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Nonlinear Josephson-type oscillations of a driven, two-component Bose-Einstein condensate
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We propose an experiment that would demonstrate nonlinear Josephson-type oscillations in the relative
population of a driven, two-component Bose-Einstein condensate. An initial state is prepared in which two
condensates exist in a magnetic trap, each in a different hyperfine state, where the initial populations and
relative phase between condensates can be controlled within experimental uncertainty. A weak driving field is
then applied, which couples the two internal states of the atom and consequently transfers atoms back and forth
between condensates. We present a model of this system and investigate the effect of the mean field on the
dynamical evolution[S1050-29479)50801-9

PACS numbg(s): 03.75.Fi, 05.30.Jp, 32.80.Pj, 74.50.

An interesting property of a weakly interacting Bose- and damps out to a stationary situat[@i]. After applying a
Einstein condensate is that it can be ascribed an overall phaseconds/2 pulse, the authors observed a well-defined rela-
that can be measured relative to another conderjdatg].  tive phase that persists even beyond these damped oscilla-
This is a quantum-mechanical effect exhibited on a macrotions[7,21].
scopic scale. Some recent experiments on Bose-Einstein con- In light of this observed “phase rigidity,” we envision the
densation(BEC) in dilute alkali-metal vapors have investi- following experiment. An initial stationary state is first pre-
gated the relative phase of two overlapping condensates. Fpared as described above by applying a short drive pulse that
example, in the experiment reported in R, interference  produces condensates in bdth—1) and|2,1) states with
fringes in the density of two overlapping condensates wer&nown populations. When the transient relative motion has
observed. More recently, the authors of Ref] measured damped out, the two condensates each sit in different shifted
the relative phase of two condensates in different hyperfinbarmonic traps due to their different magnetic moments, with
states using a technique based on Ramsey’s method of se@a overlap region that can be controlled experimentally. A
rated oscillating field$8]. weak driving field that couples these two internal states is

A classic experiment that investigates the role of coherthen applied so that the condensates are coupled in the over-
ence on the dynamical evolution of two coupled macroscopit¢ap region. The time at which this sustained drive is turned
guantum systems is the Josephson-junction experiment, ion determines the initial relative phase accumulated by the
which a superconducting current of Cooper pairs exhibitszondensates, which is measured relative to the accumulated
coherent oscillation§9]. There have been several proposalsphase of the driving field7]. Oscillations in the relative
suggesting an analogous experiment in the context of thpopulation will occur, which depend on the initial relative
more recent work being conducted on BEC of dilute atomicphase and populations, and will exhibit nonlinear behavior
gaseqg10-19. One can imagine preparing two initially iso- due to the mean field.
lated condensates in a double-well potential and then lower- The true system described in Refg] and[21] has axial
ing the central barrier to allow coupling between condensatesymmetry, with the two components separated alongzthe
to arise from tunneling. One could then observe the time ratexis. We simplify the problem by treating the system in only
of change of the relative population, which is the analogou®ne dimension along the axis. We make another simplifi-
quantity to the current of Cooper pairs in the usualcation by treating temperature zero and neglecting the fluc-
Josephson-junction experiment. Further interesting effecttiations about the mean field that would give rise to damp-
could then also be studied, such as the nonlinear effect of thiag.
mean field on the system’s behav[d#4,16]. In order to simplify our notation, we label the hyperfine

