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Quantum kinetic theory for a condensed bosonic gas
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We present a kinetic theory for Bose-Einstein condensation of a weakly interacting atomic gas in a trap.
Starting from first principles, we establish a Markovian kinetic description for the evolution towards equilib-
rium. In particular, we obtain a set of self-consistent master equations for mean fields, normal densities, and
anomalous fluctuations. These kinetic equations generalize the Gross-Pitaevskii mean-field equations, and
merge them consistently with a quantum-Boltzmann-equation apprpBt850-29479)08505-4

PACS numbeis): 03.75.Fi, 05.30.Jp, 05.70.Ln, 42.55.Ah

[. INTRODUCTION density operator that depends only on a few selected vari-
ables. These quantities will serve as master variables and
With the experimental realization of Bose-Einstein con-determine the system’s evolution on a coarse-grained time
densation with neutral atomic gasgk-3], it has become scale. From a perturbative expansion of this density operator,
possible to observe fundamental properties of quantum stave obtain kinetic equations that describe the temporal evo-
tistics directly. While there are numerous well-establishedution of the expectation value of arfgingle-timé observ-
fields of low-temperature quantum physics that deal withaple. As a specific application of this formulation, we then
many-particle systems, most of the salient features related tgssume that the condensed gas can be described essentially
the paradigm of indistinguishablility are masked by strongby the dynamic evolution of mean fields and normal and
interactions, or contact with thermalizing reservoirs. Theanomalous fluctuations. In particular, we obtain kinetic equa-
newly gained ability to isolate the condensate fraction fromtions that comprise the Gross-Pitaevskii equation and the
its environment to a high degree, as well as the tight spatiajuantum-Boltzmann equation as special instances. These ki-
confinement of the macroscopic quantum field, has openefletic equations are formulated basis independently and con-
up ways to selectively manipulate the mean-field, and studgider all second-order processes which give raise to colli-
its temporal evolution towards equilibrium almastvivo. sional energy shifts and damping rates. It is also noteworthy
The motion of trapped atoms in a dilute gas consists othat the present theory can be applied readily to multicom-
free oscillations within the external potential that are inter-ponent bosonic gases, provided the two-particle scattering
rupted by short binary collision events. Conventionally, thatmatrix is interpreted accordingly.
interaction strength is measured by the range of the repulsive However, considering the rapid development of this field
two-particle potential, i.e., the scattering length The du-  of physics, it is also of great importance to compare the
ration of a collision eventy is given by the time a particle predictions of this and other kinetic theorigs-15 (mean-
of average velocity spends in the interaction region, i.e., field equations and kinetic theorjesith the results obtained
To=as/v. On the other hand, the inverse collision ratefrom finite-temperature calculations based on the Hartree-
7e=1/(nalv) is an estimate of the time between successiveFock-Bogoliubov formulatioi16—25 (collective excitation
collisions wheren denotes a particle density. As we are in- frequencies and damping ra}eslirect approaches to solve
terested in low kinetic energies and the weak interactiorthe many-particle Schoinger equatior 26,27 (configura-
limit, one finds a characteristic separation of time scales, i.etion interaction, hyper-spherical coordingtesenormaliza-
tion group technique$28], and, above all, to gauge them
TS 70 OF naﬁ«l. (1) against physical reality29—-31]. Further references on the
extensive literature can be found in recent review articles and
It is this separation of time-scales that gives raise to a kinetiditerature compilation$32—34.
stage of evolution, preceding any equilibrium situation. For The present article is organized as follows. In Sec. Il A,
example, such a kinetic stage is absent in strongly interactingre introduce a coarse-grained statistical density operator and
systems where a local equilibrium is established immediatelylerive an integral equation for it in Sec. 1l B. Assuming a
(7e~79, hydrodynamic stage Any individual collision weak two-particle collision rate, permits the development of
event creates a quantum-mechanical entanglement betwearperturbation theory, which is described in Sec. Il C. From
collision partners. However, due to the long separation bean explicit series expansion of the coarse-grained density op-
tween successive collisions and the presence of intermedia&gator, we obtain in Sec. Il D a set of kinetic equations char-
weak fluctuations these temporal correlations decay rapidlpcteristic of a condensed bosonic gas. In Sec. Il A, we in-
(Markov approximation troduce the Hamilton operator that governs the kinetic
Based on this microscopic picture of the weakly interact-evolution of a weakly interacting, repulsive gas. A set of
ing bosonic gas, we derive a generalized kinetic theory for aelevant operators is introduced in Sec. Il B, i.e., macro-
coarse-grained Markovian many-particle density operator, ascopic mean fields, normal fluctuations, as well as anoma-
discussed by Akhiezer and Peletmindlil. The quintessen- lous averages. By applying the general kinetic master equa-
tial assumption behind this approximation is a coarse-grainetions to this specific set of relevant operators, we obtain self-
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consistent kinetic master equations and give a detailef4,37-4Q. For example, in classical kinetics, this time is
discussion in Sec. Il C. Finally, in Sec. IV, we discuss thetypically of the order of the duration of a collision.
prospects and possible implications for a numerical simula- In the following discussion, we introduce three distinct
tion of a fully quantum-mechanical self-consistent solution. many particle density operators. The first density operator
p(t) describes the complete state of the many-particle sys-
tem. Starting from an initial valup(0), thesystem evolves
Il. COARSE-GRAINED MARKOVIAN DENSITY unitarily in time according to a time-independent Hamilton
OPERATOR operaton:L In analogy with the celebrated Chapman-Enskog
The quantum-mechanical state of a many-particle systerfB8,3q procedure of classical statistical mechanics which
contains an overwhelming amount of data and it is the obwas later introduced to quantum-statistics by Bogoliup8y
jective of gquantum-statistical mechanics to extract the relwe assume that all characteristic features of the quantum
evant information from a data subset as small as possiblstatistical state(t) can be inferred from expectation values
Such a minimal description then leads to a coarse grainedf a certain, restricted set of operatdrg| i  Z}, where the
pict_ur_e of the behavior_ of the system. The effects of coarsejqexi enumerates linearly independent operatgrérom a
graining on the dynamical evolution are well known from the(possibly infinite index setZ.
quantum mechanics of open systef85,36. By discarding Thus, we introduce a second coarse-grained, Markovian

