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Nonlinear Josephson-type oscillations of a driven, two-component Bose-Einstein condensate
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We propose an experiment that would demonstrate nonlinear Josephson-type oscillations in the relative
population of a driven, two-component Bose-Einstein condensate. An initial state is prepared in which two
condensates exist in a magnetic trap, each in a different hyperfine state, where the initial populations and
relative phase between condensates can be controlled within experimental uncertainty. A weak driving field is
then applied, which couples the two internal states of the atom and consequently transfers atoms back and forth
between condensates. We present a model of this system and investigate the effect of the mean field on the
dynamical evolution.@S1050-2947~99!50801-9#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj, 74.50.1r
e-
ha

ro
co
i-
. F

er

fin
e

e
p
t,
it

al
th
i

-
e
t

ra
ou
a
c

f t

bi
tu
o

fin

in

C

te
e
te

la-
cilla-

e
-
that

as
fted
ith

. A
is

ver-
ed
the
ated

e
ior

e
ly

-
uc-
p-

e

epa-
-
the

by

p-
he
tes

ut
ent
An interesting property of a weakly interacting Bos
Einstein condensate is that it can be ascribed an overall p
that can be measured relative to another condensate@1–5#.
This is a quantum-mechanical effect exhibited on a mac
scopic scale. Some recent experiments on Bose-Einstein
densation~BEC! in dilute alkali-metal vapors have invest
gated the relative phase of two overlapping condensates
example, in the experiment reported in Ref.@6#, interference
fringes in the density of two overlapping condensates w
observed. More recently, the authors of Ref.@7# measured
the relative phase of two condensates in different hyper
states using a technique based on Ramsey’s method of s
rated oscillating fields@8#.

A classic experiment that investigates the role of coh
ence on the dynamical evolution of two coupled macrosco
quantum systems is the Josephson-junction experimen
which a superconducting current of Cooper pairs exhib
coherent oscillations@9#. There have been several propos
suggesting an analogous experiment in the context of
more recent work being conducted on BEC of dilute atom
gases@10–19#. One can imagine preparing two initially iso
lated condensates in a double-well potential and then low
ing the central barrier to allow coupling between condensa
to arise from tunneling. One could then observe the time
of change of the relative population, which is the analog
quantity to the current of Cooper pairs in the usu
Josephson-junction experiment. Further interesting effe
could then also be studied, such as the nonlinear effect o
mean field on the system’s behavior@14,16#.

We propose a different experiment that would exhi
much the same physics as in the proposed double-well
neling experiment but is based on the work done recently
two-component condensates, where two different hyper
states can be populated and confined in the same trap@7,20–
22#. We restrict our attention to the situation described
Refs.@7# and@21# where the authors trapped and cooled87Rb
atoms in a magnetic trap below the critical point for BE
The trapped atoms were initially in theu f 51,mf521& hy-
perfine state, but after condensation theu f 52,mf51& state
could be populated through a two-photon transition. Af
this firstp/2 pulse, which lasts a fraction of the period of th
trap, the relative motion of the two condensates oscilla
PRA 591050-2947/99/59~1!/31~4!/$15.00
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and damps out to a stationary situation@21#. After applying a
secondp/2 pulse, the authors observed a well-defined re
tive phase that persists even beyond these damped os
tions @7,21#.

In light of this observed ‘‘phase rigidity,’’ we envision th
following experiment. An initial stationary state is first pre
pared as described above by applying a short drive pulse
produces condensates in bothu1,21& and u2,1& states with
known populations. When the transient relative motion h
damped out, the two condensates each sit in different shi
harmonic traps due to their different magnetic moments, w
an overlap region that can be controlled experimentally
weak driving field that couples these two internal states
then applied so that the condensates are coupled in the o
lap region. The time at which this sustained drive is turn
on determines the initial relative phase accumulated by
condensates, which is measured relative to the accumul
phase of the driving field@7#. Oscillations in the relative
population will occur, which depend on the initial relativ
phase and populations, and will exhibit nonlinear behav
due to the mean field.

The true system described in Refs.@7# and @21# has axial
symmetry, with the two components separated along thz
axis. We simplify the problem by treating the system in on
one dimension along thez axis. We make another simplifi
cation by treating temperature zero and neglecting the fl
tuations about the mean field that would give rise to dam
ing.

In order to simplify our notation, we label the hyperfin
states asu2&5u2,1& and u1&5u1,21&. In the presence of a
weak external magnetic field these hyperfine states are s
rated in frequency byv0. The system is driven by a two
photon pulse, the strength of which we characterize by
two-photon Rabi frequencyV, which we take to be real-
valued. We label the frequency of the two-photon drive
vd , which can be varied to give a finite detuningd5vd
2v0. In the following we have made the rotating-wave a
proximation by dropping the high-frequency terms in t
atom-field interaction. Finally, we assume that both sta
have a long lifetime compared to the period of the trap.