We propose a different experiment that would exhibitstates ag2)=|2,1) and|1)=|1,—1). In the presence of a
much the same physics as in the proposed double-well turweak external magnetic field these hyperfine states are sepa-
neling experiment but is based on the work done recently omated in frequency byw,. The system is driven by a two-
two-component condensates, where two different hyperfinphoton pulse, the strength of which we characterize by the
states can be populated and confined in the samd%rap—  two-photon Rabi frequency2, which we take to be real-
22]. We restrict our attention to the situation described invalued. We label the frequency of the two-photon drive by
Refs.[7] and[21] where the authors trapped and coofé8b  wy, which can be varied to give a finite detunidy wy
atoms in a magnetic trap below the critical point for BEC. — w,. In the following we have made the rotating-wave ap-
The trapped atoms were initially in tHé=1,m;=—1) hy-  proximation by dropping the high-frequency terms in the
perfine state, but after condensation tiie2m;=1) state  atom-field interaction. Finally, we assume that both states
could be populated through a two-photon transition. Afterhave a long lifetime compared to the period of the trap.
this first /2 pulse, which lasts a fraction of the period of the  After making the above approximations, we carried out
trap, the relative motion of the two condensates oscillatestandard mean-field theory on this coupled, two-component
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system to obtain the following equations for the time evolu- The first term in Eq(4) arises from the difference in the

tion of the condensates in the rotating frame: shifted harmonic traps, which is just linear i This term
acts as a time-dependent detuning. As population is trans-
[\ [HI+HYF-512 Q s ferred from one condensate to the other, the position of the
. |= Q HO+ HMF 4 872 ( y ) . ) 0\_/erlap region changes due to the mean-field repulsion. This
L4 11 ! will cause the system to move in and out of resonance re-

sulting in a suppression of the transfer of atoms. The second
term comes from the difference in mean-field interactions

and would vanish if all three scattering lengths were exactly

degenerate, which can be seen from

The frequency of each trap is,. We work in the “natural”
units of the problem, so that time is in units ofcl,/, energy
is in terms of the trap level spacirgw,, and position is in
units of the harmonic-oscillator leng#y,,= V#/Mgp w,. The

complex functionsy;(z,t) are the mean-field amplitudes of HYF— HMF= (N 50— N o) | 2]

each condensate, where 1,2. They are normalized to give

the populationd\;(t), where the total numbéi=N,+N; is — (N Mo ¥l? . )
constant.

In order to make a link to the standard dc Josephson ef-
fect, we must make some approximations in order to put Eq.
(1) in a simpler form. For a very weak couplinfl&1) and
an initial state that is the self-consistent solution of the un-

1 1 coupled system, we can make the ansafz(z,t)
H?:§p2+ Szt 20)%, = N;(t)e'%(d,(z). Here we put the explicit time depen-
dence into the populatioN; and the phase, of each con-
2 densate, while putting the spatial dependence into an adia-
batic solution®;(z) to the undriven system

The Hamiltonians appearing in E¢l) describe the free
evolution H? and the mean-field interactiod" for each
component

HMF=Niil g2+ Nl ]2

where y;=1 andy,=—1, andz, is the shift of each trap (HQ+HMF)¢_(Z):M_®_(Z) 6)
from the origin. The mean-field strength is characterized by o R
Nij=aj; /Zsno, Which depends on the scattering lengihof  where y; is the chemical potential for each condensate and
the collision. In general there will be three different values,the solutionsb;(z) are taken to be real. The chemical poten-
one for each type of collision in this two-component gas:ijg|s w; and functions®;(z) vary slowly in time, being
az2,811,821- _ _ ) “slaved” by the populations.

Before presenting results from numerical calculations of |t \we substitute this ansatz into Eq¢l), we obtain the

Eq. (1), it is useful to obtain two different forms of E4l)  following equations of motion for the relative population
that link this problem to two well-known physical systems in — (N,—N,)/N and the relative phasg=(p,— é1):