some observable information from th(_a unitary evolution Ofdensity Operatorr, i 7y that approximates the complete
the complete system, one breaks the time-reversal symmetr i

thus introducing irreversibility. However, a judicious parti- Xénsny operatop(t)
tioning of the many, interacting degrees of freedom of a
large system into a small relevant subsystem and a weakly
coupled, complementary reservoir leads to a tractable de-
scription of the subsystem’s evolution towards equilibrium.The set of expectations valués;(t)|i € Z} that parametrize
This equilibrium state is determined by the properties of thehe coarse-grained density operator are found by a quantum
reservoir. averags - - -) over all states of the many-particle configura-
In this section, we will pursue these general ideas andion space
define a coarse-grained statistical density operator that de-
pends functionally on only a few fundamental variables, and
thus gives a raw picture of the “true” state of the many-
particle system. Based on the definition for the coarse-
grained statistical density operator, we then derive an inteWhile the coarse-graining assumption, i.e., the restriction to
gral equation that determines the functional form of thisa few selected variables, is a statistical statement, the Mar-
operator. In the limit of weakly interacting, dilute quantum kovian postulate concerns the separation of the time scales
gases where strong collisional interaction events are welhat govern the processes of equilibration and the decorrela-
separated in time, it is possible to solve this equation perturtion of fluctuations. Within this limit, the temporal evolution
batively and establish a hierarchy in terms of an expansioef this coarse-grained statistical density operatoy )i .z}
parameter proportional to this interaction strength. Once & solely governed by the motion of the set of expectation
perturbative expression for the functional form of the coarsevalues{y(t)|i e Z}. Any time dependence of the matrix el-

grained statistical operator is determined, we then use it tements ofa. can be attributed to the evolution of this

study the motion of expectation values of general obserViegyricted set of operatof;}, thus norelevantintrinsic time

ables. These equations of motion establish a closed, Sel&ependence is unaccounted fokithough, the set of opera-

consistent set of kinetic equations for the following restricted, ¢ is unspecified so far, it can include operators such as
set of fundamental variables: the mean field, the normal '

single-particle density, and the anomalous fluctuations. B)Vn'ty (1),Anumber ). Imﬂear momentum k), angular mo-

this method, we generalize the Gross-Pitaevskii mean-fiel@entum ¢), and energyki). The larger the set of operators,

equation and merge it consistently with an approach thathe better the quality of any subsequent approximation.

leads to the quantum-Boltzmann equations for both normal The third relevant many-particle density operatoo'!%.

densities and anomalous fluctuations. It serves as a reference distribution and describes a relaxed
In many ways our approach is reminiscent of the classicalbut nonequilibrium state of the gas between consecutive

Bogoliubov-Born-Green-Kirkwood-YvofBBYGK) method  collision events. We define it to yield the same expectation

[37], for in a similar manner, higher order correlations canvalues asr, on the restricted set of operatdrg}. Thus, this

also be characterized by a restricted set of variables. Specifieference distribution is given by

cally, in classical Markovian systems higher order correla-

tion functions can be expressed in terms of single-particle ) _ ~ i
densities. Tl = XAy Yy, 4

ol liery=p(t)=e""M'p(0)e™", 2

Yi(©=(¥)=Tr{y p(O}=Tr{y, ywlienyt 3

A. Fundamental assumptions of statistical mechanics L L .
P 1in the absence of ambiguities, we simplify the notation of the set

The derivation of a coarse-grained density operator reliesf operators or their corresponding expectation values by dropping
on the basic assumption of statistical mechanics that anthe index sefZ, the indexing label, or even the time argument
nonequilibrium statistical correlation eventually decayscompletely.
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where repeated indices imply a summation over operators €rator in terms of the interaction strength. However, it is well

and their conjugate thermodynamic coordinaYQ%. These Known that the mean-field interaction will significantly affect
coordinates are defined implicitly by the single-particle energies. Anticipating this, we will shift

the expansion point(®) by an as yet undetermined single-
Yi=Ty o =Ty o)} (5 particle energyQ!’) to a dressed energy

It is of interest to note that the reference state, as given by the {0 = {0 4 Q(l) _ (10)
exponentiated form in Eq4), is still of the most general o

form permitted by the principles of quantum mechanics, asg conserve energy, we have to reduce the interaction energy

long as the set of operatofs;} is complete. by an equal amount
This ansatz for a nonequilibrium coarse-grained statistical A . A
operatoray,, and a “self-adjusting” reference distribution A=A Q). (12)

O'E?% is also used in various contexts of equilibrium thermo- .

dynamics. For example, from a finite order truncation of aThe shifted interaction energM(l) represents the fluctua-
qguantum virial expansiof4], one obtains a coarse-grained tions about the mean-field energy and will be considered as
approximation oy, , 5 Of the grand-canonical statistical “weak,” or in other words, that strong fluctuations are well
density operatop= exp(Q—uN—8H). The starting point of ~Separated in time. This procedure is apalogous to the first
the iteration procedure is a reference distributiefy) , order energy shift found with ordinary Schiiager-Rayleigh
that matches the solution as closely as possible. In’here, tHREriurbation theory. The explicit form of this single-particle
Conjugate thermo_dynamic COOI’diI’Ia{@,M,B} Correspond renormalization energ@%{ which is of the same order as

to the observables unity, number, and total energy. the interaction energy, will be determined in the course of
this calculation.
B. Derivation of an integral equation By expanding Eq(8) around the dressed single-particle

"1 (0) i
To find the functional form of the postulated coarse-enerng{v}’ one obtains

grained Markovian density operatef ), , we use a “boot- ~(0) A ~(0) )
strapping” method. First, by assuming a given, yet unknown TRIHG), vilogtdy ot IHG o 1=F, (12
solution of Liouville’s equation

