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Aberrations in (3+1)-dimensional Bragg diffraction using pulsed Laguerre-Gaussian laser beams
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We analyze the transfer function of a three-dimensional atomic Bragg beamsplitter formed by two counter-
propagating pulsed Laguerre-Gaussian laser beams. Even for ultracold atomic ensembles, the transfer efficiency
depends significantly on the residual velocity of the particles as well as on losses into higher diffraction orders.
Additional aberrations are caused by the spatial intensity variation and wavefront curvature of the Laguerre-
Gaussian laser beam envelope, studied with (3+1)-dimensional numerical simulations. The temporal pulse
shape also affects the transfer efficiency significantly. Thus, we consider the practically important rectangular,
Gaussian, Blackman, and hyperbolic secant pulses. For the last, we can describe the time-dependent response
analytically with the Demkov-Kunike method. The experimentally observed stretching of the π -pulse time is
explained from a renormalization of the simple Pendellösung frequency. Finally, we compare the analytical pre-
dictions for the velocity-dependent transfer function with effective (1+1)-dimensional numerical simulations for
pulsed Laguerre-Gaussian laser beams, as well as experimental data, and find very good agreement considering
a mixture of Bose-Einstein condensate and thermal cloud.

DOI: 10.1103/PhysRevA.103.043306

I. INTRODUCTION

Atoms represent the ultimate “abrasion-free” quantum sen-
sors for electromagnetic fields and gravitational forces. By a
feat of nature, they occur with bosonic or fermionic attributes,
but are produced otherwise identically without “manufactur-
ing tolerance.” A beamsplitter based on Bragg diffraction
[1–4] prepares superpositions of matter wave packets by trans-
ferring photon momentum from a laser to an atomic wave.
Controlling the diffracted populations, one can realize a beam-
splitter and a mirror. These devices are the central component
of a matter-wave interferometer [1–5]. Due to the well-defined
properties of the atomic test masses and their precise con-
trol by laser light, matter-wave interferometry can be used
for high-precision measurements of rotation and acceleration.
Applications range from tests of fundamental physics, like
the equivalence principle [6–13] or quantum electrodynam-
ics [14–16], to inertial sensing [17–21]. Like all imaging
systems, atom optics suffer from imperfections, and an ac-
curate characterization is required in order to rectify them.
This is relevant for high-precision experiments, for instance,
gravimetry [17,22,23] and extended free-fall experiments in
large fountains, microgravity, and space [24–30]. Such chal-
lenging experiments require realistic modeling and aberration
studies, ideally hinting towards rectification.

For ultrasensitive atom interferometry a large and precise
momentum transfer is essential [31–35]. Bragg scattering of
atoms from a moving standing light wave [36–39], potentially
in a retroreflective geometry [40,41], provides an efficient
transfer of photon momentum without changing the atomic
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internal state. In contrast, Raman scattering [2,42] couples
different atomic internal states, enabling velocity filtering
[43,44]. While Raman pulses have lower demands on the
atomic momentum distribution [41,45], Bragg pulses can be
used for higher-order diffraction, also in combination with
Bloch oscillations [16,32,34,46–51].

The quasi-Bragg regime of atomic diffraction with smooth
temporal pulse shapes is optimal [16,26,31–34,49,52–54]. It
provides a high diffraction efficiency with moderate velocity
selectivity for relevant pulse duration. However, losses into
higher diffraction orders and the velocity dispersion must be
considered because atomic clouds do have a finite momentum
width.

The limit of the deep-Bragg regime with long interac-
tion times and shallow optical potentials gives a perfect
on-resonance diffraction efficiency but remains very narrow
in momentum [2]. However, it is suitable to generate veloc-
ity filters [26,32]. In the opposite Raman-Nath limit short
laser pulses provide a vanishing velocity dispersion, but the
diffraction efficiency is very low [2]. Despite their restric-
tions, both limits are popular as simple analytical solutions
can be given for rectangular pulse shapes and plane-wave
laser beams.

For smooth temporal envelopes there exist models based
on adiabatic elimination of the off-resonant coupled diffrac-
tion orders, solving the effective two-level dynamics [52] and
considering the velocity dispersion [40,55]. The Bloch-band
picture is suitable in the quasi-Bragg regime for sufficiently
slow (adiabatic) pulses [56]. An analytic theory for smooth
pulses based on the adiabatic theorem for single quasi-Bragg
pulses is given in Ref. [57]. Here Doppler shifts are considered
in terms of perturbation theory to take finite atomic momen-
tum widths into account.
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FIG. 1. Bragg diffraction: energy diagram versus atomic wave number k = p/h̄ in units of kL (2) in the laboratory frame S (a) and an inertial
frame S′ (b) moving with velocity vg (12). Ground- and excited-state eigenfrequencies of a free particle are ωg(k), ωe(k), the two-photon and
one-photon recoil frequencies ω2r and ωr , respectively. In frame S, we show that a deliberate detuning δω (6) of the laser frequencies ω1, ω2

leads to the same frequency gap δ (7) (dashed-dotted arrows), as caused by a finite initial momentum pi = κ h̄kL (5) (dotted arrows). In frame
S′, the counterpropagating lasers have equal frequencies ω′

1,2 = ωL (2) and link p′
i = −h̄kL with p′

f = h̄kL . The velocity selectivity of Bragg
scattering leads to an incomplete transfer in the momentum ensembles (red, shadowed). Odd momenta ±3kL,±5kL, . . . are populated by higher
order diffraction.

Besides temporal envelopes, spatial envelopes also af-
fect the beamsplitter efficiency [16,22,26,58], especially for
large momentum transfer interferometers. In particular, spatial
variations due to three-dimensional Laguerre-Gaussian laser
beams lead to aberrations. In this article, we will revisit atomic
beamsplitters in a moving frame in Sec. II. We compare two
common methods to solve the Schrödinger equation with
plane-wave laser beams in Sec. III. This is the Bloch-wave
ansatz and an ad hoc ansatz, which leads to a more convenient
extended zone scheme. In Sec. IV, first, we study aberrations
caused by laser beams with constant intensities, i.e., plane
waves. These are the velocity-selective transfer efficiency and
losses into higher diffraction orders. Second, we study the
influence of the spectral shape of four nonadiabatic tempo-
ral pulses in terms of the complex transfer function and the
fidelity. Here we introduce an explicitly solvable Demkov-
Kunike-type model, which applies to hyperbolic sech pulses.
Third, we generalize the simulations to (3+1) dimensions,
which yield the cumulative effects of spatial variations of
the Laguerre-Gaussian beam intensities and wavefront cur-
vatures. Finally, in Sec. V we gauge simulations and explicit
models to experimental data.

II. MATTER-WAVE BRAGG BEAMSPLITTER

A. Conservation laws

The basic mechanism of an atomic beamsplitter is the
stimulated absorption and emission of two photons from
bichromatic, counterpropagating laser beams [1,59]. This
process is depicted in Fig. 1(a) and satisfies energy and mo-
mentum conservation

p2
i

2M
+ h̄ω1 = p2

f

2M
+ h̄ω2, pi + h̄k1 = p f − h̄k2. (1)

Here pi, f are the initial and final momenta of the particle with
mass M, ±h̄k1,2 are photon momenta, and ω1,2 are the laser
frequencies. We choose to work with positive wave numbers
k1,2 > 0 and emphasize the propagation directions with ex-
plicit signs, but retain the directionality of pi, f . Frequency and

wave number are coupled by the vacuum dispersion relation
ω = ck, with the speed of light c. One chooses counterpropa-
gating beams to maximize the momentum transfer p f − pi =
2h̄kL, introducing the average wave number and frequency

kL ≡ k1 + k2

2
, ωL ≡ ckL. (2)

Wave mechanics considers superpositions of momentum
states |g, pi〉 and |g, p f 〉 in the internal atomic ground state
g. For atoms initially at rest pi = 0, energy and momentum
conservation (1) require laser frequencies

ω1 = ω2 + ω2r ≈ ω2 + h̄(2k2)2

2M
. (3)

Due to the two-photon recoil, we need to introduce

ω2r ≡ h̄(2kL )2

2M
= 4ωr, (4)

as the two-photon frequency ω2r in terms of the single photon
frequency ωr . The approximation (3) holds for nonrelativistic
energies, just as the kinetic energy in (1).

B. Off-resonant response

Releasing ultracold atomic ensembles from traps provides
localized wave packets with a finite momentum dispersion.
Therefore, one needs to study the response of the Bragg
beamsplitter with finite initial and final momenta p̄i = κ h̄kL,
p̄ f = (2 + κ )h̄kL, introducing a dimensionless momentum κ .
This opens a frequency gap

δ ≡ p̄2
f

2Mh̄
+ ω2 − p̄2

i

2Mh̄
− ω1 = ω2rκ, (5)

shown in Fig. 1(a).
Alternatively, one can also probe the momentum response

by a detuning of the laser frequencies ω̃1,2 from the resonant
values ω1,2 in (3). Conveniently, this detuning is measured by

δω ≡ ω1 − ω2 + ω̃2 − ω̃1. (6)
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Dash-dotted arrows mark the deviant frequencies in Fig. 1(a).
For a particle, which is initially at rest p̃i = 0 and acquires
a momentum p̃ f = h̄(k̃1 + k̃2) after the momentum transfer,
one obtains a frequency gap

δ = p̃2
f

2Mh̄
+ ω̃2 − ω̃1 ≈ δω. (7)

The approximation holds for |ω̃1,2 − ω1,2| � ωL, which is
satisfied very well in the present context. Comparing Eqs. (5)
and (7), one finds a linear relation

δω = ω2rκ (8)

between laser-frequency mismatch δω and the dimensionless
initial particle momentum κ . Therefore, both realizations are
suitable to probe the momentum response of Bragg diffrac-
tion, and their results are related by Eq. (8).

Experimentally, it is advantageous to modify the laser fre-
quencies (cf. Sec. V) and to prepare atomic wave packets
initially at rest in the laboratory frame S. Theoretically, it is
beneficial to emphasize the symmetries of the system. There-
fore, we will adopt a moving inertial frame S′, wherein the
Doppler-shifted laser frequencies coincide and the momentum
coupled states p′

i = −h̄kL, p′
f = +h̄kL are distributed sym-

metrically (cf. Sec. II C, Appendix A). This is depicted in
Fig. 1(b).

C. Counterpropagating, bichromatic fields

The superposition of two counterpropagating laser beams
E = E1 + E2, is defined by the constituent fields E i =
Re[E (+)

i ] with the positive frequency components

E (+)
i (t, r) = εie

−iφi (t,x)Ei(t, r). (9)

Here εi denotes the polarization vectors, Ei(t, r) the slowly
varying complex Gaussian envelopes, and φ1(t, x) = ω1t −
k1x, φ2(t, x) = ω2t + k2x are the rapidly oscillating carrier
phases for fields propagating along the x direction [60] (cf.
Appendices A and B). From the superposition of two scalar
counterpropagating bichromatic fields

E = e−iφ1(t,x)E1 + e−iφ2(t,x)E2, (10)

one obtains a steady motion of the intensity pattern

|E |2 = |E1|2 + |E2|2 + 2Re[E∗
2E1 ei(k1+k2 )(x−vgt )], (11)

where nodes move with the group velocity

vg = ω1 − ω2

ω1 + ω2
c, |vg| = ω2r

2ωL
c � c. (12)

If the laboratory frame S has the coordinates x, then the
moving interference pattern defines another inertial frame S′,
where the grating is at rest and the coordinates

x′ = x − vgt (13)

are related to the laboratory frame coordinates x by a passive
Galilean transformation.