the literature: the standard Rabi problem in quantum optics
[23], and the Josephson-junction problem in condensed- 7=—k(1— 72)Y%sin ¢,
matter physic$9]. %
We obtain the equations of motion for the populatidhs Y o oy
and the coherencel;; = fdz ¢ (2)¢;(z) from Eq. (1) by =~ L(uz=pa) = 81+ (1= 77) " cosg,
forming the appropriate products and integrating over spacgnerek =2 Qfdz®,(2)®,(z) is proportional to the overlap
to yield of the condensates and so also varies slowly in time. These
) are nonlinear versions of the usual Josephson-junction equa-
No=—i1Q (N2 =Ny, tions[9] and are nearly identical in form to those obtained in
_ Refs. [16] and [17] describing the double-well tunneling
N;=+iQ(Ny;—Nyo), (3)  problem. The major difference is that in the double-well trap,
the condensates are well separated, allowing the authors in
Noy=—i & Npy+iA(t) =i Q(N,—Ny), Refs.[lﬁ] and[17] to peglect the mean fi_eld in the interac-
tion region of the barrier. In contrast, the interaction between
where we define the time-dependent tefrft) as condensates due to their significant overlap plays an impor-
tant role in the evolution of the system described in this
paper. In particular, it is this mutual interaction that causes
A(t)=—2z4 f dz zp5(2) 1(2) the system to move out of resonance.
We now show some results of calculations of both the
+J dZ(HYF— HYF) % (2) 1 (2) @ exact solution given by Ed1) and the approximate solution
2 17%2 ner given by Eq.(7). The main purpose of the present calcula-
tions is to use realistic parameters to investigate the effect the
The equations in Eq3) resemble the Bloch equations de- mean field has on the evolution of the system. These param-
scribing an undamped, driven two-level atp23]. However, eters are listed in Table I.
because the center-of-mass motion is correlated to the inter- In Fig. 1 we show four curves that are described in the
nal states of the atom, the extra terkft) appears, which caption. As a point of reference, we plot the solution of Eg.
includes the difference in external potentials between the tw¢l) with the mean-field terms set to zero. This is the standard
states. Rabi solution, but here the Rabi frequency is givenday
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TABLE .I. The values 'used for the various physicgl parameters t=0.0 t=7.0 t=14.1
appearing in our calculations are shown. The scattering lengths are N i R
taken from Ref[21]. Since we are treating the system in one di- PR P P
mension,N is not the actual population, but has been chosen to N ' N ' ':' \
produce a realistic mean-field interaction fox 80° atoms[7]. / \ ; < ; '\
@
N 2.3x 10 v, 60 Hz 3 t=211 t=282 t=352
c— l\
an 5.5(3) nm Q27 1/20v, 5 S R
az 0.97ay, Zeho 1.4 um > ¢ . J
= 1 : Al \
ajq 1.03321 Zy 0'1&Sh0 % Il “‘ " ‘\ " \‘
el
t=42.3 t=49.3 t=56.4
=2Q [dz®,(2)P4(2), which includes the Frank-Condon-type . RA R
overlap of the condensate wave functions. However, when H / /
. . . . \ [ ’ \
we turn on the mean-field interaction using the parameters ;N Y ' !
. . . L > ! N / ~
glygn in Table '|, and sep=—0.39 so that thg system Is 7385 0357-7385 0 35 7-735 0 35 7
initially being driven resonantly, the amplitude is suppressed Z (Zgno)