Wherngi is introduced for convenience to hold the remain-

d N ing first order contributions
gio = TiH o], 6)
(D _rp@ N 7
. . . Py IRy o 1= TRIHG, vi ol dyopy -
we can determine the dynamical evolution of the expectation (13
valuesy;(t) = Tr{ %o} from
There are two interesting points in considering Efj2).
d . ~ First, there is not one unique solutian;,,, but solution
ﬁyi(t):'Tr{[H’ Vil (?) " manifolds that are labeled by the constants of motion. Thus,
any particular solution has to be augmented with appropriate
Second, to derive the functional form of,;),, we now use physical boundary conditions. Second, the structure of the

Egs. (6), (7), and the fact that there is no explicit ime de- commutator of the single-particle HamiltoniaH?) with the

pe_ndeﬁcef 'lrIU{V(.t)}' Thus, bY partial differentiation one ob- o o operator$y;} is an intrinsic property of the system. It
tains the following equation: is determined both by the particular physical configuration
~ A . and the set of operators. If the set of operators is chosen
THIH, v Jogtdy o= —[H, oyl (8) appropriately, the commutator forms an algebra with struc-

, , ture constantsd;,, defined by
where again, we have adopted the convention that repeated

indices imply summation, unless stated otherwise. Moreover, g 1= i 14
by dropping the explicit time dependence of the reference [HEp 7= Aty (14)
point in phase spacgy;(t);, one can consider this as a |t e substitute this algebraic closure relation into Etp),
partial-differential equation with independent variables;. e obtains

The total Hamilton operatd;l that governs the evolution

of a weakly. interacting, dlAIute gas permits a partmomng of (A{y}llyj)(;yig{y}jL[Hg)}, g{y}]ngi_ (15)
the energy into a free paH(® and a presumably weak in-
teractionH® By the method of characteristics, one can transform this first
order, inhomogeneous partial-differential equation into an
A=A@+/D, (9)  equivalent integral equation. Although formally equivalent,

the later method is advantageous as it leads naturally to a

One could use the bare, single-particle enef9 that de-  Series expansion of the coarse-grained density operator by
termines the free kinetic evolution of the gas as a startingteration(compare Dyson seri¢d1]). The characteristic tra-
point of a series expansion of the coarse-grained density ofjectories are parametrized curvég(7;{y})} along which
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the boundary value of the coarse-grained density operator
propagating in phase space according to @§). They are
defined by

d— _
a (T =1 AG Gy v(miD, (16)

Yi(r=0{yH =, (17
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is 0 ~ ot ~
— (0) _; 7((0) (1)
T(5) = Oy f,wdTe” Uy (D(THG 045 ]
T N — 09
+THIHY; ¥i 1ol a0 0) oY (1)
27

This expression links the interacting coarse-grained density
operator to its noninteracting value by evaluating the inte-

and the corresponding boundary conditions. Formally, thegrand along its collision history. A regularizing function

solution of the differential equation defines a miap,(7)

(n—0,) has been introduced and suppresses higher-order

from regions in phase space connected by the characteristiamrrelations, built up in individual collisional events.

i.e.,

;i(Ti{Y}):K{y}(T)iJYJ- (18

C. The limit of weakly interacting, dilute gases

In the case of a weakly interacting system, we can seek

This map is obtained from the equation defining the characthe solution to the integral equation Eg7) in the form of a

teristics Eq.(16), i.e.,

dr (19

o |
KD =L AG K (D1

K{y}(T: 0):1 (20)

power series of the density operator. The expansion param-
eter is given by the interaction strength

U{Y}:Izo 0'?)2} (28)

If this series is inserted into the integral equation for the

As the coarse-grained density operator is transported along)arse-grained density operator, then one finds for the first-

the characteristics from its boundary value to its final value
it also evolves freely according to E¢L5). To account for

this evolution, we also define a unitary propagattf)(7)
by

(V)]

d. X
(0) —__:igW
Ui (D ==1Hg o

I- U, (22)

U%(r=0)=1. (22)
The solution for the inhomogeneous partial-differential equa:
tion Eg. (15 is now obtained from an interaction-picture
representation of the density operatqr,(7) that is defined

by
~ 1 -~
71 =005 (1) 05 U7, (23
At 7=0, it coincides with the Schrdbinger-picture value
U{y}(T:O):O'{y}, (24)

and, if our reference distribution, as defined in Ed)

matches the input state in the remote past asymptotically,

ie.,

(V)]

TE”_‘W‘T{?( T~ TET@"{?( i} 25
then we find for the initial condition that
|irr_1xa'{y}(7)=(7i%. (26)

T—

Finally, by differentiating the interaction-picture representa-

tion Eq. (23), the use of Eq(15) and a subsequent integra-

order correction

]

0
(1) _; (3007 N (1) (0)
T 'J_wdTe" Uiy (D(THp o1y

(1)

A1) 2 1O, (ON—  (1(0)
+TH[HG v loptdy on) i Ui (7).

(29

We will show that the first two terms of the series Eg8)
are sufficient to determine the kinetic equations for the ex-

pectation values of the set of operatofs;! including
second-ordefcollisiona) contributions.

It is important to note that the integrand has to be evalu-
ated along the trajectories to the past. However, it can be
further simplified by using again the interaction-picture rep-
resentation, as derived from Eq4d4),(19),(21). First, one
notices that the interaction-picture representation of the ref-
erence distribution is constant, if evaluated along the charac-
teristic trajectories. This is implied in its definition.

0

0) 0)
y(m{vH}

= (0)
v}

ot “
0'2 UE% (7) a'g U{y}(’i’). (30

Second, one finds that in the interaction picture the relevant
operatoraq(r;{y}) can be expressed as a linear combination
of Schralinger-picture operator&j

O

Yi(m{vh=0{ (D %0 (=K (nily;.