D. Interaction energy

The atom is represented by a ground |g〉 and an excited
state |e〉. These levels are separated by the transition frequency

ω0 = ωe − ωg and coupled by the electric dipole matrix el-
ement deg = 〈e|d̂|g〉. To neglect spontaneous emissions, the
lasers are far-detuned from the atomic resonance frequencies
|ω0 − ωi| 	 �, where � is the natural linewidth of the tran-
sition. In the laboratory frame S the Hamilton operator of an
atom with mass M reads

Ĥ (t ) = p̂2

2M
+ h̄ωgσ̂g + h̄ωeσ̂e + V (t, r̂), (14)

V (t, r) = h̄

2
σ̂ †

2∑
i=1

	i(t, r)e−iφi (t,x) + H.c.,

using the spin operators σ̂i=e,g = |i〉〈i| and σ̂ = |g〉〈e|. Here
we evaluate the electric dipole interaction energy in the
rotating-wave approximation and denote the Rabi frequencies
as 	i(t, r) = −εi · dge Ei(t, r)/h̄.

If we transform this Hamilton operator to the frame S′,
comoving with the nodes of the interference pattern (13), and
use a corotating internal frame (A9), it reads

Ĥ ′′(t ) = p̂2

2M
− h̄
σ̂e + h̄

2
σ̂ †[	̃1(t, r̂)eikL x̂

+ 	̃2(t, r̂)e−ikL x̂] + H.c. (15)

In this specific frame the atom responds only to a carrier wave
number kL. We measure the laser detuning 
 ≡ ωL − ω0 with
respect to the common Doppler-shifted frequency ωL. The
Rabi frequencies 	̃i(t, r) are given by the pulsed Laguerre-
Gaussian beams of Eq. (B10).

Dissipative processes are not an issue for large detunings,
which is why we can resort to the solution of the Schrödinger
equation for t > ti and |ψ〉 ≡ |ψ ′′〉,

|ψ (t )〉 = G(t, ti )|ψ (ti)〉, (16)

with the propagator G(t, ti ) (D1).
For the numerical solution of this two-component, (3+1)-

dimensional problem, we use Fourier methods with symplec-
tic integrators [61] and operator disentangling [62]. Analytical
solutions are examined for rectangular pulses (Sec. IV C) and
the hyperbolic secant pulse (Sec. IV D).

E. Ideal Bragg beamsplitter and mirror

The interaction of a two-state system with laser pulses can
be understood qualitatively by the “pulse area” [63]

θ (t ) =
∫ t

−∞
dt ′ 	(t ′), (17)

which is rather a phase by dimension. In the context of ideal
Bragg scattering, the two states are the momentum states
{| − kL〉x, |kL〉x}. One can visualize the evolution during the
action of the Bragg pulse as a motion on the Bloch sphere
[64]. A symmetrical 50:50 Bragg beamsplitter corresponds
to a θ = π/2 rotation from the south pole to the equator at
some longitude. This gives equal probability to the outputs
channels |±kL〉. A θ = π rotation from the south pole to the
north pole reverses the momenta |−kL〉 → |kL〉 and thus acts
like a mirror. In the following discussion, we will focus on the
mirror configuration as it is most susceptible to aberrations,
due to the longer interaction time.
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The polar decomposition of the transition amplitude

〈k′|G(t, ti )|k〉 = √
ηk′keiφk′k (18)

between initial |k〉 and final |k′〉 momentum states character-
izes the diffraction efficiency 0 � ηk′k � 1. For atomic wave
packets, we use the phase sensitive fidelity

F = |〈ψideal|ψ (t f )〉|2, |ψideal〉 = e2ikL x̂|ψi〉, (19)

characterizing the overlap of the final state |ψ (t f )〉 of Eq. (16)
and the ideal final state |ψideal〉. For an initial plane wave, the
fidelity is F = ηk′k with k′ = k + 2kL.

F. Sources of aberrations

The velocity dispersion of Bragg diffraction [55] is signifi-
cant and leads to incomplete population transfer atomic wave
packets (cf. Fig. 1, Sec. IV C 1). Another cause for population
loss is off-resonant coupling to higher diffraction orders (cf.
Sec. IV C 2). This signals the crossover from the deep-Bragg
towards the Raman-Nath regime, referred to as a quasi-Bragg
regime [52].

In general, smooth time-dependent laser pulses (cf.
Sec. IV A) lead to equally smooth beamsplitter responses (cf.
Secs. IV D, IV F). In contrast, smooth spatial envelopes lead
to aberrations (cf. Sec. IV G). Every Laguerre-Gaussian beam
exhibits spatial inhomogeneity and wavefront curvature. This
is relevant for atomic clouds that are comparable in size to the
laser beam waist or for clouds displaced from the symmetry
axis. Static laser misalignment further degrades the diffraction
efficiency.

There are sundry other dynamical sources of aberrations,
such as mechanical vibrations of optical elements or stochas-
tic laser noise [65]. The fundamental process of spontaneous
emission leads to decoherence and aberrations too. Fortu-
nately, this can be suppressed by a detuning |
| 	 � much
larger than the linewidth �, as well as limiting the interaction
time.

III. PLANE-WAVE APPROXIMATION

The basic mechanism of Bragg beamsplitters arises from
the momentum transfer of plane waves with a real, constant
Rabi frequency 	̃1(t, r) = 	̃2(t, r) = 	0 within the dura-
tion of a rectangular pulse. This model is the reference to
gauge more realistic calculations. Consequently, the two com-
ponents {ψe(t, r), ψg(t, r)} of the Schrödinger field evolve
according to

i∂tψe =
(

− h̄

2M
∇2 − 


)
ψe + 	0 cos(kLx)ψg, (20a)

i∂tψg = − h̄

2M
∇2ψg + 	∗

0 cos(kLx)ψe, (20b)

using the Hamilton operator (15). Assuming the excited state
is initially empty, the atom’s kinetic energy is small and the
lasers are far-detuned |
| 	 �, 	0, ωr , we can adiabatically
eliminate the excited state [52,66]

ψe ≈ 	0



cos(kLx)ψg. (21)

Then the ground-state Schrödinger equation reads

i∂tψg =
[
− h̄

2M
∇2 + V (x)

]
ψg, (22)

with the dipole potential V (x) = cos2(kLx)|	0|2/
 [67]. Sta-
tionary solutions of the one-dimensional problem are Mathieu
functions [68]. Our goal is to formulate a suitable ansatz
for the (3+1)-dimensional nonseparable equation with time-
dependent pulses.

A. Bloch-wave ansatz

The Bloch picture is suitable for describing the velocity
selective atomic diffraction by a standing laser wave [1,69,70].
The characteristic translation invariance of the Hamilton op-
erator (22) by a displacement of ax = λL/2 defines a natural
length scale. Its reciprocal is the lattice vector qx = 2π/ax =
2kL. It is convenient to embed the total three-dimensional
wave function in an orthorohmbic volume with lengths
(Nxax, ay, az ), with Nx ∈ N and to impose periodic boundary
conditions ψg(x + Nxax, y + ay, z + az ) = ψg(x, y, z). Bragg
scattering involves at least two photons, one from each of the
counterpropagating lasers. Therefore, the two-photon recoil
frequency ω2r (4) emerges as the frequency scale. In terms
of the dimensionless length ξ = qxx and time τ = ω2rt , the
Schrödinger field

ψg(t, r) =
� Ny

2 �−1∑
r=−� Ny

2 �

� Nz
2 �−1∑

s=−� Nz
2 �

ei(rqyy+sqzz−ω̄r,sτ )h(r,s)(τ, ξ ) (23)

factorizes into one-dimensional fields h(r,s)(τ, ξ ) and two-
dimensional plane waves with the transversal lattice vectors
qy,z = 2π/ay,z. The integers Ny,z ∈ N define the maximal mo-
mentum resolution qmax

i = qi�Ni/2�. Please note the use of
the Gauss brackets rounding towards the nearest integer at the
“floor” � � or the “ceiling” � �. With a detuning dependent shift
of the frequency, introducing the two-photon Rabi frequency
	,

ω̄r,s = h̄
r2q2

y + s2q2
z

2Mω2r
+ 	, 	 = 	r

ω2r
= |	0|2

2ω2r

, (24)

the Schrödinger equation for each amplitude simplifies to

i∂τh(τ, ξ ) = (−∂2
ξ + 	 cos ξ

)
h(τ, ξ ). (25)

By construction, the potential is 2π -periodic and the eigen-
functions h(τ, ξ ) = e−iτω(b) (q)h(b)(ξ, q) are given by Bloch
waves h(b)(ξ, q) [71–74] with the lattice periodic function
g(b)(ξ, q) for momentum q and band index b:

h(b)(ξ, q) = eiqξg(b)(ξ, q), (26)

g(b)(ξ + 2π, q) = g(b)(ξ, q). (27)

From the periodic boundary conditions for the wave function
h(b)(ξ + 2πNx, q) = h(b)(ξ, q), one obtains a quantization of
the wave number qn = n/Nx with n ∈ Z. The interval −1/2 �
qn < 1/2 defines the first Brillouin zone in the reduced zone
scheme, whose extent equals the crystal momentum Q = 1.
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−1.0 −0.5 0.0 0.5 1.0
q
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0.5

1.0

1.5

ω
(b

)

|ψ(k)|2

(2m−1)kL 2m kL (2m+1)kL

FIG. 2. Energy bands ω(0,1,2)(q) of a periodic lattice in the ex-
tended zone scheme versus quasimomentum q, with empty lattice
	 = 0 (dotted) and finite depth 	 = 1 (solid), where 	r =	ω2r =
4ωr . Initial wave packets with odd momenta (2m + 1)kL are located
at the edges q=±1/2 of the first Brillouin zone, while even momenta
2mkL are at the center q = 0.

