction-picture re
resentation, as derived from Eqs.~14!,~19!,~21!. First, one
notices that the interaction-picture representation of the
erence distribution is constant, if evaluated along the cha
teristic trajectories. This is implied in its definition.

s$g%
~0!5Û $g%

~0!†
~t! s

$ḡ~t;$g%!%
~0! Û $g%

~0!~t !. ~30!

Second, one finds that in the interaction picture the relev
operatorĝ i(t;$g%) can be expressed as a linear combinat
of Schrödinger-picture operatorsĝ j

ĝ i~t;$g%!5Û $g%
~0!†

~t! ĝ i Û $g%
~0!~t !5K $g%~t! i

j ĝ j . ~31!

Third, we define an interaction-picture Hamiltonian by

Ĥ $g%
~1!~t !5Û $g%

~0!†
~t!Ĥ $ḡ~t;$g%!%

~1! Û $g%
~0!~t !. ~32!

With these definitions, one can evaluate the integrand al
the characteristic. Details of this calculation are outlined
Appendix A. Thus, within the limit of weak interactions an
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the Markov approximation, one obtains the first two con
butions to the coarse-grained density operator as

s$g%5s$g%
~0!2 i E

2`

0

dteht ~@Ĥ $g%
~1!~t !, s$g%

~0! #

1Tr$@Ĥ $g%
~1!~t !, ĝ i #s$g%

~0!%]g i
s$g%

~0! !1O@2#. ~33!

It is easy to show that within these approximations
coarse-grained density operator is Hermitian, and tha
yields exactly the same expectation values as the refer
distribution alone, as defined in Eq.~5!.

D. Quantum kinetic equations

With this first-order result for the coarse-grained dens
operator, we can now address the second part of our ‘‘b
strapping’’ procedure: the kinetic evolution of an expectat
value^ô& subject to this coarse-grained density operator. T
kinetic equations are obtained by averaging Heisenbe
equation with the coarse-grained density operator, as g
in Eq. ~7!. As we are interested in a power series expans
of the kinetic equations, again we decompose the t
Hamilton operatorĤ and the coarse-grained density opera
s$g% into its various contributions in terms of the interactio
strength, i.e.,

d

dt
^ô&5 iTr$@Ĥ, ô #s$g~ t !%%

5 iTrH @Ĥ $g~ t !%
~0! 1Ĥ $g~ t !%

~1! , ô #(
l 50

`

s$g~ t !%
~ l ! J . ~34!

By grouping the individual terms, one can rewrite this as

d

dt
^ô&5(

l 50

`

R$g~ t !%
~ l ! @ ô#1L $g~ t !%

~ l 11!@ ô#, ~35!

where we have introduced linear Liouville operators

R$g%
~ l>0!@ ô#5 iTr$@Ĥ $g%

~0! , ô #s$g%
~ l ! %, ~36!

L $g%
~ l .0!@ ô#5 iTr$@Ĥ $g%

~1! , ô #s$g%
~ l 21!%. ~37!

1. General observables

To obtain practically applicable approximations for t
kinetic equation, we will truncate these series at low ord
i.e., first or second order. In the case of a general operatô
that cannot be represented by a linear combination of
evant operators, i.e.,ô¹Span($ĝ i u i PI %) this means that
-

e
it
ce

y
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e
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en
n
al
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r,

l-

d

dt
^ô&5R$g~ t !%

~0! @ ô#1L $g~ t !%
~1! @ ô#

1R$g~ t !%
~1! @ ô#1L $g~ t !%

~2! @ ô#1O@2#, ~38!

which is correct up to first order. At first glance, it seems
be inconsistent to include also the second-order contribu
L (2) in this first-order expression. However, a closer insp
tion shows that this particular kinetic equation Eq.~38! pre-
serves all constants of motion. In other words, if the opera
ô is an exact symmetry of the Hamilton operator

@Ĥ, ô #50, ~39!

then, according to Eq.~38!, all initial averages are conserve
as well

d

dt
^ô&50. ~40!

This is particularly interesting if we consider constants
motion related to number (N̂,N̂2, . . . ) and energy
(Ĥ,Ĥ2, . . . ), asimplemented in many recent BEC exper
ments. If the systems are prepared initially in one of t
standard thermodynamical ensembles: microcanon
(DN50, DE50), canonical (DN50, DE), or grand ca-
nonical (DN, DE), then these properties are preserved
time.