Third, we define an interaction-picture Hamiltonian by

(31)

STEO VRN T () LIS ¢)) " (0)
HE (D =Ug (DH S omY (1)

; 32

tion subject to the boundary conditions given in Eqgs.With these definitions, one can evaluate the integrand along
(24),(26), the integral equation for the coarse-grained densitithe characteristic. Details of this calculation are outlined in
operator is obtained: Appendix A. Thus, within the limit of weak interactions and
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the Markov approximation, one obtains the first two contri- d . @ @ o
butions to the coarse-grained density operator as a<0>: RiyoLo]+LiLo]
© i [° goanr @ 0) +RY [01+L2) [0]+0[2 (39)
Oy=0o—I _dee ([Hy(7), o) ] Lo+ Lieplol+or2],

~(1) ~ 0 0) whiph is c.orrect up to first order. At first glance, it seems Fo
+TH[HG(7), viloptdy o)+ 0021 (33)  pe inconsistent to include also the second-order contribution
_ o o L@ in this first-order expression. However, a closer inspec-
It is easy to show that within these approximations the_’tion shows that this particular kinetic equation E88) pre-

coarse-grained density operator is Hermitian, and that ikeryes all constants of motion. In other words, if the operator

yields exactly the same expectation values as the reference, .
distribution alone, as defined in E¢) 0'is an exact symmetry of the Hamilton operator

D. Quantum kinetic equations [H.0]=0, (39
With this first-order result for the coarse-grained densitythen, according to Eq38), all initial averages are conserved

operator, we can now address the second part of our “bootas well

strapping” procedure: the kinetic evolution of an expectation

value(0) subject to this coarse-grained density operator. The E(é): 0
kinetic equations are obtained by averaging Heisenberg'’s dt '
equation with the coarse-grained density operator, as given

in Eq. (7). As we are interested in a power series expansio his is particularly interesting if we consider constants of
of the kinetic equations, again we decompose the totaiotion related to number N,N? ...) and energy

Hamilton operatoﬂ and the coarse-grained density operator(|3|'|3|2, ...), asimplemented in many recent BEC experi-
o, into its various contributions in terms of the interaction ments. If the systems are prepared initially in one of the

(40)

strength, i.e., standard thermodynamical ensembles: microcanonical
d (AN=0, AE=0), canonical AN=0, AE), or grand ca-
a(o)ziTr{[H, 0 Jo oy} :i]rcr)]rgcal (AN, AE), then these properties are preserved in

—iTr [%020}4'&({120} 6]2 UE')@)} (34) 2. Master variables
Y Y ! Y : . . . . .
1=0 In the previous section the kinetic evolution of a general
operator was examined. Now, we focus on the set of relevant

By grouping the individual terms, one can rewrite this as - o ) i
operators{ y;}. The kinetic equations for the corresponding

d . * - NI expectation valuegy;} constitute a self-consistent set of
a<0>=|2 Riyoylol+Ly,lol, (39  master equations that determine the system’s evolution.
-0 Again, we are only interested in a low-order truncation of
where we have introduced linear Liouville operators Eq. (35). Due to the requirement that the reference distribu-
tion yields the same expectation values as the unexpanded
RIS O[o]=iTr{[H{), 0 1o}, (36)  state Eqs(5),(14), all contributions ofR{.; [ ]=0 vanish
identically. Thus, we find a quantum kinetic master equation
LE'yio)[o]=iTr{[Hgii ) ]0%1)}_ (37)  correct up to third order, i.e.,
d R - R
1. General observables aVi(t):Rgzt)}[Vi]+LE%)}[%]JFLizy)(t)}[Yi]jLOB]-

To obtain practically applicable approximations for the
kinetic equation, we will truncate these series at low order,

i.e., first or second order. In the case of a general opefator By using the exp|icit expression for the Coarse-grained den-
that cannot be represented by a linear combination of relsity matrix Eq. (33), we find the following quantum-
evant operators, i.eq¢ Span(y;|i e Z}) this means that Boltzmann equation:

(41)

d T D 10(0)
ayi(t)ZITl’{[H, Yilopy
0
, 0 . AN ~ ~ ~ . (0
_f_xdTe” TH{o S AG) (D, [TAG0(0), % 1+ %110, L D]+ TrL9, A0 (0), v doli DT (42)

whereﬂﬁ{(r) is the interaction picture Hamiltonian as defined in E2p).
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There are two interesting features in Eg42): First, the The temporal evolution of a weakly interacting bosonic

coherent part depends only on the total Hamiltonfan 9as is governed by a Hamilton operator that consists of a
Eventually, this part will determine the evolution of the ex- Single-particle energy in the presence of the external trapping
pectation values subject to the external trapping and th@otential, a two-particle interaction potential, as well as

mean-field potentials. Consequently, all derived mean-fieldigher-order contributions. Within the dilute gas limit, we
potentials are invariant with respect to a particular partition-Want to assume that these higher order contributions, medi-
ing of the total energy, as introduced by the renormaliza- ated _through three-body collisions, are unllkel_y to occur, and
tion potentiald®) . _we disregard them. Thus, we assume a Hamilton operator of

potentialQ;.1 [see Eq(10)]. Second, the kinetic equa

ot . e g X 19" the following form:

tion is strictly local in time, i.e., Markovian. The validity

crlterlon for thl§ re;ult is a correlation time _of the energy A=HO + I:|<1>=H(°)12£1}é2+¢1234é’1fé;é354, (46)
fluctuations which is much shorter than the time scale upon

which the expectation values evolve and this is the case for Bere A denotes a single-particle Hamilton operator with

weakly interacting dilute gas. matrix elementsH(®12=(1|p%/(2m)+V(x)|2). To be
specific, we assume for convenience that the external trap-
l1l. KINETIC EQUATIONS FOR MEAN FIELDS AND ping potential is an isotropic harmonic oscillator, i.e.,
NORMAL AND ANOMALOUS FLUCTUATIONS Ve X) = Mw?(x?+y2+2%)/2. In most of the present experi-