Bloch wave functions are also periodic in momentum space
h(b)(ξ, q + Q) = h(b)(ξ, q), provided we define

g(b)(ξ, q) =
N−1∑

m=−N
eimξg(b)(m + q) (28)

by a Fourier series for a maximal diffraction order N ∈
N with boundary conditiong(b)(q + N ) = g(b)(q − N ) = 0.
From a superposition of these Bloch waves, one obtains the
ansatz

h(τ, ξ ) =
� Nx

2 �−1∑
n=−� Nx

2 �

N−1∑
m=−N

ei(m+qn )ξg(τ,m + qn) (29)

for the time-dependent solution of Eq. (25), compatible with
the Bloch theorem and suitable for numerical computation.
This ansatz transforms the partial differential equation into the
parametric difference equation

i∂τgm(τ, q) = (m + q)2gm + 	

2
(gm+1 + gm−1). (30)

The q-dependence of the mth-order scattering amplitude
gm(τ, q) ≡ g(τ,m + q) leads to the velocity dispersion of
Bragg diffraction. Assuming Dirichlet boundary conditions,
one can use a (2N − 1)-dimensional representation ge =
(g−(N−1), . . . , gN−1) to study the initial value problem

iġe = He(q)ge, He = De + L + L†. (31)

For the indices 1 − N � m � N − 1, the Hamilton matrix
He is formed by a diagonal matrix De and a lower triangular
matrix L:

De
m,n = (m + q)2δm,n, Lm,n = 	

2 δm,n+1. (32)

In order to study the discrete Bloch energy bands ω(b)(q),
one has to solve the eigenvalue problem

ge(τ, q) = e−iτω(q)ge(q), ω(q)ge = He(q)ge. (33)

In Fig. 2 we present the lowest few energy bands ω(b)(q)
versus the lattice momentum q in an extended momentum
zone scheme. For reference, we depict the quadratic disper-
sion relation of the empty lattice 	=0 and the dispersion
relation for 	=1 (	r =	ω2r =4ωr), a moderately deep lat-
tice. Narrow momentum wave packets ψ (k) with σk � kL are

ideal for beamsplitters. If they are located at the band edges
k =qqx = (±1/2 + m)2kL, the two-photon process covers at
least three Brillouin zones. For wave packets at the center
k =qqx =2mkL, only two Brillouin zones are coupled by a
Bragg pulse.

B. Ad hoc ansatz

There are alternatives formulations [52,55] to the Bloch-
wave ansatz, if we define a Fourier series on the periodic
lattice h(x + Nxax ) = h(x) as

h(x) =
∞∑

l=−∞
ei 2π l

Nx ax
xgl ,

2π l

Nxax
= 2l

Nx
kL. (34)

By decomposing the index l = Nxm + r into a quotient m =
�l/Nx� and a remainder 0 � r < Nx, one obtains

h(x) =
� Nx

2 �−1∑
n=−� Nx

2 �

N−1∑
m=−N

g2m+1(κn)eikn
2m+1x, (35)

with n = r − �Nx/2�. In this series, we use a momentum kn
μ =

(μ + κn)kL and a quasimomentum κn,

−1 � κn = 2n

Nx
−

⌈Nx
2

⌉ − ⌊Nx
2

⌋
Nx

< 1, (36)

in an extended Brillouin zone. As the Schrödinger equation
(25) has even parity, parity is a conserved quantity. An ansatz
with sin and cos functions would lead to a decoupling of (35)
with respect to parity manifolds.

The decomposition of the index l = Nxm + n is not unique,
if we admit signed integral remainders within the lim-
its −�Nx/2� � n < �Nx/2�. This implies a quotient m =
�(l + �Nx/2�)/Nx�. Now the Fourier series reads

h(x) =
� Nx

2 �−1∑
n=−� Nx

2 �

N−1∑
m=−N

g2m(κn)eikn
2mx, (37)

with the quasimomentum κn

−1 � κn = 2n

Nx
� 1 − 1

Nx
. (38)

The definitions of the quasimomenta in Eqs. (36) and (38)
agree exactly for even number Nx = 2u of lattice sites or co-
incide asymptotically for Nx → ∞. The even-odd ambiguity
of number of lattice sites cannot be of physical significance as
the periodic boundary condition is mere mathematical conve-
nience. Therefore, assuming an even number of lattice sites is
no limitation.

Using time-dependent amplitudes gμ(τ, κn) in the series
(35) and (37) transforms the Schrödinger equation (25) into
a single difference equation ∀μ ∈ Z:

i∂τgμ(τ, κ ) = 1

4
(μ + κ )2gμ + 	

2
(gμ+2 + gμ−2). (39)

Due to the two-photon transfer, there is no coupling between
even and odd solution manifolds. Consequently, it is advan-
tageous to use Eq. (35) for wave packets located around odd
multiples of kL or Eq. (37) for even multiples of kL (cf. Fig. 2).
As in the comoving frame S′ (13) mainly |−kL〉 is coupled
with |+kL〉, we focus on the odd solution manifold with
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FIG. 3. Temporal envelopes f (τ ) for rectangular, Gaussian, hy-
perbolic secant, and Blackman pulses for equal nominal time T = Tj ,
j ∈ {G,R, S,B} and total pulse length 
τ = 8 τG. The vertical lines
indicate the pulse widths τ j .

μ = 2m + 1. Therefore, Eq. (39) can be cast into a tridiagonal
system of linear differential equations,

iġo = Hogo, Ho = Do + L + L†, (40)

for go = (g−2N+1, g−2N+3, . . . , g2N−1) with L from (32) and
a diagonal matrix

Do
μ,ν = 1

4 (μ + κ )2δμ,ν ≡ Dμ,ν + �δμ,ν. (41)

In the following, it will be prudent to adopt a rotating frame
go(τ ) = e−i�τg(τ ) with a frequency offset denoted by � =
(−1 + κ )2/4:

iġ = Hg, H = D + L + L†, (42)

Dμ,ν = ωμδμ,ν, ωμ = 1
4 (μ + κ )2 − �. (43)

This grounds the frequency ω−1 = 0.

IV. ABERRATION ANALYSIS

Using the ad hoc ansatz for Bragg scattering, we will
successively consider more realistic processes to assess their
contribution to aberrations. We begin with the plane-wave
approximation and consider four temporal Bragg-pulse shapes
f j (τ ). We will analyze their influence on the velocity disper-
sion as well as losses into higher diffraction orders. Finally,
we will add the spatial envelopes of the Gaussian-Laguerre
beams and consider the cumulative effect.

A. Bragg-pulse shapes

We examine temporal Gaussian (G), rectangular (R), hy-
perbolic secant (S), and Blackman (B) Rabi pulses

	(τ ) = 	 f j (τ ), j ∈ {G,R, S,B}. (44)

The shape functions f j , depicted in Fig. 3, are all normalized
to unity at maximum and characterized by a window width τ j .
Different Rabi pulses (44) can be compared physically, if they
cover the same pulse area (17)

θ ≡ θ (τ = ∞) = 	T, (45a)

T ≡ T (−∞,∞), T (τi, τ f ) =
∫ τ f

τi

dτ f j (τ ), (45b)

for equal nominal time T = TG = TR = TB = TS .
Rectangular pulses are popular in theory as they are con-

stant during the interaction time and lead to simple analytical

approximations. They read

fR(|τ | � τR) = 1, TR = 2τR, (46)

and fR(|τ | > τR) = 0, elsewhere.
Gaussian pulses of width τG provide a smooth temporal

envelope

fG(τ ) = e
− τ2

2τ2
G , TG =

√
2π τG. (47)

However, for finite pulse durations they have to be truncated,
which introduces higher spectral components.

This is rectified by Blackman pulses, providing minimal
spectral sidebands at finite pulse durations. They are charac-
terized by a window function

fB(τ ) = wB

( τ

τB

)
, TB = 21π

25
τB, (48)

wB(|φ| � π ) = 1

50
[21 + 25 cos(φ) + 4 cos(2φ)], (49)

and wB(|φ| > π ) = 0 elsewhere.
Hyperbolic secant pulses are defined with

fS (τ ) = sech
( τ

τS

)
, TS = πτS. (50)

They are amenable for analytical solutions [75,76].

B. Definition of π- and π
2 -pulses

The symmetrical 50:50 beamsplitter pulse and the 0:100
mirror pulse are the two most relevant applications of atomic
Bragg diffraction (cf. Sec. II E). Irrespective of the shape, a
symmetrical beamsplitter pulse is defined by a pulse area of
θ = π/2, while a complete specular reflection in momentum
space is achieved for θ = π . This defines the nominal times

Tπ = π

|	| , Tπ/2 = Tπ
2
. (51)

In particular, the four pulse shapes yield mirror widths

τGπ =
√
π√

2|	| , τRπ = π

2|	| , τBπ = 25

21|	| , τSπ = 1

|	| .
(52)

Due to the linearity, the symmetric beamsplitter width is just
a half of the mirror time i.e., τπ/2 = τπ/2.

C. Diffraction efficiency of a rectangular pulse

1. Velocity selective Pendellösung

In the deep-Bragg regime N = 1, off-resonant diffraction
orders are negligible. Thus, for first-order diffraction N = 1
the state vector in the beamsplitter manifold

k± ≡ (±1 + κ )kL (53)

simplifies to the amplitude tuple g∓(τ ) = (g−1, g+1) with
g∓(τi ) = (1, 0). The well-known Pendellösung [77,78]

g−1(τ ) = e−iϕ

(
cosϑ − κ

i	κ

sin ϑ

)
,

g+1(τ ) = e−iϕ 	

i	κ

sin ϑ (54)
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FIG. 4. Fidelity F versus two-photon intensity I = 	2/16, respectively two-photon Rabi frequency 	r = 	ω2r , and inverse π -pulse
stretching factor ζ−1 = τ jπ/τ j , j ∈ {G,B, S,R}, for Gaussian (a), (e), Blackman (b), (f), sech (c), (g), and rectangular pulses (d), (h). The
initial state is a one-dimensional Gaussian wave packet (B1), initially centered at (x, kx ) = (0,−kL ) with momentum width σk = 0.01 kL

(top), σk = 0.1 kL (bottom). The optimal stretching factor ζπ (60) (solid line) traverses the regions of maximal fidelity. For the numerical
(1+1)-dimensional integration (16) with pulse widths ζ τ jπ , and total pulse length 
τ j = 8ζ τG, typical laser and atom parameters, used in
experiments (Table II), are applied.

depends on ϕ = κ (τ − τi )/2, ϑ = 	κ (τ − τi )/2 and the
generalized two-photon Rabi frequency 	κ = √

κ2 + 	2. It
follows from (42) for the rectangular pulse shape (46):

iġ∓(τ ) = H∓g∓, H∓ =
(

0 	
2

	
2 κ

)
. (55)

With this solution the mirror pulse width (52) can be gener-
alized for arbitrary κ �= 0. Maximal efficiency η+−(τRπ ) =
|g+1(τπ )|2 is achieved for ϑ = π/2, which determines the
mirror pulse width

τRπ (κ ) = π

2	κ

. (56)

On resonance (κ = 0), we recover Eq. (52). Finally, the
diffraction efficiency reads

η+−(τRπ ) = 	2

	2
κ

sin2 ϑπ, ϑπ = π

2

	κ

	
. (57)

The relative phase of the transfer function (18) between the
final k− and k+ components is


φ ≡ φ−− − φ+− = arctan

(
κ

	κ

tan ϑ

)
− π

2
. (58)

For ϑ = ϑπ , one obtains the phase shift after a mirror pulse

φ(τRπ ).