2. Master variables

In the previous section the kinetic evolution of a gene
operator was examined. Now, we focus on the set of relev
operators$ĝ i%. The kinetic equations for the correspondin
expectation values$g i% constitute a self-consistent set o
master equations that determine the system’s evolut
Again, we are only interested in a low-order truncation
Eq. ~35!. Due to the requirement that the reference distrib
tion yields the same expectation values as the unexpan
state Eqs.~5!,~14!, all contributions ofR$g%

( l .0)@ ĝ i #50 vanish
identically. Thus, we find a quantum kinetic master equat
correct up to third order, i.e.,

d

dt
g i~ t !5R$g~ t !%

~0! @ ĝ i #1L $g~ t !%
~1! @ ĝ i #1L $g~ t !%

~2! @ ĝ i #1O@3#.

~41!

By using the explicit expression for the coarse-grained d
sity matrix Eq. ~33!, we find the following quantum-
Boltzmann equation:
d

dt
g i~ t !5 iTr$@Ĥ, ĝ i #s$g~ t !%

~0! %

2E
2`

0

dteht Trˆs$g~ t !%
~0!

†Ĥ $g~ t !%
~1! ~t !, @Ĥ $g~ t !%

~1! ~0!, ĝ i #1ĝ j~ i ]g j
L $g~ t !%

~1! @ ĝ i #1Tr$@]g j
Ĥ $g~ t !%

~1! ~0!, ĝ i #s$g~ t !%
~0! % !‡‰, ~42!

whereĤ $g%
(1)(t) is the interaction picture Hamiltonian as defined in Eq.~32!.
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There are two interesting features in Eq.~42!: First, the
coherent part depends only on the total HamiltonianĤ.
Eventually, this part will determine the evolution of the e
pectation values subject to the external trapping and
mean-field potentials. Consequently, all derived mean-fi
potentials are invariant with respect to a particular partitio
ing of the total energyĤ, as introduced by the renormaliza
tion potentialQ̂$g%

(1) @see Eq.~10!#. Second, the kinetic equa
tion is strictly local in time, i.e., Markovian. The validity
criterion for this result is a correlation time of the ener
fluctuations which is much shorter than the time scale u
which the expectation values evolve and this is the case f
weakly interacting dilute gas.

III. KINETIC EQUATIONS FOR MEAN FIELDS AND
NORMAL AND ANOMALOUS FLUCTUATIONS

In the previous sections, we determined the form o
coarse-grained density operator as a functional of a cer
set of mean values. In turn, the temporal evolution of
mean values is determined by the kinetic equations~42!. In
this section, we apply these general results to the partic
situation of weakly interacting, low-temperature bosonic g
Thus, we have to determine the predominant energy co
butions to the system HamiltonianĤ, as well as decide on a
relevant set of operators$ĝ i%.

A. The dynamical evolution

In second quantization, the removal or addition of a p
ticle from or to a positionx is described by the action o
quantum field operatorsâx , âx

† on the corresponding quan
tum state. As we are considering bosonic particles, th
fields have to obey a commutation rule in order to com
with the symmetrization postulate:

d~x2y!5@ âx , ây
† #. ~43!

So far, we have introduced the quantum fieldâ in a position
representationâx . However, in performing actual calcula
tions other representations are often more favorable, for
ample, bare-harmonic oscillator or self-consistent Hartr
Fock states. Consequently, we will delay that choice a
work with a yet unspecified basis that spans the same sin
particle Hilbert spaceH5Span($uq1&uq1PQ%). Here, the in-
dex setQ encompasses all possible single-particle quan
numbers triplesq1. In this generic basis, the removal of
particle from a positionx transforms into

âx5(
q1

^xuq1&âq1
[^xu1&â1 , ~44!

dq1 ,q2
5@ âq1

,âq2

† #. ~45!

Here,âq1
denotes a bosonic operator that removes a par

from a general modeuq1&. To simplify the notation, we drop
the name of the dummy summation variable, i.e.,âq1

[â1, as
well as the summation symbol itself.
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The temporal evolution of a weakly interacting boson
gas is governed by a Hamilton operator that consists o
single-particle energy in the presence of the external trapp
potential, a two-particle interaction potential, as well
higher-order contributions. Within the dilute gas limit, w
want to assume that these higher order contributions, m
ated through three-body collisions, are unlikely to occur, a
we disregard them. Thus, we assume a Hamilton operato
the following form:

Ĥ5Ĥ ~0!1Ĥ ~1!5H ~0!12â1
†â21f1234â1

†â2
†â3â4 . ~46!