. . . ments, the two-body interaction potentialg;,(x;—X,) are
In the previous sections, we determined the form of a ; !
g ) ) repulsive, of short range, and are described by the two-
coarse-grained density operator as a functional of a certain_ . .
article matrix elements

set of mean values. In turn, the temporal evolution of the”

mean values is determined by the kinetic equati@. In 1
this section, we apply these general results to the particular ¢1234=§(S)<1|®<2|me(xl—x2)|3)®|4), 47
situation of weakly interacting, low-temperature bosonic gas.
Thus, we have to determine the predominant energy contri- 1234 ;1243 42134 42143

. A . PTI=PTI= = T (48)
butions to the system Hamiltoniat, as well as decide on a
relevant set of operatofsy;}. Only the symmetric part of the two-particle matrix element

¢1%3% is physically relevant. Therefore, we have explicitly
(S) symmetrized it. In the low kinetic energy range that we
o - are interested ins-wave scattering is the dominant two-
~ In second quantization, the removal or addition of a parparticle scattering evefit2—46. Thus, by discarding all de-
ticle from or to a positiorx is described by the action of tajls of the two-particle potential, we can describe the inter-
qguantum field operatora,, aI on the corresponding quan- action strength with a single parametéy related to the
tum state. As we are considering bosonic particles, thesscattering lengthag by Vo=4n#%2%as/m. This limit corre-
fields have to obey a commutation rule in order to complysponds to a singular interaction potential, i€ (X1,X2)
with the symmetrization postulate: =V;8(X1—X5). In the case of this delta potential, one finds
for the two-body matrix elements

A. The dynamical evolution

s(x—y)=[ay, aJ ]. (43

: p20=2 " e @9
So far, we have introduced the quantum fialth a position 2 ) -«

representatiora,. However, in performing actual calcula- ) , )
tions other representations are often more favorable, for exvhich need not be symmetrized, as they are symmetric al-

ample, bare-harmonic oscillator or self-consistent Hartree[®2dy. However, considering the caveats that are related to
Fock states. Consequently, we will delay that choice andl® Singular functional form of the two-particle potential
work with a yet unspecified basis that spans the same singlé3%]: We Wwill only rely on the existence and symmetry of the
particle Hilbert spacé{=Span(|q,)|a; € Q}). Here, the in- two-particle matrix elements as defined in E4j7).

dex setQ encompasses all possible single-particle quantum 'tiS interesting to note that the Hamilton operator E4f)
numbers tripleqy;. In this generic basis, the removal of a IS morehgerr:eral than |t|s_|ntend|ed| use. I_n case Of_ t_rappeld
particle from a positionx transforms into atoms that have several internal electronic states, it is only

necessary to combine all external and internal quantum num-
bers into the definition of a single particle state, i.e.,
a=>, (x|ql)éqlz<x|1>él, (44  |g1)=|ny,l1,my;F1,My, .. .). This implies that all derived
a1 results also hold true for multicomponent systems, provided
the matrix elementsi(®);, and ¢*?3* are generalized accord-
=[éql,égz]_ (45  ingly (for example, double condensate mean-field equations
in Refs.[47,48).
P s A(1
Here,a,, denotes a bosonic operator that removes a particle The renormalization potentia){,} accounts for the mean-
L . ield shifted energies that affect the single-particle propaga-
from a general modf,). To smphfy thg notatLon, we drop 4i5n petween consecutive collision events. We have seen al-
the name of the dummy summation variable, ieg;=a;, @S ready in the previous section that the mean-field potentials,
well as the summation symbol itself. which result from a first-order calculation EG2), are in-

55\1@2
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variant under the particular choice of a energy partitioning With this set of independent variables, i.e., the mean fields
Now, by anticipating the results of the first-order calculation,and the fluctuations around them, we can parametrize the
we do not just find a single mean-field potential, but severalreference distribution as

i.e., one occurring in the equation for mean fields and a dif-

J . : _ o _ e F oy12

ferent one occurring in the equation for fluctuations. Further T o T = XN QEmm— T2Y 7 0n

more, due to the inclusion of the anomalous fluctuatices . .

next sectiof, we no longer have particle-number conserving _ﬁle{{fZN N}_ﬁle{{fZi N})_ (53
,m,n ,m,n

mean-field potentials either. However, as we will use the

particle-conserving part of the mean-field energies to deterHere, we have used the implicit summation convention de-
mine the “best” single-particle basis, we will also choose ascribed in Eq.(44). The conjugate thermodynamic coordi-
renormalization potential that is number conserving, i.e., nates{Q,Y,A} are implicitly defined by the quantum aver-

(1) t~23 ages

Q)= 9"*a1Qf a4, (50 3 3

R s (0){a,a ,?,%,E}ZTF{OUEZ),Q* Tmm (54)

whereQ?3 are the matrix elementyet to be determined _
&4 that is

B. The set of relevant operators <1>{a ot T = 1, <él>{a o Fm=a,

The derivation of the kinetic equations is based on the
premise that only a few fundamental variables determine the ( ?12>{a o F %5}2?12, <F}112>{a o T = My, (55)
gas’s evolution on a coarse-grained time scale. These quan- B .
tities will serve as master variables and any single time obas well as their complex conjugates,=m?,. The average
servable is linked to them. It is an intricate question to de-f any other multiple operator product, occurring during the
termine a set of relevant variables from general grounds Upayaluation of the kinetic equations, are greatly simplified by
but we are guided by the following physical arguments.  the Gaussian structure of the reference distribution. A set of
In the case of kinetic temperatures well above the transitactorization rules, known as Wick’s theoref@7], can be
tion temperature, it is sufficient to consider only the redistri-gerived and its main results are outlined in Appendix B.
bution of populationsfql=<égléql) within generic quantum
levels|qg,). The quantum average is defined by Eg). C. Renormalized master equations
_ However, as temperatures are Ipwered, the spatial exten- |, this section we present the results of applying the ki-
sion of a single-particle wave function becomes comparablgqtic master equations E642) to the set of relevant opera-
to the mean interparticle distance. Thus, it will be necessary, ¢ gefined in Eq(51). Within the limits of the physical
to consider spatial coherences as well, itg, q,=(2;,8q,).  approximations we have obtained a self-consistent set of
Note, this is still a single-particle quantity. equations for the mean-field amplitudethat generalizes the
On the other hand, the most salient and fascinating featureross-Pitaevskii equation, a quantum Boltzmann equation
of Bose-Einstein condensation is the formation of a macrofor the normal quctuationsdepIetion?, and the anomalous