2. Losses into higher diffraction orders

The transfer function 〈k′|G(t, ti )|k〉 (18) exhibits reso-
nances at k′ = k + 2NkL. On the one hand, resonances with
N �= 1 lead to a population loss from the N = 1 beamsplitter
manifold {k±} and reduce the diffraction efficiency. On the

other hand, they diminish the coupling strength within the
beamsplitter manifold. Consequently, this increases the op-
timal π -pulse time τ̃π > τπ of a Bragg mirror compared to
the prediction of the Pendellösung (52). Gochnauer et al. [56]
have demonstrated this effect experimentally for Gaussian
pulses, proving that the effective coupling strength is given
by the energy band gap in the quasimomentum space.

a. Renormalized π -pulse time: The influence of higher
order resonances on the beamsplitter manifold can be calcu-
lated perturbatively in terms of the generalized two-photon
Rabi frequency 	κ . For 	κ → 0 all momentum states are
doubly degenerate with respect to their energies. We employ
Kato’s perturbation theory [79], as it can describe the general-
ized degenerate eigenvalue problem (C2). Remarkably, Kato’s
first-order perturbation theory coincides with the Pendellö-
sung (cf. Appendix C)

From a third-order perturbation calculation O(	4
κ ), we find

the renormalized Rabi frequency

	̃ =
√
κ2(1 + 2I )2 + 	2(1 − I )2 I�1−→ 	κ (59)

within the beamsplitter manifold using the abbreviation I =
	2/16. For weak dressing I � 1, it reduces to the general-
ized Rabi frequency of the Pendellösung. From (52), one can
evaluate the π -pulse time stretching factor

ζ κπ = τ̃Rπ

τRπ
= 	κ

	̃
, ζπ ≡ ζ κ=0

π = 1

1 − I ≈1 + I. (60)

Figure 4 depicts a contour plot of the fidelity F (I, ζ ) (19)
for a Bragg-mirror pulse versus the bare two-photon inten-
sity I and the inverse pulse stretching factor ζ−1 = τ jπ/τ j .
This representation uncovers a linear relation. The numer-
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FIG. 5. (a) Diffraction efficiency η+− (�) in the beamsplitter
manifold N =1, together with the relative phase shift 
φ (58) ( )
and (b) losses into higher diffraction orders N �=1 versus detuning κ ,
after a rectangular mirror pulse. For the numerical solution (solid),
considering four off-resonant diffraction orders (with k = (−1 +
κ )kL and k′ =k + 2NkL), the applied pulse width is τ̃Rπ (	) (61) and
for the Pendellösung (57) and (58) (dotted), considering only the
resonant diffraction order, τRπ (	) (52) for 	r = 	ω2r = 3ωr . In (a),
the Pendellösung overestimates the efficiency and phase shift, while
the Kato corrections (C14) (dashed) match the numerical results
(solid) much better. There are deviations only at the band edges,
especially for N =2 (b).

ically calculated fidelity (19) considers four off-resonant
diffraction orders (N = 5). As initial condition, we consider
one-dimensional Gaussian wave packets (B1) centered at k0 =
−kL with momentum width σk , localized in the center of the
laser beams x0 = 0. Here, in the plane-wave approximation,
the results are independent of the expansion size. This size
σx = (2σk )−1 follows from the Heisenberg uncertainty.

Clearly, the π -pulse stretching factor ζπ (60) traverses the
optimal fidelity regions for all pulse shapes and momentum
widths, as a universal rule, motivating the effective π -pulse
widths

τ̃ jπ = ζπτ jπ , j ∈ {G,R,B, S}, (61)

with τ jπ from Eq. (52).
b. Renormalized π -pulse efficiency: In Fig. 5 the velocity

dispersion of the response of an atomic mirror is visual-
ized for typical parameters used in experiments (cf. Table II)
and a two-photon Rabi frequency 	r = 	ω2r = 3ωr . The
Pendellösung (54), valid in the deep-Bragg regime (N =
1), applying the pulse width τRπ (	) (52), is compared to
the eigenvalue solution (42) with pulse width τ̃Rπ (	) (61).
Therefore, the diffraction efficiency ηk′k reveals the velocity
selectivity of the Bragg condition and the population loss
into higher diffraction orders, here in the quasi-Bragg regime
(N = 5). The phase difference 
φ (58) shows a π jump at
resonance. The perturbative Kato solution (C14) describes
the beamsplitter response very well, only at the band edges
κ → ±1, there are small deviations. For weak coupling 	,
the diffraction efficiency after a mirror pulse of width τ̃πR(	)
(61) exhibits a sinc behavior [cf. Fig. 6(a)]. It is the typical
Fourier-response to a rectangular pulse. Increasing the Rabi

FIG. 6. (a) Diffraction efficiency η+− after a mirror pulse of
width τ̃Rπ (	) (61) versus detuning κ for different two-photon Rabi
frequencies 	r = 	ω2r , numerical results (solid), and Kato (C14)
solution (dashed). (b) Resonant transfer efficiency η0 ( ) and effi-
ciency width 
η ( ) versus 	r . The numerically optimal interaction
time, for maximal efficiency (dash-dotted), is compared to the ap-
proximations for the π -pulse width τRπ (52) (dotted) and τ̃Rπ (61)
(solid). The analytical Kato approximation ηK

0 (τ̃Rπ ) (62) (dashed)
provides meaningful predictions.

frequency 	, the response is power broadened, in conjunction
with a reduced efficiency. Simultaneously, the Kato solu-
tion becomes less accurate for |κ| > 0, while the resonant
efficiency η0 ≡ η+−(κ = 0) = ηkL,−kL can be approximated
further. This is also depicted in Fig. 6(b), together with the
efficiency’s full width half maximum 
η of the Bragg mirror.
For an ideal mirror, η0 = 1 and 
η → ∞ are desirable, but
impossible.

In addition, we study the optimal interaction time in
Fig. 6(b). The approximation τRπ (52) for the deep-Bragg
regime and τ̃Rπ (61) for the quasi-Bragg regime, consider-
ing higher diffraction orders, are compared to the optimal
interaction time, defined by the maximum numerical transfer
efficiency at resonance κ = 0. With increasing 	, in a regime
where the losses into higher diffraction orders are important,
the approximation with τRπ is less accurate, while τ̃Rπ can
be used further. Please note that for the maximized transfer
efficiency the velocity acceptance 
η is reduced, while for
τ̃Rπ it remains larger for increasing 	. From the Kato solution
(C14) a simple analytic equation for the diffraction efficiency
on resonance, for the effective π -pulse time τ̃Rπ can be derived
(cf. Appendix C) to

ηK
0 (τ̃Rπ ) = (1 − 2I )

[
1 + |	|I sin

(
2π

|	|
1 + 2I
1 − I

)]
, (62)

also depicted in Fig. 6(b). This expression predicts losses
into higher diffraction orders within the convergence radius
	r = 	ω2r < 4ωr (I < 0.0625) very well. The approxima-
tion remains positive for 	r < 8

√
2ωr (I = 0.5).
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D. Diffraction efficiency of a sech pulse

1. Velocity selective Demkov-Kunike Pendellösung

For hyperbolic secant pulses 	(τ ) = 	 fS (τ ) (50), one
can solve Eq. (55) also in a closed form [75,76]. A de-
coupling of the first-order differential equation system with
g+1 = 2i	(τ )−1ġ−1, leads to Hill’s second-order differential
equation [68]:

0 = g̈−1 −
(
	̇(τ )

	(τ )
− iκ

)
ġ−1 + 	(τ )2

4
g−1. (63)

With the nonlinear map z(τ ) = [1 + tanh (τ/τS )]/2, the dif-
ferential equation for γ (z) ≡ g−1(τ ) emerges as

z(1 − z)γ ′′ + [c − z(1 + a + b)]γ ′ − abγ = 0, (64)

with a = 	τS/2, b = −a, and c = (1 + iκτS )/2. This is the
hypergeometric differential equation with solutions f1 =
2F1(a, b; c; z), f2 = z1−c

2F1(1+a − c, 1+b − c; 2−c; z) and
Wronski determinant w = (1 − z)c−1z−c. Straightforward
analysis (cf. Appendix D) leads to the Demkov-Kunike (DK)
solution with unitary propagator G∓(τ, τi ):

g∓(τ ) = G∓(τ, τi )g∓(τi ), G∓(τi, τi ) = 1. (65)

For the initial datum g∓(τi ) = (1, 0), one obtains

g−1(τ ) = [ f1(τ ) f ′
2(τi ) − f2(τ ) f ′

1(τi )]/w(τi ). (66)

For a pulse beginning in the remote past τi � −τS , this sim-
plifies to

g−1(τ ) = 2F1(a,−a; c, z), (67)

g+1(τ ) = a

ic

√
z(1 − z) 2F1(1 − a, 1 + a; 1 + c, z). (68)

Now, the diffraction efficiency of a beamsplitter reads

ηDK
+−(κ, τ ) = |g+1(τ )|2 = 1 − |g−1(τ )|2. (69)

Furthermore, for very long pulse durations τS � τ f , |τi|, the
diffraction efficiency simplifies to

ηDK
+−(κ,	,T ) = sech2

(
κT

2

)
sin2

(
	T

2

)
, (70)

with the nominal time T (45). In order to achieve full diffrac-
tion efficiency ηDK

0 = ηDK
+−(κ = 0) = 1, one should choose the

π -pulse width as τSπ = |	|−1, in agreement with the pulse
area (52). Waiting indefinitely long is hardly ever an option
[80]. Therefore, the finite time approximation

ηDK
0 (τ ) ≈ z = 1

2 (1 + tanh	τ ) (71)

reveals the exponential convergence past several π -pulse
times τ 	 τS . It requires 	r = 	ω2r < 3ωr .

2. Losses into higher diffraction orders

To consider losses into the higher diffraction orders, we use
time-dependent perturbation theory in Eq. (42)

iġ = H(τ )g, H(τ ) = H0(τ ) + H1(τ ). (72)

0.0
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−
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Δ
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FIG. 7. Velocity dispersion of (a) the diffraction efficiency η+−
and (b) the phase shift 
φ for sech pulses with pulse width τS = τ̃Sπ

(61) and different Rabi frequencies 	r = 	ω2r . The DK Pendellö-
sung (67) (dotted) is suitable for 	r < 3ωr while the extended model
(76) (dashed) matches the numerical results (16) (solid) very well
also for larger 	r .

The free evolution H0(τ ) consist of a direct sum

H0(τ ) = H∓(τ )
N⊕

μ = −N + 1
μ �= 0, 1

ω2μ−1 (73)

of the DK generator H∓(τ ) (55) in the beamsplitter manifold
and the unperturbed energies ωμ (43) in the higher momentum
states. The perturbation H1(τ ) is simply the complement of
the complete Hamilton operator.

The free retarded propagator is defined for τ � τi as

G0(τ, τi ) = G∓(τ, τi )
N⊕

μ = −N + 1
μ �= 0, 1

e−iω2μ−1(τ−τi ) (74)

and vanishes elsewhere (cf. Appendix D). It involves the DK
Pendellösung G∓ (65) and the free time evolution of off-
resonant momentum states. The complete solution

g(τ ) = G(τ, τi )g(τi ) (75)

follows from the solution G(τ, τi ) of the integral
equation (D3). A second-order approximation couples to
the ±3kL,±5kL momentum states and shifts the frequencies
of the beamsplitter manifold

G(τ, τi ) = G0 − i
∫ ∞

−∞
dt G0(τ, t )H1(t )G0(t, τi )

−
∫ ∞

−∞
dt dt ′ G0(τ, t )H1(t )G0(t, t ′)H1(t ′)G0(t ′, τi ).