Here,Ĥ (0) denotes a single-particle Hamilton operator w
matrix elementsH (0)125^1up2/(2m)1Vext(x)u2&. To be
specific, we assume for convenience that the external t
ping potential is an isotropic harmonic oscillator, i.e
Vext(x)5mv2(x21y21z2)/2. In most of the present exper
ments, the two-body interaction potentialsVbin(x12x2) are
repulsive, of short range, and are described by the t
particle matrix elements

f12345
1

2
~S!^1u ^ ^2uVbin~x12x2!u3& ^ u4&, ~47!

f12345f12435f21345f2143. ~48!

Only the symmetric part of the two-particle matrix eleme
f1234 is physically relevant. Therefore, we have explicit
(S) symmetrized it. In the low kinetic energy range that w
are interested in,s-wave scattering is the dominant two
particle scattering event@42–46#. Thus, by discarding all de
tails of the two-particle potential, we can describe the int
action strength with a single parameterV0 related to the
scattering lengthas by V054p\2as /m. This limit corre-
sponds to a singular interaction potential, i.e.,Vbin(x1 ,x2)
5V0d(x12x2). In the case of this delta potential, one fin
for the two-body matrix elements

f12345
V0

2 E
2`

`

d3x^1ux&^2ux&^xu3&^xu4& ~49!

which need not be symmetrized, as they are symmetric
ready. However, considering the caveats that are relate
the singular functional form of the two-particle potenti
@39#, we will only rely on the existence and symmetry of th
two-particle matrix elements as defined in Eq.~47!.

It is interesting to note that the Hamilton operator Eq.~46!
is more general than its intended use. In case of trap
atoms that have several internal electronic states, it is o
necessary to combine all external and internal quantum n
bers into the definition of a single particle state, i.
uq1&5un1 ,l 1 ,m1 ;F1 ,M1 , . . . &. This implies that all derived
results also hold true for multicomponent systems, provid
the matrix elementsH (0)

12 andf1234 are generalized accord
ingly ~for example, double condensate mean-field equati
in Refs.@47,48#!.

The renormalization potentialQ̂$g%
(1) accounts for the mean

field shifted energies that affect the single-particle propa
tion between consecutive collision events. We have seen
ready in the previous section that the mean-field potenti
which result from a first-order calculation Eq.~42!, are in-
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variant under the particular choice of a energy partitioni
Now, by anticipating the results of the first-order calculatio
we do not just find a single mean-field potential, but seve
i.e., one occurring in the equation for mean fields and a
ferent one occurring in the equation for fluctuations. Furth
more, due to the inclusion of the anomalous fluctuations~see
next section!, we no longer have particle-number conservi
mean-field potentials either. However, as we will use
particle-conserving part of the mean-field energies to de
mine the ‘‘best’’ single-particle basis, we will also choose
renormalization potential that is number conserving, i.e.,

Q̂$g%
~1!5f1234â1

†Q$g%
23 â4 , ~50!

whereQ$g%
23 are the matrix elements~yet to be determined!.

B. The set of relevant operators

The derivation of the kinetic equations is based on
premise that only a few fundamental variables determine
gas’s evolution on a coarse-grained time scale. These q
tities will serve as master variables and any single time
servable is linked to them. It is an intricate question to d
termine a set of relevant variables from general grounds
but we are guided by the following physical arguments.

In the case of kinetic temperatures well above the tra
tion temperature, it is sufficient to consider only the redis
bution of populationsf q1

5^âq1

† âq1
& within generic quantum

levels uq1&. The quantum average is defined by Eq.~3!.
However, as temperatures are lowered, the spatial ex

sion of a single-particle wave function becomes compara
to the mean interparticle distance. Thus, it will be necess
to consider spatial coherences as well, i.e.,f q1 ,q2

5^âq2

† âq1
&.