After making the above approximations, we carried o
standard mean-field theory on this coupled, two-compon
R31 ©1999 The American Physical Society
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system to obtain the following equations for the time evo
tion of the condensates in the rotating frame:

i S ċ2

ċ1
D 5S H2

01H2
MF2d/2 V

V H1
01H1

MF1d/2
D S c2

c1
D . ~1!

The frequency of each trap isvz . We work in the ‘‘natural’’
units of the problem, so that time is in units of 1/vz , energy
is in terms of the trap level spacing\vz , and position is in
units of the harmonic-oscillator lengthzsho5A\/mRbvz. The
complex functionsc i(z,t) are the mean-field amplitudes o
each condensate, wherei 51,2. They are normalized to giv
the populationsNi(t), where the total numberN5N21N1 is
constant.

The Hamiltonians appearing in Eq.~1! describe the free
evolution Hi

0 and the mean-field interactionHi
MF for each

component

Hi
05

1

2
p21

1

2
~z1g i z0!2 ,

~2!
Hi

MF5l i i uc i u21l i j uc j u2 ,

whereg151 andg2521, andz0 is the shift of each trap
from the origin. The mean-field strength is characterized
l i j 5ai j /zsho, which depends on the scattering lengthai j of
the collision. In general there will be three different value
one for each type of collision in this two-component ga
a22,a11,a21.

Before presenting results from numerical calculations
Eq. ~1!, it is useful to obtain two different forms of Eq.~1!
that link this problem to two well-known physical systems
the literature: the standard Rabi problem in quantum op
@23#, and the Josephson-junction problem in condens
matter physics@9#.

We obtain the equations of motion for the populationsNi

and the coherencesNi j 5*dzc i* (z)c j (z) from Eq. ~1! by
forming the appropriate products and integrating over sp
to yield

Ṅ252 iV~N212N12!,

Ṅ151 iV~N212N12!, ~3!

Ṅ2152 i d N211 iL~ t ! 2 iV~N22N1!,

where we define the time-dependent termL(t) as

L~ t !522z0 E dz zc2* ~z!c1~z!

1E dz~H2
MF2H1

MF!c2* ~z!c1~z!. ~4!

The equations in Eq.~3! resemble the Bloch equations d
scribing an undamped, driven two-level atom@23#. However,
because the center-of-mass motion is correlated to the in
nal states of the atom, the extra termL(t) appears, which
includes the difference in external potentials between the
states.
-
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The first term in Eq.~4! arises from the difference in th
shifted harmonic traps, which is just linear inz. This term
acts as a time-dependent detuning. As population is tra
ferred from one condensate to the other, the position of
overlap region changes due to the mean-field repulsion. T
will cause the system to move in and out of resonance
sulting in a suppression of the transfer of atoms. The sec
term comes from the difference in mean-field interactio
and would vanish if all three scattering lengths were exac
degenerate, which can be seen from

H2
MF2H1

MF5~l222l21!uc2u2

2~l112l21!uc1u2 . ~5!

In order to make a link to the standard dc Josephson
fect, we must make some approximations in order to put
~1! in a simpler form. For a very weak coupling (V!1) and
an initial state that is the self-consistent solution of the u
coupled system, we can make the ansatzc i(z,t)
5ANi(t)e

if i (t)F i(z). Here we put the explicit time depen
dence into the populationNi and the phasef i of each con-
densate, while putting the spatial dependence into an a
batic solutionF i(z) to the undriven system

~Hi
01Hi

MF!F i~z!5m iF i~z!, ~6!

wherem i is the chemical potential for each condensate a
the solutionsF i(z) are taken to be real. The chemical pote
tials m i and functionsF i(z) vary slowly in time, being
‘‘slaved’’ by the populations.

If we substitute this ansatz into Eq.~1!, we obtain the
following equations of motion for the relative populationh
5(N22N1)/N and the relative phasef5(f22f1):

ḣ52k ~12h2!1/2sinf,
~7!

ḟ52@~m22m1!2d#1kh ~12h2!21/2cosf,

wherek52 V*dzF2(z)F1(z) is proportional to the overlap
of the condensates and so also varies slowly in time. Th
are nonlinear versions of the usual Josephson-junction e
tions @9# and are nearly identical in form to those obtained
Refs. @16# and @17# describing the double-well tunnelin
problem. The major difference is that in the double-well tra
the condensates are well separated, allowing the autho
Refs. @16# and @17# to neglect the mean field in the intera
tion region of the barrier. In contrast, the interaction betwe
condensates due to their significant overlap plays an imp
tant role in the evolution of the system described in t
paper. In particular, it is this mutual interaction that caus
the system to move out of resonance.

We now show some results of calculations of both t
exact solution given by Eq.~1! and the approximate solutio
given by Eq.~7!. The main purpose of the present calcu
tions is to use realistic parameters to investigate the effect
mean field has on the evolution of the system. These par
eters are listed in Table I.