(76)

This is required to observe the stretching of the π -pulse time.
An explicit analytical approximation can be obtained. It is
numerically efficient and useful for the interpretation, but
remained unwieldy for display [81]. In Fig. 7 we compare
the simple and the extended DK model after a π pulse, with
the corresponding numerical (1+1)-dimensional simulations
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FIG. 8. Velocity dependent diffraction efficiency η+−(κ ) for a
Gaussian pulse ( j = G, solid: numerical, dotted: deep-Bragg limit
(78)) and the sech pulse [ j = S, dashed: analytical (76)]. A mirror
pulse of width τ̃ jπ (61) with total pulse duration 
τ = 8τ̃Gπ is
applied for three Rabi frequencies 	r = 	ω2r .

(16). The diffraction efficiency is depicted in Fig. 7(a) and the
phase shift 
φ between the coupled states in Fig. 7(b). The
simple DK Pendellösung (67) is valid for 	r =	ω2r <3ωr .
For 	r >3ωr , losses into higher diffraction orders are signifi-
cant, but the extended solution (76) still matches the numerical
solution.

a. Adiabaticity: The crossover from the deep- to the quasi-
Bragg regime at 	 ≈ 3ωr for atomic mirrors using τ̃ jπ (61) is
related to the adiabaticity criterium [82]

max
τ∈[τi,τi+
τ ]

∣∣∣∣ d

dτ

[
go

n(τ )∗ġo
m(τ )

ωn(τ ) − ωm(τ )

]∣∣∣∣
τ � 1, (77)

∀ m �= n, with the eigenvalues ωm(τ ) and eigenvectors go
m(τ )

of Ho (40). Equation (77) results in 	r =	ω2r � 4ωr for τ̃Sπ

at κ = 0. This is confirmed by the results of Gochnauer et al.
[56] and is visible in Figs. 9 and 10 below. Therefore, while
the DK Pendellösung (67) is valid in the adiabatic regime,
the extended model (76) can be even used for nonadiabatic
pulses.

E. Diffraction efficiency of a Gaussian pulse
in the deep-Bragg limit

Due to the similarity of the Gaussian to the sech pulses [cf.
Eqs. (47) and (50)], one can estimate the velocity selective
diffraction efficiency for infinitely long Gaussian pulses in the
deep-Bragg regime. The different pulses have equal nominal
times (45). Therefore, approximating sech2(a) from Eq. (70),
with a similar exponential form, providing the same inte-
gration area as

∫ ∞
−∞ da sech2(a) = ∫ ∞

−∞ da exp(−πa2/4) =
2, leads to

ηG
+−(κ,	,T ) = exp

[
− π

(
κT

4

)2]
sin2

(
T	

2

)
. (78)

The results are discussed in the next section.

F. Diffraction efficiency for all pulses in (1+1) dimensions

In beamsplitter experiments, Gaussian laser pulses are
ubiquitous. There is a good reason for it, as they are self-
Fourier-transform functions. This is evident in the numerical
simulations of first-order diffraction efficiency in Fig. 8,
which is free of the side lobes of rectangular pulses, seen in
Fig. 6(a). The diffraction efficiency becomes power broadened
for increasing Rabi frequency. Beyond 	r > 3ωr , scattering
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FIG. 9. Comparison of the Bragg diffraction for a mirror pulse
width τ̃iπ , for rectangular (dash-dotted ), Gaussian (solid ), Black-
man (dotted ), and sech pulses (dashed, numerical: , DK (67)

, DK (76) ). (a) Velocity dispersion of the numerical diffraction
efficiency η+− (without plot markers) and phase shift 
φ (with
plot markers) for 	r = 	ω2r = 3ωr . (b) On-resonance diffrac-
tion efficiency η0 and (c) width of the diffraction efficiency 
η

versus 	r .

into higher diffraction order depletes the population in the
beamsplitter manifold. However, in the deep-Bragg regime,
the approximation (78) matches the numerical solutions very
well. Sech pulses [extended DK model (76)] behave simi-
larly, as shown in Figs. 8 and 9. The explicit solution for the
sech pulse [extended DK model (76)] deviates slightly from
Gaussian and Blackman pulses, but provides very detailed
forecasts. Indeed, all smooth pulse shapes ( j = G,B, S) with
pulse widths τ̃ jπ are very similar and exhibit almost identical
phase shifts and efficiencies as depicted in Fig. 9. Here, for
finite total interaction times 
τ , the π -pulse conditions are
not met exactly 	Tj (−
τ/2,
τ/2) ≈ π (45). One could
adjust the pulse width τ̃ jπ for each pulse shape j to obtain a π
pulse individually 	Tj (−
τ/2,
τ/2) = π , but this leads to
unequal nominal times Tj �= T (45) and results in significant
phase differences. Thus, we consider the same π -pulse time

τ = 8τ̃Gπ for all pulses and the widths τ j = τ̃ jπ connected
via Tj = T , and the resulting differences in the pulse areas
	Tj (−
τ/2,
τ/2) (45) are negligible.

The phase-sensitive fidelities (19) for different pulse
shapes and momentum widths σk of an initial Gaussian wave
packet in one dimension (B1) are compared in Fig. 10. For
the smooth envelopes, an increasing σk reduces the range
of admissible Rabi frequencies 	r =	ω2r , which shifts the
optimum to higher values. Evidently, the DK Pendellösung
(67) matches numerical simulations for 	r < 3ωr , while the
extended DK model (76) remains further valid. The explicit
Kato solution (C14) matches the results for rectangular pulses
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FIG. 10. Fidelity F (	r, σk ) after a mirror pulse of width τ̃ jπ (	)
(61) versus the two-photon Rabi frequency 	r =	ω2r for different
initial atomic momentum widths σk ={0.01, 0.05, 0.1, 0.2}kL , { , ,

, }; for (a) Gaussian, (b) Blackman, (c) sech, and (d) rectangular
pulses. The total interaction time is 
τ = 8 τ̃Gπ (a)–(c) and 
τ =
2τ̃Rπ (d); cf. Eq. (61). The one-dimensional initial Gaussian wave
packet (B1) is centered at (x, kx ) = (0,−kL ). The DK Pendellösung
(67) [dotted (c)] matches the results of the numerical integration (16)
(solid) very well for 	r < 3ωr , considering population loss to higher
diffraction orders (76) (dashed) also for larger 	r . The Kato solution
(C14) (dashed) is depicted in (d), matching the numerical results.

very well, demonstrating its applicability for wave packets
with finite momentum width.

G. Diffraction efficiency in (3+1) dimensions for
Laguerre-Gaussian modes with smooth temporal pulse shapes

1. Laguerre-Gaussian modes

The experimental beamsplitter beams are pulsed, bichro-
matic, counterpropagating Laguerre-Gaussian (LG) modes
[83]. In the specific frame S′, comoving with the nodes of the
interference pattern, there is only a single wave number kL [cf.
(15) and Appendixes A, B]. The slowly varying amplitude of
the electric field leads to Rabi frequencies

	 j (t, r) = 	 j (t, �)ei�(�), (79)

	 j (t, �) = 	 j (t )
w0

w j
e
− �2

w2
j , �(�) = kL�

2

2Rj
− ξ j (80)

with beam parameters w1,2 = w(�/2), R1,2 = R(�/2), ξ1,2 =
ξ (�/2) and the distance � between both lasers beam waists, as
depicted in Fig. 11.

2. Local plane-wave approximation

To isolate the momentum kick of the beamsplitter from the
momentum imparted by the dipole force, we consider a local
plane-wave approximation of the LG laser beam at the initial
position r0 = (0, �0), �0 = (y0, z0) of the atomic cloud

	 j (t, r) ≈ 	 j (t, r0) = 	 j (t, �0)ei�(�0 ). (81)

Thus, the atomic cloud feels only a reduced Rabi frequency
but experiences no spatial inhomogeneity. Therefore, simula-

FIG. 11. Two counterpropagating, bichromatic Laguerre-
Gaussian beams form a traveling, standing wave (12) with an
intensity pattern in cylindrical coordinates (x, �). The gray arrows
are the local wave vectors, w(x) is the local waist, and R(x) is the
local radius of curvature. The distance between the two beam waists
is �. The atomic cloud, generally localized at r0, is indicated as a red
ellipse.

tions with plane waves must be independent of the ratio σx/w0

for σx > λ.

3. Simulations

Beamsplitters perform best if the atomic cloud (of size
σx ∼ μm to mm) is well localized within the beam waist w0.
For w0 ∼ mm and optical wavelengths λ ∼ μm the Rayleigh
lengths xR are several meters, thus

xR 	 w0 > σx > λ. (82)

Therefore, one can expect that the transversal dipole forces
will be stronger than the forces along the propagation direc-
tion x. Small clouds centered at the symmetry point r0 =
(0, 0, 0) will feel the least degradation of the beamsplit-
ter fidelity [cf. Figs. 12(a) and 12(b)] due to dipole forces.
This will be confirmed by displacing the initial cloud trans-
versely to r0 = (0,w0/2, 0), leading to larger aberrations [cf.
Figs. 12(e)–12(h)].

In these simulations of a Bragg mirror, depicted in Fig. 12,
we use the effective π -pulse width τ̃Gπ (	(r0)) (61) in the
local plane-wave approximation (81) for different Rabi fre-
quencies 	r = 	ω2r and a longitudinal laser displacement
� = 0.1 xR, like in the experiment (cf. Table II). As initial
states of the atomic cloud, we consider ballistically expanded
three-dimensional Gaussian wave packets (B3) with different
widths in real space σx and in reciprocal space σk .

For atoms located at the center of the LG laser beams, the
spatial inhomogeneity (B10) leads to significant aberrations
only for large atomic clouds [cf. Figs. 12(c) and 12(d)]. By
contrast, even small displaced clouds [cf. Figs. 12(e) and
12(f)] show a significant reduction of the fidelity in realistic
LG laser beams compared to ideal plane waves. The latter
uses a reduced Rabi frequency according to the local plane-
wave approximation (81). For large clouds this reduction is
detrimental [cf. Figs. 12(g) and 12(h)]. Please note that we
use parameters where the simulation results for the fidelity
depend only on the ratio σx/w0 < 1.