Note, this is still a single-particle quantity.
On the other hand, the most salient and fascinating fea

of Bose-Einstein condensation is the formation of a mac
scopic many-particle mean fieldaq1

5^âq1
&. By now, this is

an experimentally well established fact and to a large deg
the mean field is described by the Gross-Pitaevskii equat
Moreover, there are theoretical predictions@17,49# indicating
that anomalous fluctuations play a significant role as w
Consequently, we will also consider anomalous avera
mq1 ,q2

5^âq1
âq2

& as independent relevant variables.
Thus, guided by the forgoing arguments, we choose

set of relevant operators as

$ĝ i u i PI %5$1,âq1
,âq2

† , f̂̃ q1q2
5~ âq2

† 2aq2
* !~ âq1

2aq1
!,

m̂̃q1q2
5~ âq1

2aq1
!~ âq2

2aq2
!, ~51!

n̂̃q1q2
5~ âq1

† 2aq1
* !~ âq2

† 2aq2
* !uq1 ,q2PQ%

and denote the corresponding expectation val
g i5 Tr$ĝ i sg% by

$g i u i PI %5$1,aq1
,aq2

* , f̃ q1q2
,m̃q1q2

,ñq1q2
uq1 ,q2PQ%.

~52!
.
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With this set of independent variables, i.e., the mean fie
and the fluctuations around them, we can parametrize
reference distribution as

s
$a,a* , f̃ ,m̃,ñ%
~0!

5exp~V$ f̃ ,m̃,ñ%2 f̂̃ 12Y$ f̃ ,m̃,ñ%
12

2m̂̃12L$ f̃ ,m̃,ñ%
12

2 n̂̃12L$ f̃ ,m̃,ñ%
12*

!. ~53!

Here, we have used the implicit summation convention
scribed in Eq.~44!. The conjugate thermodynamic coord
nates$V,Y,L% are implicitly defined by the quantum ave
ages

^ô&$a,a* , f̃ ,m̃,ñ%5Tr$ôs
$a,a* , f̃ ,m̃,ñ%
~0!

%, ~54!

that is

^1&$a,a* , f̃ ,m̃,ñ%51, ^â1&$a,a* , f̃ ,m̃,ñ%5a1 ,

^ f̂̃ 12&$a,a* , f̃ ,m̃,ñ%5 f̃ 12, ^m̂̃12&$a,a* , f̃ ,m̃,ñ%5m̃12, ~55!

as well as their complex conjugatesñ125m̃12* . The average
of any other multiple operator product, occurring during t
evaluation of the kinetic equations, are greatly simplified
the Gaussian structure of the reference distribution. A se
factorization rules, known as Wick’s theorem@37#, can be
derived and its main results are outlined in Appendix B.

C. Renormalized master equations

In this section we present the results of applying the
netic master equations Eq.~42! to the set of relevant opera
tors defined in Eq.~51!. Within the limits of the physical
approximations we have obtained a self-consistent se
equations for the mean-field amplitudea that generalizes the
Gross-Pitaevskii equation, a quantum Boltzmann equa
for the normal fluctuations~depletion! f̃ , and the anomalous
fluctuations m̃. The large number of individual algebrai
transformations ('10 000) that are necessary to obtain t
final result prohibits attempts to evaluate the collision ter
manually. Therefore, we developed a symbolic algebra pa
age that performs the required calculations. The presenta
of the final results of this calculation is greatly simplified b
introducing the following single-particle Hilbert-space ve
tors ~covariant, contravariant!

^â&[ua&5a1u1&, ^â&†[^au5a1* ^1u, ~56!

normal operators@tensor rank~1,1!#

f̃ 5 f̃ 12u1&^2u, f ~c!5a2* a1u1&^2u, ~57!

pseudo-operators@tensor rank~2,0!#

m̃5m̃12u1&u2&, m~c!5a2a1u1&u2&, ~58!

and their Hermitian conjugatesñ5m̃†, n(c)5m(c)†.

1. Mean fields

For the macroscopic many-particle mean fieldua&, we
find
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d

dt
ua&52 i ~H ~0!11U f ~c!12U f̃ !ua&

2 iVm̃/^au1L
$a,a* , f̃ ,m̃,ñ%
~2!

@ â#, ~59!

with a collision term given by

L
$a,a* , f̃ ,m̃,ñ%
~2!

@ â#5~G f̃ f̃ ~11 f̃ !2G~11 f̃ !~11 f̃ ! f̃

12G f̃ m̃ñ22G~11 f̃ !m̃ñ!ua&

12~G f̃ m̃~11 f̃ !2G~11 f̃ !m̃f̃ !/^au. ~60!