scopic many-particle mean fiet, =(a, ). By now, thisis  fluctuationsm. The large number of individual algebraic
an experimentally well established fact and to a large degreansformations 410 000) that are necessary to obtain the
the mean field is described by the Gross-Pitaevskii equatiorfinal result prohibits attempts to evaluate the collision terms
Moreover, there are theoretical predictigag,49 indicating  manually. Therefore, we developed a symbolic algebra pack-
that anomalous fluctuations play a significant role as wellage that performs the required calculations. The presentation
Consequently, we will also consider anomalous averagesf the final results of this calculation is greatly simplified by

Mg, q =<5q aq ) as independent relevant variables. introducing the following single-particle Hilbert-space vec-
142 1 M2 i i
Thus, guided by the forgoing arguments, we choose thcg_OrS (covariant, contravariant
set of relevant operators as 2 2
P (@=la)=a1), (@)'=(al=ai(1l, (56

(nlieTy={Lag,a}, Tqq,=(a5,~a5)(@q,~aq), normal operator$tensor rank(1,1)]

P R - T=F 102, f©=a%a1)(2|, 5
mqlq2:(aql_aql)(aqz_aqz), (51) 12| >< | azall >< | ( 7)
pseudo-operatorgensor rank2,0)]

o At _ _xNat .
Ngyq,= (8g, ~ @) (3y, aq2)|q1,qze Q m=my;|1)|2), m®=a,ay|1)]2), (58
and denote the corresponding expectation valuegng their Hermitian conjugatés=m’, n(©=m©?".
yi= Tr{yio,} by

1. Mean fields

{nlieTy={Llaq, @, 4,0, MasqpNayq,/ 01,02 O} For the macroscopic many-particle mean figle), we
(52 find
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d All of the remaining terms in Eq(60) are second-order

a|a>= —i(H9+1Uj +2U7)|a) collisional contributions. They always appear in pairs where

one term corresponds to an in-process while the sign re-

—iViZ(a|+ ng)a* . ﬁwﬁ}[é]’ (59  Vversed companion describes a loss out of the field. A closer

B inspection reveals that there are essentially four types of pro-

with a collision term given by cesses occurring, i.e., collision events that involve zero to
three anomalous averages. Furthermore, one finds that a nor-

LEZ),a* fral@l= (s =T mal fluctuationf on the inside is always accompanied by a

bosonically enhanced (4f) on the outside, and vice versa.
+ 20 %55~ 20 1)) | @) On the other hand, whenever a mean field den&it; an
+2(Timast— D) £ (al. (60) anomalous mean field density®, or an anomalous fluctua-
tion m occurs in an in process they appear unaltered on the
First of all, the field evolves unitarily in the nonlinear her- out process. This behavior is analogous to atomic transition
mitian Hamilton operator which consists of a free pdft),  rates described by the Einstetnand B coefficients which
determined by the external trapping potential and any othetan be attributed to stimulated absorption and emission, as
applied electromagnetic fields. The second and third contriwell as spontaneous emission processes. The fact that the
bution are the collision induced mean field potentials, demean field is never bosonically enhanced supports the inter-
noted byU«) andUz. While the first of these potentials is pretation that the mean-field acts as a classical driving field.
proportional the mean field density itself, the second poten- In detail, these collisions operators are described by the
tial Uz reflects the influence of the normal fluctuation uponfollowing operators and pseudo operators
the mean field. It is important to note the different weighting
factors 1 and 2 multiplying the potentials. They arise from T ;=8¢ 2'3'4'¢1"2"3"4"f 1o g g | 10(3")
the different quantum-statistical fluctuation properties of a i K yrariaranianz ’
c-number mean field and a normal single particle density. S
Exactly the same weighting factors are also found with the  T'i=8¢1 24 723 4 5, 1,my 30f 40| 1)]27),
variational Hartree-Fock-Bogoliubov approadfi7]. The (64)
mean field potential is defined in terms of the two-particle 13740 172137 4" ”
interaction fnatrix elements Ed47) and a single-pa?ticle Limn=8¢" 224 by FararMar gz [1)(47],
density operatof that can be eithef(®) or f e
Fomi=8¢" 234 ¢%, Ze Mg: 4rMyr3Manr|1)[17).
Ui=2¢1 23415, ]1)(4']. (61)
o o ) From the time average over the interaction picture Hamilton
Due to the Hermiticity of the two-particle interaction energy operator that appears in the kinetic equation &®), one

and the positivity of the single particle density, it is also ghtains an approximately energy conserving two-particle
self-adjoint® i.e., U;= UI. It is interesting to see that in the matrix element:

case of a delta-potential E¢49) and a scalar fieldi.e., no

internal degrees of freedgmthe mean-field potential re- S 0 .
duces to the well known potential energy density that is pro- ¢, > °* (t)zf dre7"¢pt23 K[ (1)t
portional to the local mean field density -

(X|Usoly)=Vod(x=y) (x| a)|?. (62) X 1K LoD 2K op(D ¥ 3K iy (DY 4
The fourth linear collisional contribution is proportional to ®3
the anomalous coupling strengify, contracted ¢ ) with the
adjoint field{ «|. In general, we obtain the contraction of two
tensor fieldsAZ B, from a basis representation of the two
fields and a subsequent contraction of the last indeX of