Besides the phase sensitive fidelity, the aberrations due to
LG beams are already apparent in the diffraction efficiency.
In Fig. 13 the momentum density ñ(kx, ky) is shown for
the (3+1)-dimensional simulation with (a) LG laser beams
and (b) the idealized local plane-wave approximation, after
a mirror pulse with 	r = 3ωr . In the momentum space, the
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FIG. 12. Fidelity F (	r, σk, σx ) after a mirror pulse versus two-photon Rabi frequency 	r = 	ω2r for different atomic initial momentum
widths σk = {0.05, 0.1, 0.2} × kL , {solid blue, dashed red, dashed-dotted green} of a three-dimensional ballistically expanded Gaussian wave
packet (B3) for Laguerre-Gaussian beams (◦) in comparison to plane waves (�), using the (3+1)-dimensional numerical integration (16).
Gaussian temporal pulses of width τ̃Gπ (	) (61) and total duration 
τ = 8 τ̃Gπ (61) are applied. Each column represents a different ratio σx/w0

between spatial width of the initial state σx and the beam waist w0. In the bottom row the atomic initial state is displaced in the radial direction
of the LG beams to �0 = y0 = w0/2.

splitting is visible directly after the π -pulse. We study a
ballistically expanded Gaussian wave packet (B3) as atomic
initial state with σk = 0.05 kL and σx = 1/25 w0, located at
r0 = (0,w0/2, 0). The logarithmic scale highlights the imper-
fections of the Bragg diffraction, using LG laser beams. Even
for the tiny momentum width, the diffraction efficiency is
reduced to 96.3 % in comparison to 97.8 % for idealized plane
waves. In addition, the dipole force leads to a rogue, transver-
sal momentum component 〈p̂y〉 = 0.012 h̄kL. As opposed to
the diffraction efficiency and the fidelity, this momentum com-
ponent depends not only on the relation σx/w0 but on the
beam waist as well, here w0 = 62.5μm. Further studies of
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FIG. 13. Column integrated atom density in momentum space
ñ(kx, ky ) = ∫

dkz |ψ̃ (kx, ky, kz )|2 after a π pulse for (a) Laguerre-
Gaussian laser beams and (b) plane waves. The atomic initial state
is a temporally evolved Gaussian wave packet (B3) located at r0 =
(0,w0/2, 0) with momentum width σk = 0.05 kL and expansion size
σx = w0/25 = 2.5μm. Gaussian pulses with 	r = 	ω2r = 3ωr ,
τG = τ̃Gπ (	) (61), 
τ = 8 τ̃Gπ and beam waist w0 = 62.5μm are
applied. The final momentum expectation value in the y direction
〈 p̂y〉 = 0.012 h̄kL is highlighted with gray lines.

the mechanical light effects of the dipole force are subjects of
our present research.

Locating the initial state at the center r0 = (0, 0, 0) reduces
the aberrations due to LG laser beams. The diffraction effi-
ciency of 99.0 % reaches almost the efficiency of idealized
plane waves with 99.1 %, and the transverse momentum com-
ponent vanishes.

V. PROVING THE DEMKOV-KUNIKE MODEL
EXPERIMENTALLY

Experimentally, we employ an atom chip apparatus to
Bose-condense 87Rb atoms [34,84] with a condensate fraction
of Nc = (10 ± 1) × 103 and a quantum depletion (thermal
cloud) of Nt = (7 ± 1) × 103. After release from the trap
(laboratory frame S), with trap frequencies listed in Table II,
the atoms expand ballistically and fall vertically towards nadir.
The Bragg-laser beams are aligned horizontally. It is sufficient
to consider inertial motion during the short Bragg pulses
(<ms). After 10 ms time-of-flight (TOF), at the beginning of
the diffraction pulses, the temperature of the thermal cloud is
obtained from a bimodal fit [85] as T = (20 ± 3) nK. So far,
the cloud σx = 20μm is much smaller than the beam waist
w0 = 1386μm and permits the plane-wave approximation.

Experimentally, the first-order diffraction efficiency in the
deep-Bragg limit

η = N+
N− + N+

(83)

is obtained from the number of atoms N+ diffracted into the
first order k′ = k+ and the undiffracted atoms N− remaining
in the initial state k′ = k−. The diffraction efficiency is either
a function of the detuning δω (6) of the laser from the two-
photon resonance with atoms initially at rest 〈p̂x(τi )〉 = 0, or
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FIG. 14. Experimental diffraction efficiency η (83) for differ-
ent laser powers P• = 20 mW and P× = 30 mW of Gaussian pulses
of width τG with numerical simulations (solid, blue) and fits (87)
(dashed, red) based on the DK model. (a) Velocity selectivity for
	TG = 0.56π pulses (45) versus detuning κ̄ of the initial central
momentum〈 p̂x (τi )〉 = (−1 + κ̄S + κ̄ )h̄kL , where κ̄SkL = 0.12 kL is a
small initial velocity of the atoms in the laboratory frame S and
κ̄ = δω/ω2r (8). (b) Rabi oscillations of the diffraction efficiency
versus pulse width τG, with total interaction time 
τ = 8τG and
highlighted pulse widths of (a). For other parameters cf. Tables I
and II.

it is the response for resonant lasers and an initial wave packet
centered at

〈p̂x(τi )〉 = (−1 + κ̄ )h̄kL, κ̄ = δω

ω2r
, (84)

using Eq. (8) (cf. Sec. II B).
Theoretically, we compute the diffraction efficiency (83)

in the laser plane-wave approximation from the number of
diffracted atoms

N±(κ̄ ) =
∫ 1

−1
dκ η±−(κ ) n(κ, κ̄ ), (85)

following from a reaction equation derived in Appendix E,
which completely encloses the wave packet with the ef-
fectively one-dimensional momentum density n(κ, κ̄ ) and
the average initial momentum κ̄ . Please note that for ideal
plane matter-waves with wave number κ̄ the diffraction effi-
ciency (83) reduces to η = η+−(κ̄ ). In the deep-Bragg regime,
theoretically N+ + N− = NA = Nc + Nt , and the diffraction
efficiency simplifies to

η = N+(κ̄ )

NA
= pcnc

+(κ̄ ) + ptnt
+(κ̄ ), (86)

splitting into a condensate and a thermal cloud fraction with
pc = Nc/NA, pt = 1 − pc. Approximating the normalized ini-
tial momentum distributions nc(κ, κ̄ ), nt (κ, κ̄ ) by Gaussian
functions (E10) of widths σ c

k = 0.087 kL and σ t
k = (0.237 ±

0.015) kL (cf. Appendix E 1) and using the Gaussian approxi-
mation (78) for the diffraction efficiency η±−(κ ), one obtains
the analytical model

η = sin2

(
	T

2

) ∑
a={c,t}

pa

σ̃ a
k (T̃ )

e
− (κ̄T̃ )2

2σ̃a
k (T̃ )2 , (87)

with σ̃ a
k (T̃ ) =

√
1 + (T̃ σ̃ a

k )2, T̃ = T
√
π/8, σ a

k = σ̃ a
k kL.

In Fig. 14 the diffraction efficiency (83) is depicted for
two different laser powers P• = 20 mW, P× = 30 mW of a
Gaussian pulse of width τG (47) and total interaction time

τ = 8τG. In the experiment, the atoms are displaced axi-
ally to z0 = (1165 ± 50)μm = (0.84 ± 0.04)w0, while x0 =
y0 = 0μm. This reduces the effective Rabi frequency at the
location of the atoms (81).

Fits using the model (87) already describe the experimental
data very well and provide starting parameters [pc, 	(r0)]
for the effective (1+1)-dimensional numerical simulations
with Gaussian pulses, fully matching the experimental data.
The experimental, numerical and fit parameters are listed in
Table I.

In Fig. 14(a) the velocity dispersion of the diffraction ef-
ficiency uncovers an initial motion kS

x = κ̄SkL = 0.12 kL of
the atomic cloud in the laboratory frame S. Considering this

TABLE I. Parameters of Fig. 14 for the experiment (e), the numerical simulation (n), and the approximation (87) (a).

Fig. 14 e/n/a P• = (20 ± 2) mW P× = (30 ± 3) mW

e pc 0.59 ± 0.08 0.59 ± 0.08
e 	 (6.60 ± 0.66)ωr (9.89 ± 0.99)ωr

e 	(r0) (1.61 ± 0.27)ωr (2.41 ± 0.40)ωr

e κ̄SkL (0.12 ± 0.01) kL (0.12 ± 0.01) kL

(a) e τG/ω2r 147.45μs 98.3μs
e 	(r0)TG (45) 0.56π 0.56π
a pc 0.59 ± 0.06 0.59 ± 0.14
a 	(r0) (1.74 ± 0.01)ωr (2.27 ± 0.01)ωr

n pc 0.59 0.59
n 	(r0) 1.71ωr 2.28ωr

(b) e δω/2π −2 kHz −2.5 kHz
a pc 0.55 ± 0.03 0.59 ± 0.04
a 	(r0) (1.81 ± 0.01)ωr (2.30 ± 0.01)ωr

n pc 0.52 0.52
n 	(r0) 1.81ωr 2.30ωr
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in 〈p̂x(τi )〉 = (−1 + κ̄S + κ̄ )h̄kL with κ̄ = δω/ω2r leads to a
very good match of the fit model (87), the simulations and the
experimental data.

In Fig. 14(b) the diffraction efficiency displays damped
Rabi oscillations versus the pulse width τG. This is a typical
inhomogeneous line broadening caused by the momentum
widths σ c

k , σ th
k , the two-photon detuning δω = κ̄ω2r �= 0, and

a residual velocity κ̄S �= 0. It is also revealed by the Gaus-
sian approximation (87). The fit results for the two-photon
Rabi frequency are also optimal for the numerical simulations
matching the experiment within the error level.

It is worth mentioning that the velocity dispersion of the
efficiency [Fig. 14(a)] is less sensitive to the condensate ratio
pc than the Rabi oscillations [Fig. 14(b)]. The Gaussian ap-
proximation (87) underestimates the second maxima, but the
fit of pc matches the experimental value within its uncertainty.
The numerical simulations predict a condensate ratio at the
lower bound of the experimental ratio, still within the uncer-
tainty. The reduction of condensate fraction pc in simulations
and Gaussian approximation is equivalent to increasing the
momentum width of the condensate or thermal cloud.

Thus, the Gaussian approximation (87) of the DK model
gives an unbiased prediction of the experimental data. It
assumes weak two-photon Rabi frequencies 	r (r0) < 3ωr ,
justifying the Pendellösung (70), and small atomic clouds
σx � w0 to approximate Gaussian beams by plane waves.

VI. CONCLUSION

We present (3+1)-dimensional simulations and analyti-
cal models of a pulsed atomic Bragg beamsplitter. Thereby,
we characterize ubiquitous imperfections, like the velocity
dispersion and the population losses into higher diffraction or-
ders. We study the influence of four common temporal pulses
(rectangular, Gaussian, Blackman, and hyperbolic sech pulse).
Clearly, the diffraction efficiency and the fidelity benefit from
Fourier-limited, smooth envelopes. Much insight is gained
from the analytical Demkov-Kunike model for a hyperbolic
secant pulse (67). It reveals the explicit dependence on the
multitude of physical parameters. Due to its similarity with
a Gaussian pulse, the diffraction efficiency (70) can also be
used for it (78). For a large parameter regime, the model is
verified experimentally and matches the velocity dispersion.
The extended DK model (76) matches also losses into higher
diffraction orders.

For a rectangular pulse, we have obtained explicit higher
order diffraction results from Kato degenerate perturbation
theory, which provides insight into the quasi-Bragg regime.
Due to a renormalization of the effective Rabi frequency in
the beamsplitter manifold, one finds significant stretching of
the optimal π -pulse time, which has been seen experimentally
[56]. We find this stretching for all considered pulses in the
quasi-Bragg regime and assume it is universal.