First of all, the field evolves unitarily in the nonlinear he
mitian Hamilton operator which consists of a free partH (0),
determined by the external trapping potential and any o
applied electromagnetic fields. The second and third con
bution are the collision induced mean field potentials,
noted byU f (c) andU f̃ . While the first of these potentials i
proportional the mean field density itself, the second pot
tial U f̃ reflects the influence of the normal fluctuation up
the mean field. It is important to note the different weighti
factors 1 and 2 multiplying the potentials. They arise fro
the different quantum-statistical fluctuation properties o
c-number mean field and a normal single particle dens
Exactly the same weighting factors are also found with
variational Hartree-Fock-Bogoliubov approach@17#. The
mean field potential is defined in terms of the two-parti
interaction matrix elements Eq.~47! and a single-particle
density operatorf that can be eitherf (c) or f̃

U f52f1 283848 f 3828u1&^48u. ~61!

Due to the Hermiticity of the two-particle interaction ener
and the positivity of the single particle density, it is al
self-adjoint,2 i.e., U f5U f

† . It is interesting to see that in th
case of a delta-potential Eq.~49! and a scalar field~i.e., no
internal degrees of freedom!, the mean-field potential re
duces to the well known potential energy density that is p
portional to the local mean field density

^xuU f ~c!uy&5V0d~x2y!u^xua&u2. ~62!

The fourth linear collisional contribution is proportional
the anomalous coupling strengthVm̃ contracted (/) with the
adjoint field^au. In general, we obtain the contraction of tw
tensor fieldsA/B, from a basis representation of the tw
fields and a subsequent contraction of the last index oA
with the last index ofB.

This non-Hermitian coupling is in general mediated by
anomalous averagem, and explicitly given by

Vm52f1 283848m3848u1&u28&. ~63!

In here,m stands for any anomalous average, eitherm(c) or
m̃. From the definition of the anomalous coupling, it can
seen easily thatVm5Vm

Á is symmetric.

2This potentialU f is not related to the single-particle propagat

Û $g%
(0) (t) defined in Eq.~21!.
er
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All of the remaining terms in Eq.~60! are second-orde
collisional contributions. They always appear in pairs whe
one term corresponds to an in-process while the sign
versed companion describes a loss out of the field. A clo
inspection reveals that there are essentially four types of
cesses occurring, i.e., collision events that involve zero
three anomalous averages. Furthermore, one finds that a
mal fluctuationf̃ on the inside is always accompanied by
bosonically enhanced (11 f̃ ) on the outside, and vice versa
On the other hand, whenever a mean field densityf (c), an
anomalous mean field densitym(c), or an anomalous fluctua
tion m̃ occurs in an in process they appear unaltered on
out process. This behavior is analogous to atomic transi
rates described by the EinsteinA and B coefficients which
can be attributed to stimulated absorption and emission
well as spontaneous emission processes. The fact tha
mean field is never bosonically enhanced supports the in
pretation that the mean-field acts as a classical driving fi

In detail, these collisions operators are described by
following operators and pseudo operators

G f f f58f1 283848fh
19293949 f 3819 f 4829 f 4928u1&^39u,

G f m f58f1 283848fh
19293949 f 3819m4839 f 4928u1&u29&,

~64!

G f mn58f1 283848fh
19293949 f 3819m4839n2928u1&^49u,

Gmmn58f1 283848fh
19293949m3849m4839n2928u1&u19&.

From the time average over the interaction picture Hamil
operator that appears in the kinetic equation Eq.~42!, one
obtains an approximately energy conserving two-parti
matrix element:

fh
19293949~ t !5E

2`

0

dtehtf1234K $g~ t !%
† ~t!19

3 1K $g~ t !%
† ~t!29

2K $g~ t !%~t !39
3K $g~ t !%~t !49

4 .

~65!

The restricted propagator that has been used here is expl
given by the time-ordered exponential

K $g~ t !%~t !5Tei *t
0ds~H~0!1Q

ˆḡ~s;$g~ t !%!‰!, ~66!

where we obtained the operatorsH (0) and Q$g% from the
matrix elements given in Eqs.~46!,~50!.

To see qualitatively whyfh
19293949 is essentially nonzero

only on the energy-shell of thicknessh, it is useful to repre-
sent the restricted propagator with respect to the eigens
of

~H ~0!1Q$g~ t !%!u1&5«1~ t !u1&. ~67!

By assuming that the energy levels change adiabatic
slow, one obtains approximately
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fh
192939495f19293949S pdh~D19293949!1 iPh

1

D19293949
D ,

~68!

which is nonzero only if the energy differenceD19293949
5«19(t)1«29(t)2«39(t)2«49(t) is smaller thanh:

lim
h→01

1

h2 iD
5pdh~D!1 iPh

1

D
. ~69!