The restricted propagator that has been used here is explicitly
given by the time-ordered exponential

: : i 1%s(H O+ O
with the last index oB. Kyun (1) =TelAH T sy, (66)
This non-Hermitian coupling is in general mediated by an
anomalous averag®, and explicitly given by where we obtained the operators® and Q;,, from the
Lyaar matrix elements given in Eq$46),(50).
Vm=2¢ Mg 1)|27). (63 To see qualitatively whyp!2"®"#" is essentially nonzero

n
only on the energy-shell of thickness it is useful to repre-

I~n here,m stands_ f_o_r any anomalous average, _e'w Of  sent the restricted propagator with respect to the eigenstates
m. From the definition of the anomalous coupling, it can begf

seen easily that,,=V,; is symmetric.
(H(O)+Q{'y(t)})|1>:81(t)|l>' (67)

2This potentialU; is not related to the single-particle propagator By assuming that the energy levels change adiabatically
U{(7) defined in Eq(21). slow, one obtains approximately
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2. Normal fluctuations

1712!!3!!4" _ 17/2!!3”417 . . . . .
7 - T8,(Argngrar) +1P, ' The kinetic equation for the normal fluctuatiofdeple-
1r2rsra tion) generalizes the quantum-Boltzmann equation found in
(68 many textbooks$4,37]

which is nonzero only if the energy differend®;,,ngrgn g~f=—i[H<°>+2Uf<c>+ 2U7 ]
:Slrr(t)+82//(t)_83//(t)_84//(t) |S Sma”er than?? dt
s - ~ .~ T 5 (2 o <
lim ;2775 (A)+iP i (69) |V(m(0)+m)Ln+ImLV(m(C)+m)+L{a‘a*’f‘m'n}[ ],
n—iA K 7A

704 (70)
This result is analogous to the second order Born-Markov
approximation35]. with second-order collisional contributions

2 2 -
Lo mml 1= + 200 h + Tie + 20 me 1 mn+ 20 e + 20 fomn) (14 )

{a,a* ,?,
—(FasHamit2lioaitFasHaHioT 2L afmermnt 20 a1 Himn© + 2L romn) f

25 mo+ma+H T Tioma+tH + Timo =T hmo+mi—romi—TashHmre) £Ln+H.c. (71

First, one finds a unitary evolution in the presence of theionary distribution of particles within the quantum levels.
external trapping, the mean field, and the normal potentialHowever, the presence of the mean field, as well as the
Both of the self-induced potentials;c and U; are anomalous averages lead to additional collision processes
weighted by a common factor of @ompare to Ref[17]).  that must not be ignored in general. Eventually, these pro-
This is in contrast to the weighting factors appearing thecesses will lead to a self-consistent equilibrium partition of
mean-field Hamilton operator E¢59). But again, this fact Particles between mean fields, and normal and anomalous
can be traced back to different quantum-statistical propertieductuations. While a detailed numerical self-consistent solu-
of the mean field and the fluctuations. Second, it can be sedfPn Of the set of kinetic equations is still under investigation,
that the anomalous coupling strength is now proportional td" 'S important to see that the total particle number
the total anomalous average, i.m{®+m. Third, in the ab- (N)=Tr{f}+ Tr{f} is always conservedcompare Eq.

sence of any mean fields or anomalous averages the secon(é-o)]

order contribution in Eq(71) reduces to the well-known d .
Boltzmann collision term a(N>=0. (73
Ifaf (4D =Laahasmif. (72) 3. Anomalous fluctuations

By further assuming that the normal fluctuations are pre- In contrast to the normal fluctuations, the anomalous fluc-
dominantly diagonal in an energy eigenbasis defined by th&uations do not evolve unitarily but rather as a tensor of rank
nonlinear Hamilton operator of Eq70) (ergodic hypoth- (2,0). Both, left and right generators of the time evolution are
esi9, one recovers the Bose-Einstein distribution as the stadentical to the Hamilton operator of the normal fluctuations

d. - -
gim= —i(HO+2Uo+2U7) 2m—im2 (H 42U+ 2U7)

—iVmos 2 (A+H) =T 2V e i+ L 4z~ ~[m], (74)

{a,a*, ,m,ﬁ}[

L(Z)

(wo* TmmlMI= (Cif s H o+ 2000+ 20 e +7) + 20 meR) £m
—(FashHa«mitTasha+nro+ 2L 1 iei+ 2 1 Hmme+m + 20 1+Hmen) £ m
+ (2l +ma+ + 2 e + 20 1oma T + Finmn©+7) T 2 men) £ 1

— (2T (14T mo+ i+ 20 s Hmso + 2T iomi+ Timn© + 7+ 20 mmen) £ (1+T) +transp. — (75)
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These three sets of master equations for the mean fielcbnsistent equilibrium. A detailed numerical investigation is
and the normal and anomalous fluctuations constitute than progress and results will be reported.
main result of this article. They unify and generalize simpler
equations which have been obtained previously also by other V. CONCLUSIONS
methods. However, so far, we have not discussed the physi-
cal implications that will arise from a self-consistent solution  In this article, we have revisited the Chapman-Enskog-
of these equations. Specifically, we need to determine thBogoliubov procedure of nonequilibrium statistical mechan-
following questionsi(l) the equilibrium distribution of par- ics to describe the kinetic evolution of a condensed bosonic
ticles partitioned between mean field and normal and anom&as of atoms towards equilibrium. Within a second-order
lous fluctuations(Il) the importance and quantitative size of Born-Markov approximation, we consider the collision dy-
anomalous fluctuationgJll) the collisional damping rates namics of macroscopic mean fields, normal fluctuations, and
and second-order energy Shlf@ﬂ() the response of the equi- anomalous averages. In particular, we have obtained a
librium system to weak external perturbations, i.e., the colcoupled set of master equations for these quantities that en-
lective excitation frequencies via linear response the@ty, compass the Gross-Pitaevskii mean-field equation, as well as
critical phenomena occurring around the onset of condensdhe quantum-Boltzmann equation for the normal fluctuations

tion, or, for example(VI) the dynamics of the growth of the @as limiting cases. The mean-field potentials that are obtained
condensed phase. from a first-order calculation are in agreement with the re-

sults of a variational Hartree-Fock-Bogoliubov calculation.
Beyond these first-order energy shifts, we obtain second-
IV. OUTLOOK order collisional energy shifts and damping rates that are