Comparing Laguerre-Gaussian laser beams with plane
waves reduces the diffraction efficiency and transfer fidelity
in general. The beam inhomogeneity becomes relevant for
σx � w0/10. But even for smaller decentered clouds, the fi-
delity suffers significantly. Currently, we are investigating the
aberrations due to laser misalignment and transversal confine-
ment, which will be reported elsewhere.
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APPENDIX A: COMOVING ROTATING FRAME

In quantum mechanics, a Galilean transformation is repre-
sented by the displacement operator [86]

Ĝ(t ) = e
i
h̄ (pr̂−r(t )p̂) = e− i

2h̄ pr(t )e
i
h̄ pr̂e− i

h̄ r(t )p̂ (A1)

with a time-dependent coordinate r(t ) = r0 + vt and a mo-
mentum p = mv. It transforms the corresponding Heisenberg
operators as (

r̂′

p̂′

)
= Ĝ

(
r̂
p̂

)
Ĝ† =

(
r̂ − r(t )
p̂ − p

)
. (A2)

In the Schrödinger picture, Ĝ(t ) transforms the laboratory
frame state |ψ (t )〉 = Ĝ(t )|ψ ′(t )〉 into the state |ψ ′(t )〉 of the
comoving frame. Evaluating the comoving-frame Hamilton
operator Ĥ ′ the Schrödinger equation reads

ih̄∂t |ψ ′〉 = Ĥ ′|ψ ′〉 = Ĝ†(Ĥ − ih̄∂t )Ĝ|ψ ′〉, (A3)

Ĥ ′ = p̂2

2M
+ h̄ωgσ̂g + h̄ωeσ̂e + V (t, r̂ + r(t )). (A4)

In the frame, moving with the group velocity v = vgex (12) in
the x direction, the Doppler shifted laser phases

φ′
1 = ω1t − k1(x̂ + x0 + vgt ) = ωLt − k1(x̂ + x0), (A5)

φ′
2 = ω2t + k2(x̂ + x0 + vgt ) = ωLt + k2(x̂ + x0) (A6)

oscillate synchronously with

ωL = ω1 + ω2

2
(1 − β2) ≈ ω1 + ω2

2
. (A7)

The second-order correction in β = vg/c can be neglected
safely in our nonrelativistic scenario.

Another local frame transformation |ψ ′〉 = F̂ |ψ ′′〉 elimi-
nates the rapid temporal oscillations and establishes a single
spatial period λ = 2π/kL of the optical potential

F̂ (t ) = e−iωgt−iωLt σ̂e+ i
2 [k12(x̂+x0 )−χ12]σ̂z . (A8)

Now, the transformed Schrödinger equation reads

ih̄∂t |ψ ′′〉 = Ĥ ′′|ψ ′′〉, (A9)

Ĥ ′′ =
(
p̂x + 1

2 h̄k12σ̂z
)2

2M
+ p̂2

y + p̂2
z

2M
− h̄
σ̂e

+ h̄

2
σ̂ †[	̃1(t, r̂)eikL x̂ + 	̃2(t, r̂)e−ikL x̂] + H.c. (A10)

with a laser detuning 
 = ωL − ω0, a common wave num-
ber kL = (k1 + k2)/2 and a relative wave number mismatch
k12 = (k1 − k2)/2. Global phases of the Rabi frequencies
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	i(t, r) = 	̃i(t, r)e−iχi do vanish with the proper gauge χ12 =
(χ1 + χ2)/2 − kL�/2 and the shifted coordinate origin x0 =
(χ1 − χ2)/2kL − k12�/2kL, considering a horizontal distance
� between both laser origins.

Please note that k12 = (ω1 − ω2)/c ∼ 1 × 10−10 μm−1 ∼
1 × 10−11 kL is tiny in comparison to other relevant momenta.
We will consider Bose-Einstein condensates with Thomas-
Fermi radii in the trap of a few microns (cf. Secs. V and
E 1, and the momentum width can be approximated with
the Heisenberg width 
kH

TF = 3/2rTF = 0.15μm−1, consid-
ering rTF = 10μm, while the Rayleigh width gives 
kR

TF =
0.51μm−1 [87]. In our simulations, we consider atomic initial
states as Gaussian wave packets with momentum widths σk ∈
[0.01, 0.05, 0.1, 0.2] kL , with kL ≈ 8μm−1, to compare 
kR

TF
corresponds to σR

k ≈ 
kR
TF/3 = 0.02 kL. After release out of

the trap the momentum width of the BEC increases. With
temperatures T � 20 nK this gives rise for momentum widths
of a thermal cloud σk = √

kBT M/h̄ � 0.23 kL. Therefore, k12

can be neglected safely.

APPENDIX B: SPREADING GAUSSIAN WAVES

1. Matter waves

Ballistically spreading Gaussian wave packets are useful
input states to test a beamsplitter. Using different expansion
times t , one can vary the position width σx, while keeping
the momentum width σk constant. An n-dimensional Gaussian
unnormalized wave packet is defined as

ψ0(r) = eik0(r−r0 )− 1
2 (r−r0 )(2�0 )−1(r−r0 )

=
∫

dnk

(2π )
n
2

eikr
√

|2�0|e−ikr0− 1
2 (k−k0 )(2�0 )(k−k0 ) (B1)

and centered at (r0, k0) = (〈r〉, 〈−i∇〉). The wave packet is
normalized to

∫
dnr |ψ0|2 = √|2π�0| with the covariance

matrix �0 = 〈(r − r0) ⊗ (r − r0)〉. The three-dimensional
free Schrödinger equation

i∂tψ (t, r) = −α

2

rψ, α = h̄

M
(B2)

describes the spreading of a matter wave using the Fourier-
transformed field ψ̃0(k) implicitly defined in (B1):

ψ (t, r) =
∫

dnk

(2π )
n
2

e−it α2 k2
eikrψ̃0(k)

= A(t )e−i�(t )eik0[r−r0]− 1
2 [r−r0(t )][2�(t )]−1[r−r0(t )]. (B3)

The evolving center position r0(t ), spreading covariance �(t ),
dynamical phase �(t ), and scale factor A(t ) read

�(t ) = �0 + it
α

2
, r0(t ) = r0 + tαk0, (B4)

�(t ) = t
αk2

0

2
, A(t ) =

√
|�0|

|�(t )| . (B5)

In the simulations, we assume an isotropic initial state with
�i j = δi jσ

2
x and

σx(t ) = σx

√
1 + (t/tH )2, (B6)

with the Heisenberg time tH = 2σ 2
x M/h̄.

2. Laguerre-Gaussian laser beams

The scalar mode of a circularly symmetric Laguerre-
Gaussian (LG) beam propagating along the x direction follows
from the two-dimensional n = 2 paraxial approximation of
the Helmholtz equation

i∂xu(x, �) = −β

2

�u, β = k−1

L , � = (y, z). (B7)

The spatially evolved mode u(x, �) follows analogously from
(B3) and (B4), substituting (t, α) ↔ (x, β ):

u(x, �) = xR

iq(x)
ei kL�

2

2q(x) = Uei�,

U (x, �) = w0

w(x)
e− �2

w(x)2 , �(x, �) = kL�
2

2R(x)
− ξ (x), (B8)

where � =
√

y2 + z2 is the normal distance to the symmetry
axis and q(x) = x − ixR is the complex beam parameter [83].
It is characterized by the Rayleigh range xR = πw2

0/λ, the
beam waist w(x) = w0(1 + (x/xR)2)1/2, the minimum waist
w0 = 2σ , the radius of wavefront curvature R(x) = x(1 +
(xR/x)2), the Gouy phase ξ = arctan(x/xR), and the wave-
length λL = 2π/kL.

We consider two counterpropagating LG laser beams,
which are symmetrically displaced with respect to their waists
by a distance �. Then the dipole interaction energy in the
comoving, rotating frame (A10), reads

V̂ ′′ = h̄

2
σ̂ †[	1(t, r)eikLx + 	2(t, r)e−ikLx] + H.c., (B9)

with pulse amplitudes 	 j (t ) and spatial envelopes

	 j (t, r) = 	 j (t )U (x j, �)ei�(x j ,�). (B10)

We use shifted coordinates x1/2 = ±(x + vgt ) + �/2 and
beam parameters w j = w(x j ), Rj = R(x j ) and ξ j = ξ (x j ),
which are slowly varying for x � xR. Beamsplitter pulses are
typically short, and one can neglect the ballistic displacement
vgt ∼ μm � �, xR. For small atomic clouds σx < w0/3, one
can approximate x1 ≈ x2 ≈ �/2.

APPENDIX C: DEGENERATE PERTURBATION THEORY

To rectify the Pendellösung (54) with contributions from
higher order diffraction, we employ Kato’s method for the
stationary eigenvalue problem in the presence of degeneracy
[79]. All eigenvalues of the diagonal part D0 = D(κ = 0) of
the Bragg Hamilton operator (42) are doubly degenerated
1 � α � 2 on resonance. Therefore, we consider the flow of
the eigensystem H(λ)vi,α (λ) = ωi,α (λ)vi,α (λ) with

H = D0 + λV, V = D(κ ) − D0 + L + L†, (C1)

for 0 � λ � 1 in the degenerate subspace Ei. If we denote the
orthonormal eigenvectors of D0 with v(0)

i,α and their eigenvalues

ω
(0)
i , the eigenvectors of the interacting Hamilton operator

Hi(λ) restricted to the subspace Ei, are vi,α (λ) = Pi(λ)v(0)
i,α .

Now, all efforts are put in the perturbative evaluation of the
projection operator Pi(λ), which evolves from the unperturbed

043306-15



A. NEUMANN, M. GEBBE, AND R. WALSER PHYSICAL REVIEW A 103, 043306 (2021)

projection P(0)
i . This results in the generalized eigenvalue

problem

Hiv
(0)
i,α = ωi,αKiv

(0)
i,α , (C2)

Hi = P(0)
i HPiP

(0)
i , Ki = P(0)

i PiP
(0)
i , (C3)

with power series expressions for the operators

Pi(λ) = P(0)
i +

∞∑
n=1

λnA(n)
i , (C4)

A(n)
i = −

∑
(n)

S(k1 )
i VS(k2 )

i V · · ·VS(kn+1 )
i , (C5)

HPi(λ) = ω
(0)
i Pi(λ) +

∞∑
n=1

λnB(n)
i , (C6)

B(n)
i =

∑
(n−1)

S(k1 )
i VS(k2 )

i V · · ·VS(kn+1 )
i . (C7)

Here
∑

(n) denotes a sum over all combinations of integers
ki ∈ N0 satisfying k1 + k2 + · · · + kn+1 = n and

S(0)
i = −P(0)

i , S(k>0)
i = (Si )

k, Si = 1 − P(0)
i

ω
(0)
i 1 − D0

. (C8)

It is straightforward to evaluate Hi and Ki from (C3) for
the ground-state manifold i = 1 to order O(λn). We find that
a third-order truncation of the series

H1 =
(

0 	
2

	
2 κ

)
− 2I

(
1 0
0 1

)
− I

(
κ 	

	 0

)
,

K1 = (1 − I )

(
1 0
0 1

)
− I

(
κ 	

2
	
2 −κ

)
, I = 	2

16
(C9)

agrees very well with the numerical results. The roots of the
characteristic equation |H1 − (ω1 − ω

(0)
1 )K1| = 0 determine

the corrected eigenfrequencies of the Pendellösung. As the
frequency shifts ω1(λ) − ω

(0)
1 are already O(λ), it is consistent

to use a lower approximation for K1, which leads to better
results at the specified order. In particular, we have evalu-
ated H̃1 = K−1