This result is analogous to the second order Born-Mar
approximation@35#.
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2. Normal fluctuations

The kinetic equation for the normal fluctuations~deple-
tion! generalizes the quantum-Boltzmann equation found
many textbooks@4,37#

d

dt
f̃ 52 i @H ~0!12U f ~c!12U f̃ , f̃ #

2 iV ~m~c!1m̃!/ñ1 im̃/V
~m~c!1m̃!

†
1L

$a,a* , f̃ ,m̃,ñ%
~2!

@ f̂̃ #,

~70!

with second-order collisional contributions
L
$a,a* , f̃ ,m̃,ñ%
~2!

@ f̂̃ #5~G f̃ f̃ ~11 f̃ !12G f ~c! f̃ ~11 f̃ !1G f̃ f̃ f ~c!12G f̃ ~m~c!1m̃!ñ12G f̃ m̃n~c!12G f ~c!m̃ñ!~11 f̃ !

2~G~11 f̃ !~11 f̃ ! f̃12G f ~c!~11 f̃ ! f̃1G~11 f̃ !~11 f̃ ! f ~c!12G~11 f̃ !~m~c!1m̃!ñ12G~11 f̃ !m̃n~c!12G f ~c!m̃ñ! f̃

12~G f̃ ~m~c!1m̃!~11 f̃ !1G f ~c!m̃~11 f̃ !1G f̃ m̃f ~c!2G~11 f̃ !~m~c!1m̃! f̃2G f ~c!m̃f̃2G~11 f̃ !m̃f ~c!!/ñ1H.c. ~71!
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First, one finds a unitary evolution in the presence of
external trapping, the mean field, and the normal poten
Both of the self-induced potentials,U f (c) and U f̃ are
weighted by a common factor of 2~compare to Ref.@17#!.
This is in contrast to the weighting factors appearing
mean-field Hamilton operator Eq.~59!. But again, this fact
can be traced back to different quantum-statistical proper
of the mean field and the fluctuations. Second, it can be s
that the anomalous coupling strength is now proportiona
the total anomalous average, i.e.,m(c)1m̃. Third, in the ab-
sence of any mean fields or anomalous averages the sec
order contribution in Eq.~71! reduces to the well-known
Boltzmann collision term

G f̃ f̃ ~11 f̃ !~11 f̃ !2G~11 f̃ !~11 f̃ ! f̃ f̃ . ~72!

By further assuming that the normal fluctuations are p
dominantly diagonal in an energy eigenbasis defined by
nonlinear Hamilton operator of Eq.~70! ~ergodic hypoth-
esis!, one recovers the Bose-Einstein distribution as the
e
l.

e

s
en
o

nd-

-
e
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tionary distribution of particles within the quantum level
However, the presence of the mean field, as well as
anomalous averages lead to additional collision proces
that must not be ignored in general. Eventually, these p
cesses will lead to a self-consistent equilibrium partition
particles between mean fields, and normal and anoma
fluctuations. While a detailed numerical self-consistent so
tion of the set of kinetic equations is still under investigatio
it is important to see that the total particle numb
^N̂&5 Tr$ f (c)%1 Tr$ f̃ % is always conserved@compare Eq.
~40!#

d

dt
^N̂&50. ~73!

3. Anomalous fluctuations

In contrast to the normal fluctuations, the anomalous fl
tuations do not evolve unitarily but rather as a tensor of ra
~2,0!. Both, left and right generators of the time evolution a
identical to the Hamilton operator of the normal fluctuatio
d

dt
m̃52 i ~H ~0!12U f ~c!12U f̃ !/m̃2 im̃/~H ~0!12U f ~c!12U f̃ !

2 iV ~m~c!1m̃!/~11 f̃ !2 i f̃ /V~m~c!1m̃!1L
$a,a* , f̃ ,m̃,ñ%
~2!

@ m̂̃#, ~74!

L
$a,a* , f̃ ,m̃,ñ%
~2!