In the brevious section. we have enumerated Sever&ﬁosonically enhanced. We expect our results to be valid
P ! when strong collisions are well separated in time and when

quantities that need to be determined and interesting pathz, 0o field-induced energy shifts may be neglected dur-
along which detailed calculations could proceed. We believ g a strong collision everfsee Eqs(A7), (A8)].

that amongst these issues, it will be most crucial to addres
problems () and (Il) around T~0, first. On one hand,
present-day experiments have established that the mean-field ACKNOWLEDGMENTS

description yields good agreement. On the other hand, there \ye gratefully acknowledge stimulating discussions with

are various approaches to the self-consistent equilibrium fop zqjier C. W. Gardiner. K. Burnett. and M. L. Chiofalo.
normal and anomalous fluctuations and not all implications

have been elucidated.

The standard route to investigate this problem is based on
finite temperature calculations in the Hartree-Fock- With the definitions for the interaction-picture representa-
Bogoliubov description. Various schemes employing, for extion, we can rewrite the commutator term of ER9) as
ample, the quasistatic Popov approximation, or more dy- . " o
namical methods that go beyond (ite., the collisionless  (j(0) wie 9 O Ay =THWD (0) 7.
regime are being investigated by several research groups. Vo (T)[HW(T?{*/})}’ U{v(r:{m}]u{v}(ﬂ [Hi (1), o]

This present, nonequilibrium approach provides an alter- (A1)
nate route to the stationary solution. In particular, we expecThe trace term evaluated along the trajectory simplifies to
that the presence of a large condensed phase will lead to a
strong correlation of the low-energy part of the normal and Tr{[':'%()f{y})}’ i ]a'g%)(r{y})}}
anomalous fluctuations{1—2 times the chemical potential ' ’
wn of the condensaje while the high-energy tail will be :K{y}(T)ijTr{[HE%(T), A'Yj ]O’E%}. (A2)
mostly in detailed balance at some temperafurelowever,
such a macroscopic “polarization” of the low-energy part of Finally, the self-tuning term of the reference distribution
the fluctuations cannot be described within a simple ergodigives
hypothesis, and therefore requires a full quantum treatment.

The main obstacle to overcome in numerically answering OE%T(T)‘?VUE%IRT'{«/})OE%(T)
this problem is the unfavorable scaling law of the collision ' '
operators. From a simple operations count, one finds that a;(T;{y})
there areN® summations involved iN is the number of =\
energy levels being considered. I

This burden can be alleviated by being more specific, i.e., (A3)
by postulating a completely isotropic situation for a single . -
condensed phase, an isotropic trapping potential, a rotatiofvhere we introduce auxiliary operator valued vectors
ally invariant initial condition, as well as a short-range cen-D,,(7) and matrix-valued coefficient§;,,(7) by
tral two-particle interaction. Within this simplified model,
one can then decompose all involved operators in terms of f){y}(T)i:OE%T(T)%UE%(T), (A4)
angular momentum submanifol@se., irreducible tensor sets '
and use of Wigner-Eckart theorénThis assumption makes — -1
the quantum-mechanical treatment of the low-energy region ij (‘9%(7-{7})) ~

; . Sy(N=| =] Ky(n'. (A5
(n<e<2u, N~10-20) feasible and will lead to a self- Bi ayi §

APPENDIX A
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If these results are put together, one finds for the first-ordef this average, for example, the operatir represents ei-
correction of the coarse-grained statistical operator ther an operatoa, o a{.

1 et ) First, the displacement rule shifts any operafqrby its
Oy~ Tl f_ dre” ([AF}(n), o3} ] c-number expectation valug, which is eithera; or a?
and replaces the quantum average by an average that has
(D7), 0{ 9 1+, 00D S (D) zero mean values:
XTHIAG (D), ¥, 10 ). (A6) (Dadhz - ) a,er T
This expression is formally equivalent to E§9). However, =+ 1) (bt ) -+ (Pt 10)) (0,077 -
a closer inspection of th& and D terms shows that they (B2)

contain higher-order energy corrections induced by renor-

malization energy@ﬁ. In particular, from a short time Second, after expanding the multiple products, one can dis-
Taylor-expansion on(ya finds that card all averages that involve an odd numbers of operators:

A _ A (1 L

D{v}(T):O_'O[T&%QF{v;]’ (A7) (U1t Yasi1)i0.07mm=0. (B3)
S(n)i=81—i J . A8
(n(7) 1OL7y 7JA{V}'] (A8) And third, for the remaining averages, one can use the

Consequently, we will disregard the effect of the mean fielg>aussian factorization rule:

onto the temporal evolution d]){y}(r) and Sy, (7) during a
strong collision event and replace them by their “bare” val- (i, 4, . . 4/125){0 of
ues attained in the absence of the mean-field shift.

= (121007 mar(Wa - - - ashio0f miy
+<Iz1l}3>{o,o},ﬁ1,ﬁ}< Yoty .. ¢25>{oo m.n}

APPENDIX B: A GENERALIZED WICK'S THEOREM

The Gaussian structure of the reference distribution Eg.
(53) is particularly useful, as it permits the systematic appli-
cation of Wick’s theorenmi37]. This is a set of rules to effi- . ) )
ciently evaluate quantum averages for multiple operator +{(P1bas) 00 kW2 -+ as—1)j007,mmy - (B4
products as

. By proceeding recursively, one has finally evaluated the
(Y1tpy- - ¢|>{a o* Fommy - (B1)  complete multiple operator average EB1).
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