1 H1 and Taylor expanded it at the specified
order

H̃1 =
(−I (2 + κ ) 	

2 (1 − I )
	
2 (1 − I ) κ − I (2 − κ )

)
+ O(λ4). (C10)

This leads to the succinct expression for the eigenvalues and
eigenvectors

ω1,± = κ

2
− 2I ± 	̃

2
, v(0)

1,± =
(

2(I − 1)
√
I

− 1
2κ (1 + 2I ) ± 	̃

)
,

	̃ =
√
κ2(1 + 2I )2 + 	2(1 − I )2 (C11)

in terms of a corrected Rabi frequency 	̃ (59).
Analogous to that, the eigenvalues of the next subspace,

coupling μ = ±3 and representing the most important loss
channel, can be calculated from H̃3 = K−1

3 H3:

H̃3 =
(

2(1 + I ) − κ 0
0 2(1 + I ) + 2κ

)
+ O(λ3), (C12)

skipping the λ3 terms, which overestimate the losses into
μ = ±3. Including higher expansion orders would correct

this, but we find that the lower expansion (C12) is sufficient.
The eigenvalues and eigenvectors of H̃3 are

ω3,± = 2(1 + I ) + κ

2
± 3κ

2
,

(
v(0)

3,+, v(0)
3,−

) = 12. (C13)

With the eigenvectors vi, j = Piv
(0)
i, j , defined by the projections

(C4), also expanded up to λ3 for μ = ±1 and λ2 for μ = ±3,
the time-dependent solution of the Schrödinger equation with
the Hamiltonian (C1) results in

gK (τ ) = g̃K (τ )

|g̃K (τ )| , (C14)

g̃K (τ ) =
∑

i={1,3}

∑
j={+,−}

ci, je
−iωi, j (τ−τi )vi, j, (C15)

where the integration constants c( j)
i are defined by the initial

condition g̃K (τi ) = (0, 1, 0, 0).
The population of the μ = 1 state is of special interest,

because it defines the diffraction efficiency η+−. On resonance
(κ = 0), g̃K (τ ) is already approximately normalized. There-
fore, it can be approximated

ηK
0 (τ ) ≈ |[g̃K (τ )]3|2 = A{1 + B cos[4τ ′(I − 1)

√
I]

+ C cos θ+ + D cos θ−}, (C16)

with θ± = 2τ ′(1 ± √
I + 2I − I3/2), τ ′ = τ − τi and coeffi-

cients expanded up to the suited order O(I2):

A = 1

2
− I − I2

2
+ O(I3), B = −1 + O(I3),

C = −D = −4I3/2 + O(I5/2). (C17)

After the effective π -pulse time τ̃Rπ = π/[2|	|(1 − I )] (61)
the diffraction efficiency (C16) results in Eq. (62).

APPENDIX D: DEMKOV-KUNIKE MODEL

The retarded Green’s function is defined as

G(τ, τi ) = T e−i
∫ τ

τi
dt H(t )

θ (τ − τi ), (D1)

[i∂τ − H(τ )]G(τ, τi ) = iδ(τ − τi ), (D2)

which hold equally for the free evolution G0(τ, τi ) by substi-
tuting H → H0. This leads to the Dyson-Schwinger integral
equation

G(τ, τi ) = G0 − i
∫ ∞

−∞
dt G0(τ, t ′)H1(t ′)G(t ′, τi ), (D3)

which is central to time-dependent perturbation theory.
The two-dimensional Green’s function G∓ of the DK

model can be expressed completely for 	, κ �= 0 with the
hypergeometric basis functions f1, f2 from Eq. (64):

G∓(τ, τi ) = M(z)S(z)S−1(zi )M
−1(zi ), (D4)

M =
(

1 0
0 i

a

√
z(1 − z)

)
, S =

(
f1 f2

f ′
1 f ′

2

)
. (D5)
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In the important case of exact resonance κ = 0, further sim-
plifications are possible and lead to

G∓(τ, τi ) =
(

cos
ϕ −i sin
ϕ
−i sin
ϕ cos
ϕ

)
, (D6)

ϕ(z) = 	τS arcsin
√

z, 
ϕ = ϕ(z) − ϕ(zi ). (D7)

The integrals (D3) can be solved approximately analytically.
However, the expressions are bulky, which is why we forgo
showing them [81].

APPENDIX E: DIFFRACTION EFFICIENCY FOR
PARTIALLY COHERENT BOSONIC FIELDS

The bosonic amplitude âg(k) describes the ground-state
atoms in momentum space and obeys the commutation
relation [âg(k), â†

g(q)] = δ(k − q). For a Bose-condensed
sample, the single-particle density matrix

ρ(k,q) ≡ 〈â†
g(q)âg(k)〉 = ρc(k,q) + ρt (k,q) (E1)

separates into a condensate ρc(k,q) = α∗(q)α(k) and a quan-
tum depletion ρt (k,q). The momentum density

n(k) ≡ ρ(k,k) = NA[pcnc(k) + ptnt (k)] (E2)

is the observable in a beamsplitter. It is normalized to the
total number of NA = ∫ ∞

−∞ d3k n(k) = Nc + Nt atoms, and
the densities nc, nt are probability normalized, thus defining
a condensate fraction pc = Nc/NA and a thermal fraction
pt = Nt/NA. Dynamically, the classical field α(t ) obeys the
Gross-Pitaevskii equation and extensions thereof for ρt (t )
[88–90].

During the short beamsplitter pulse (<1 ms), only single-
particle dynamics (16) are relevant,

ρ(τ ) = G(τ, τi )ρ(τi )G
†(τ, τi ), (E3)

for the condensate and the thermal cloud. In the plane-wave
approximation, the three-dimensional Fourier propagator
G(k, q) = G‖G⊥ (18) factorizes into the transverse propagator

G⊥(τ,k⊥,q⊥) = e−i
h̄(k2

y +k2
z )

2M τ δ(2)(k⊥ − q⊥), (E4)

and the longitudinal Greens function in the x direction

G‖(τ, x, ξ ) =
∑
μ,ν,n

Gμ,ν (κn,τ )
Nxax

ei(kn
μx−kn

ν ξ ), (E5)

using definitions (35) and (36). The discrete Green’s matrix
Gμ,ν (τ, κn) satisfies (40) with initial condition Gμ,ν (0, κn) =
δμ,ν . In the continuum limit, one uncovers the momentum
conservation on a lattice with kx = (μ + κ )kL and qx = (ν +
κ ′)kL, from the Fourier transformation

G‖(τ, kx, qx ) = δ(κ − κ ′)Gμ,ν (τ, κ ). (E6)

All observables are along the x direction. Thus, we average
over the transversal directions and introduce the marginal
momentum densities at time τ

n(τ, kx ) =
∫ ∞

−∞
dkydkz n(τ,k). (E7)

We assume that the initial ensemble is well localized
around kx = (ν + κ )kL with ν = −1, and denote the den-
sity by ni(κ ) = n(τi, kx ). From the propagation equation

TABLE II. Experimental parameters: On the J = 1/2 → J ′ = 3/2 transition, far-detuned, linearly polarized light couples only to one
component of the dipole operator. Therefore, the transition strength is reduced by

√
3.

Quantity Symbol Value Reference

Atom

Number of atoms in condensate Nc 10(1) × 103

Number of atoms in thermal cloud Nt 7(1) × 103

Atomic mass M 86.909 180 520(15) u [96]
Transition frequency Rb-87 D2 ω0 2π × 384.230 484 468 5(62) THz [97]
Lifetime τ (26.2348 ± 0.0077) ns [98]
Decay rate � 2π × (6.0666 ± 0.0018) MHz
D2 (52 S1/2 → 52 P3/2) transition dipole matrix element D 3.58424(52) × 10−29 Cm [98]
Rabi frequency 	0 E0D/h̄

√
3

Scattering length a 98.96 a0 [99]
Trap frequencies [ωx, ωy, ωz] 2π × [46 ± 2, 18 ± 1, 31 ± 1] Hz

Thomas-Fermi radii inside trap [rx, ry, rz] [4.2, 10.8, 6.2]μm

Laser

Wavelength λL 780.024 500 015 nm
Wave number kL 8.056μm−1

Detuning to atomic resonance 
 97.875 GHz
Beam waist w0 1.386 mm
Rayleigh length xR 7.7 m
Total interaction time 
t (102 . . . 103) μs
Gaussian pulse width (47) τG 
t/8
Distance between laser origins � 0.1 xR

Total laser power P E2
0 ε0πcw2

0/4
Laser amplitude E0
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FIG. 15. One-dimensional density n(κ ) = pcnc + ptnt (E2)
(pt =0.51, pc =0.49) versus momentum detuning κ . The
thermal cloud nt as well as the condensate nc obtained from
(3+1)-dimensional GP simulation can be approximated with a
Gaussian distribution na={c,t} ≈ ña (E10).

(E3), one obtains the final density n f (κ ) = n(τ f , kx ), with
kx = (μ + κ )kL at diffraction order μ:

n f (μ, κ ) = |Gμ,−1(τ f , κ )|2ni(κ ). (E8)

Now we can identify the diffraction efficiency as η+−(κ ) =
|G1,−1(τ f , κ )|2 and η−−(κ ) = |G−1,−1(τ f , κ )|2. Thus, for
atomic clouds with initial momentum 〈p̂x〉 = (−1 + κ̄ )h̄kL

(84), the number of diffracted atoms read

N±(κ̄ ) =
∫ 1

−1
dκ η±−(κ )ni(κ, κ̄ ), (E9)

which are the observables in first-order diffraction theory.

1. Initial momentum distribution

After release from the trap, the width of the BEC in mo-
mentum space increases due to atomic mean-field interaction
[91]. The momentum distribution is determined by solving the
(3+1)-dimensional Gross-Pitaevskii equation for the given
parameters of Table II and 10 ms time of flight before the
diffraction pulses. The result is confirmed by the scaling
approach [92–95] applied to the numerical Gross-Pitaevskii
ground state. Finally, the marginal, one-dimensional momen-
tum density distribution of the BEC at the beginning of the
diffraction pulses nc

i ≈ ñc (E7) can be approximated with a
Gaussian distribution

ñ(κ, κ̄ ) = 1√
2πσ̃k

e
− (κ−κ̄ )2

2(σ̃k )2 ,

∫ ∞

−∞
dκ ñ(κ, κ̄ ) = 1, (E10)

with the dimensionless momentum width σ̃k = σk/kL and
σ c

k = 0.087 kL , as depicted in Fig. 15.
The thermal cloud is also approximately a Gaussian dis-

tribution [85], where the one-dimensional momentum width
σ t

k = √
MkBT /h̄ introduces a temperature T . Experimen-

tally, time-of-flight measurements of σx(t ) (B6) lead to the
momentum width σ t

k = (0.237 ± 0.015) kL of nt (E10) (cf.
Fig. 15) and temperature T = (20 ± 3) K. The horizontal trap
direction x′ = x cosφ, φ = 5.5◦ ± 1◦ differs slightly from the
beamsplitter direction x. However, the resulting difference
in the momentum width |σkx − σk′

x
| = 0.001 kL is negligible

within the uncertainty.
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