@ m̂̃#5~G f̃ f̃ ~11 f̃ !1G f̃ f̃ f ~c!12G f̃ f ~c!~11 f̃ !12G f̃ m̃~n~c!1ñ!12G f̃ m~c!ñ!/m̃

2~G~11 f̃ !~11 f̃ ! f̃1G~11 f̃ !~11 f̃ ! f ~c!12G~11 f̃ ! f ~c! f̃12G~11 f̃ !m̃~n~c!1ñ!12G~11 f̃ !m~c!ñ!/m̃

1~2G f̃ ~m~c!1m̃!~11 f̃ !12G f̃ m̃f ~c!12G f ~c!m̃~11 f̃ !1Gm̃m̃~n~c!1ñ!12Gm̃m~c!ñ!/ f̃

2~2G~11 f̃ !~m~c!1m̃! f̃12G~11 f̃ !m̃f ~c!12G f ~c!m̃f̃1Gm̃m̃~n~c!1ñ!12Gm̃m~c!ñ!/~11 f̃ !1transp. ~75!
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These three sets of master equations for the mean
and the normal and anomalous fluctuations constitute
main result of this article. They unify and generalize simp
equations which have been obtained previously also by o
methods. However, so far, we have not discussed the ph
cal implications that will arise from a self-consistent soluti
of these equations. Specifically, we need to determine
following questions:~I! the equilibrium distribution of par-
ticles partitioned between mean field and normal and ano
lous fluctuations,~II ! the importance and quantitative size
anomalous fluctuations,~III ! the collisional damping rate
and second-order energy shifts,~IV ! the response of the equ
librium system to weak external perturbations, i.e., the c
lective excitation frequencies via linear response theory,~V!
critical phenomena occurring around the onset of conde
tion, or, for example,~VI ! the dynamics of the growth of th
condensed phase.

IV. OUTLOOK

In the previous section, we have enumerated sev
quantities that need to be determined and interesting p
along which detailed calculations could proceed. We beli
that amongst these issues, it will be most crucial to add
problems ~I! and ~II ! around T'0, first. On one hand
present-day experiments have established that the mean
description yields good agreement. On the other hand, t
are various approaches to the self-consistent equilibrium
normal and anomalous fluctuations and not all implicatio
have been elucidated.

The standard route to investigate this problem is based
finite temperature calculations in the Hartree-Foc
Bogoliubov description. Various schemes employing, for
ample, the quasistatic Popov approximation, or more
namical methods that go beyond it~i.e., the collisionless
regime! are being investigated by several research group

This present, nonequilibrium approach provides an al
nate route to the stationary solution. In particular, we exp
that the presence of a large condensed phase will lead
strong correlation of the low-energy part of the normal a
anomalous fluctuations ('122 times the chemical potentia
m of the condensate!, while the high-energy tail will be
mostly in detailed balance at some temperatureT. However,
such a macroscopic ‘‘polarization’’ of the low-energy part
the fluctuations cannot be described within a simple ergo
hypothesis, and therefore requires a full quantum treatm

The main obstacle to overcome in numerically answer
this problem is the unfavorable scaling law of the collisi
operators. From a simple operations count, one finds
there areN8 summations involved ifN is the number of
energy levels being considered.

This burden can be alleviated by being more specific,
by postulating a completely isotropic situation for a sing
condensed phase, an isotropic trapping potential, a rota
ally invariant initial condition, as well as a short-range ce
tral two-particle interaction. Within this simplified mode
one can then decompose all involved operators in term
angular momentum submanifolds~i.e., irreducible tensor set
and use of Wigner-Eckart theorem!. This assumption make
the quantum-mechanical treatment of the low-energy reg
(m<«<2m, N'10220) feasible and will lead to a self
ld
e

r
er
si-

e

a-

l-

a-

al
hs
e
ss

eld
re

or
s

n
-
-
-

r-
ct

a
d

ic
t.

g

at

.,

n-
-

of

n

consistent equilibrium. A detailed numerical investigation
in progress and results will be reported.

V. CONCLUSIONS

In this article, we have revisited the Chapman-Ensko
Bogoliubov procedure of nonequilibrium statistical mecha
ics to describe the kinetic evolution of a condensed boso
gas of atoms towards equilibrium. Within a second-ord
Born-Markov approximation, we consider the collision d
namics of macroscopic mean fields, normal fluctuations,
anomalous averages. In particular, we have obtaine
coupled set of master equations for these quantities that
compass the Gross-Pitaevskii mean-field equation, as we
the quantum-Boltzmann equation for the normal fluctuatio
as limiting cases. The mean-field potentials that are obtai
from a first-order calculation are in agreement with the
sults of a variational Hartree-Fock-Bogoliubov calculatio
Beyond these first-order energy shifts, we obtain seco
order collisional energy shifts and damping rates that
bosonically enhanced. We expect our results to be v
when strong collisions are well separated in time and wh
the mean-field-induced energy shifts may be neglected
ing a strong collision event@see Eqs.~A7!, ~A8!#.
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APPENDIX A

With the definitions for the interaction-picture represen
tion, we can rewrite the commutator term of Eq.~29! as

Û $g%
~0!†

~t!@Ĥ $ḡ~t;$g%!%
~1! , s

$ḡ~t;$g%!%
~0!