and the frequency has increasgle dashed line As ¢(0)
is decreased, the amplitude increases, as illustrated by the FIG. 2. Plot showing the time-evolution of the density of each
solid curve wherep(0)=3/16. Also, asp(0) is decreased, componer)t. Thex axis is the positiorz, and the tlmgt (?f each .
the presence of higher harmonics becomes stronger, as Oﬁ%apshot is shown_. Th_ls case corresponds to the solid line plotte_d in
can see in the shape of the solid line. F|g 1. Th_e detpnlng i$$=—0.39, chosen so that the system is
We also plot the adiabatic solution given by Eg) for ~ Mitially being driven on resonance.
the case@(0)=3#/16 (the dotted ling where Eq.(6) is
solved self-consistently in each time step. In this case th@xis, which should imply a more stringent criterion for adia-
adiabatic solution agrees quite well with the exact solutiorPaticity than in the one-dimensional case considered.
(solid line) given by Eqg.(1). The validity of the two-level, We plot a snapshot evolution of the densities of the con-
adiabatic solution depends on the structure of the evolvinglensates in Fig. 2 in order to show that the effect of the mean
spectrum of this nonlinear system. In particular, one musfield is to push the system out of resonance as population is
compare the time rate of change of the Hamiltonian to thdransferred between condensates. The case considered in Fig.
spacing between the instantaneous eigenmodes of th&corresponds to the solid line in Fig. 1. The detuning was
dressed basif24]. These quantities will depend on the size chosen so as to compensate for the initial value of the term
of the mean-field interaction, the strength of the coupling,A(0) in Eqg.(3), which represents the difference in external
given by 20 [dzW¥,(z)¥,(z), and also on the detuning) It potentials, so that initially the system is being driven on reso-
should also be noted that, in the true system, the confiningance. However, as the system evolves, the first term in Eq.
potential along thexy plane is weaker than that along the (4) gets larger since thil) condensate is pushing th2)
condensate away from the center of the trap. This causes the
region of overlap to be displaced from the origin so that the

c
L
k-
3
a K]
2 2
kS 8
[J] ©
2
= ©
s °
=
1 ‘ 2| I I : I 7
0 5 5 5 tim3e5 R /0)35 565 65 5 § . § .
-1 ; . ; ; ; ; i
FIG. 1. Plot showing oscillations of the relative population. The 05 15 25 tim3e5 (1/0)35 5% 6 75
dashed-dot line corresponds to the case where the mean-field inter-
action has been set to zero, the initial relative phasg()= /2, FIG. 3. Plot showing that the effect of the displacemepbn

and 6=0. The dashed line is for the same initial relative phase ofthe system is to suppress the amplitude of oscillation. The four
«/2, but with the mean-field interaction turned on afrd —0.39.  curves represent increasing valueggf0 (solid), 0.1 (dashed, 0.2

The solid line is for¢(0)=37/16 andd=—0.39. The three lines (dash-dottel and 0.5(dotted. In each case, the detunidjs cho-
described are solutions of E¢l), whereas the dotted line is a sen so that the system is initially being driven resonantly, and the
solution of Eq.(7) with the same parameters as for the solid line. initial phase is¢(0)= 7/2.
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system is no longer being driven on resonancetAtli4.1  the time-dependent detuning due #o(t) has a stronger
the region of overlap is centered at abast 1.5, at which ~ effect. ) )
time |A(t)/Nyy(t)|=0.63, compared to the initial value In this paper we have desc_rlbed a physical system based
|A(0)/N,(0)] =0.39. This reduces the effectiveness of the®" (e éxperiments reported in Ref0,21,7 that would

: . . xhibit nonlinear Josephson-like oscillations in the relative
dr|v_e a.nd gccounts fqr the suppression of _the .ampl|tude 0gopulation between a driven two-component condensate.
oscillation in the relative population plotted in Fig. 1. From our calculations we have observed the effect of the

In Fig. 3 we vary the displacememy, for four different  mean field, which acts to suppress the transfer of atoms be-
values. The amplitude and period of oscillation both decreasgveen overlapping condensates in separated harmonic traps
as the displacement between the traps is made larger, whind gives rise to nonlinear oscillations in the relative popu-
the overall shape does not vary much. In other words, théation. We have also found that, for equal populations ini-
effective detuning caused by (t) becomes more pro- tially 7(0)=0, the spectrum of Fourier components com-
nounced for larger trap displacements. There is another efrising the oscillation depends on the initial relative phase
fect of increasing: the region of overlap between the con- #(0)

densates decreases as the traps are pulled apart, which\ye would like to thank Marilu’ Chiofalo for helpful dis-

weakens the coupling. One might expect the period of oscilcussions. We also thank the National Science Foundation for
lation to increase in this case; however, the plot displays #unding this work. E.C. would also like to thank the Office of
decreasing period ag, is increased. This indicates that Naval ResearcfONR) for funding.
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