#Û $g%
~0!~t !5@Ĥ $g%

~1!~t !, s$g%
~0! #.

~A1!

The trace term evaluated along the trajectory simplifies t

Tr$@Ĥ $ḡ~t;$g%!%
~1! , ĝ i #s$ḡ~t;$g%!%

~0!
%

5K $g%~t! i
jTr$@Ĥ $g%

~1!~t !, ĝ j #s$g%
~0!%. ~A2!

Finally, the self-tuning term of the reference distributio
gives

Û $g%
~0!†

~t!]g i
s$g%

~0!
uḡ~t;$g%!Û $g%

~0!~t !

5S ]ḡ i~t;$g%!

]g l
D 21

~@D̂ $g%~t! l , s$g%
~0! #1]g l

s$g%
~0! !,

~A3!

where we introduce auxiliary operator valued vecto
D̂ $g%(t) and matrix-valued coefficients,S$g%(t) by

D̂ $g%~t! i5Û $g%
~0!†

~t!]g i
Û $g%

~0!~t !, ~A4!

S$g%~t! i j 5S ]ḡ l~t;$g%!

]g i
D 21

K $g%~t! l
j . ~A5!
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If these results are put together, one finds for the first-or
correction of the coarse-grained statistical operator

s$g%
~1!52 i E

2`

0

dteht ~@Ĥ $g%
~1!~t !, s$g%

~0! #

1~@D̂ $g%~t! i , s$g%
~0! #1]g i

s$g%
~0! !S$g%~t! i j

3Tr$@Ĥ $g%
~1!~t !, ĝ j #s$g%

~0!% !. ~A6!

This expression is formally equivalent to Eq.~29!. However,
a closer inspection of theS and D̂ terms shows that they
contain higher-order energy corrections induced by ren
malization energyQ̂$g%

(1) . In particular, from a short time
Taylor-expansion one finds that

D̂ $g%~t!502 iO@t]g i
Q̂$g%

~1! #, ~A7!

S$g%~t! i j 5d i j 2 iO@tg l]g j
A$g% i

l #. ~A8!

Consequently, we will disregard the effect of the mean fi
onto the temporal evolution ofD̂ $g%(t) andS$g%(t) during a
strong collision event and replace them by their ‘‘bare’’ va
ues attained in the absence of the mean-field shift.

APPENDIX B: A GENERALIZED WICK’S THEOREM

The Gaussian structure of the reference distribution
~53! is particularly useful, as it permits the systematic app
cation of Wick’s theorem@37#. This is a set of rules to effi-
ciently evaluate quantum averages for multiple opera
products as

^ĉ1ĉ2•••ĉ l&$a,a* , f̃ ,m̃,ñ% . ~B1!
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In this average, for example, the operatorĉ1 represents ei-
ther an operatorâ1 or â1

† .

First, the displacement rule shifts any operatorĉ1 by its
c-number expectation valuec1 which is eithera1 or a1* ,
and replaces the quantum average by an average tha
zero mean values:

^ĉ1ĉ2•••ĉ l&$a,a* , f̃ ,m̃,ñ%

5^~ ĉ11c1!~ ĉ21c2!•••~ ĉn1c l !&$0,0,f̃ ,m̃,ñ% .

~B2!

Second, after expanding the multiple products, one can
card all averages that involve an odd numbers of operat

^ĉ1ĉ2•••ĉ2s11&$0,0,f̃ ,m̃,ñ%50. ~B3!

And third, for the remaining averages, one can use
Gaussian factorization rule:

^ĉ1ĉ2 . . . ĉ2s&$0,0,f̃ ,m̃,ñ%

5^ĉ1ĉ2&$0,0,f̃ ,m̃,ñ%^ĉ3 . . . ĉ2s&$0,0,f̃ ,m̃,ñ%

1^ĉ1ĉ3&$0,0,f̃ ,m̃,ñ%^ĉ2ĉ4 . . . ĉ2s&$0,0,f̃ ,m̃,ñ%

A

1^ĉ1ĉ2s&$0,0,f̃ ,m̃,ñ%^ĉ2 . . . ĉ2s21&$0,0,f̃ ,m̃,ñ% . ~B4!

By proceeding recursively, one has finally evaluated
complete multiple operator average Eq.~B1!.
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