In Fig. 1 we show four curves that are described in t
caption. As a point of reference, we plot the solution of E
~1! with the mean-field terms set to zero. This is the stand
Rabi solution, but here the Rabi frequency is given byvR
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52V *dzF2(z)F1(z), which includes the Frank-Condon-typ
overlap of the condensate wave functions. However, w
we turn on the mean-field interaction using the parame
given in Table I, and setd520.39 so that the system i
initially being driven resonantly, the amplitude is suppress
and the frequency has increased~the dashed line!. As f(0)
is decreased, the amplitude increases, as illustrated by
solid curve wheref(0)53p/16. Also, asf(0) is decreased
the presence of higher harmonics becomes stronger, as
can see in the shape of the solid line.

We also plot the adiabatic solution given by Eq.~7! for
the casef(0)53p/16 ~the dotted line!, where Eq.~6! is
solved self-consistently in each time step. In this case
adiabatic solution agrees quite well with the exact solut
~solid line! given by Eq.~1!. The validity of the two-level,
adiabatic solution depends on the structure of the evolv
spectrum of this nonlinear system. In particular, one m
compare the time rate of change of the Hamiltonian to
spacing between the instantaneous eigenmodes of
dressed basis@24#. These quantities will depend on the si
of the mean-field interaction, the strength of the coupli
given by 2V *dzC2(z)C1(z), and also on the detuningd. It
should also be noted that, in the true system, the confin
potential along thexy plane is weaker than that along thez

FIG. 1. Plot showing oscillations of the relative population. T
dashed-dot line corresponds to the case where the mean-field
action has been set to zero, the initial relative phase isf(0)5p/2,
andd50. The dashed line is for the same initial relative phase
p/2, but with the mean-field interaction turned on andd520.39.
The solid line is forf(0)53p/16 andd520.39. The three lines
described are solutions of Eq.~1!, whereas the dotted line is
solution of Eq.~7! with the same parameters as for the solid lin

TABLE I. The values used for the various physical paramet
appearing in our calculations are shown. The scattering lengths
taken from Ref.@21#. Since we are treating the system in one
mension,N is not the actual population, but has been chosen
produce a realistic mean-field interaction for 53105 atoms@7#.

N 2.33104 nz 60 Hz
a21 5.5(3) nm V/2p 1/20nz

a22 0.97a21 zsho 1.4 mm
a11 1.03a21 z0 0.15zsho
n
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axis, which should imply a more stringent criterion for adi
baticity than in the one-dimensional case considered.

We plot a snapshot evolution of the densities of the c
densates in Fig. 2 in order to show that the effect of the m
field is to push the system out of resonance as populatio
transferred between condensates. The case considered in
2 corresponds to the solid line in Fig. 1. The detuning w
chosen so as to compensate for the initial value of the t
L(0) in Eq. ~3!, which represents the difference in extern
potentials, so that initially the system is being driven on re
nance. However, as the system evolves, the first term in
~4! gets larger since theu1& condensate is pushing theu2&
condensate away from the center of the trap. This causes
region of overlap to be displaced from the origin so that

er-

f

FIG. 2. Plot showing the time-evolution of the density of ea
component. Thex axis is the positionz, and the timet of each
snapshot is shown. This case corresponds to the solid line plotte
Fig. 1. The detuning isd520.39, chosen so that the system
initially being driven on resonance.

FIG. 3. Plot showing that the effect of the displacementz0 on
the system is to suppress the amplitude of oscillation. The f
curves represent increasing values ofz0: 0 ~solid!, 0.1 ~dashed!, 0.2
~dash-dotted!, and 0.5~dotted!. In each case, the detuningd is cho-
sen so that the system is initially being driven resonantly, and
initial phase isf(0)5p/2.
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system is no longer being driven on resonance. Att514.1
the region of overlap is centered at aboutz51.5, at which
time uL(t)/N21(t)u50.63, compared to the initial valu
uL(0)/N21(0)u50.39. This reduces the effectiveness of t
drive and accounts for the suppression of the amplitude
oscillation in the relative population plotted in Fig. 1.

In Fig. 3 we vary the displacementz0 for four different
values. The amplitude and period of oscillation both decre
as the displacement between the traps is made larger, w
the overall shape does not vary much. In other words,
effective detuning caused byL(t) becomes more pro
nounced for larger trap displacements. There is another
fect of increasingz0: the region of overlap between the co
densates decreases as the traps are pulled apart, w
weakens the coupling. One might expect the period of os
lation to increase in this case; however, the plot display
decreasing period asz0 is increased. This indicates tha
n
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the time-dependent detuning due toL(t) has a stronger
effect.

In this paper we have described a physical system ba
on the experiments reported in Refs.@20,21,7# that would
exhibit nonlinear Josephson-like oscillations in the relat
population between a driven two-component condens
From our calculations we have observed the effect of
mean field, which acts to suppress the transfer of atoms
tween overlapping condensates in separated harmonic
and gives rise to nonlinear oscillations in the relative pop
lation. We have also found that, for equal populations i
tially h(0)50, the spectrum of Fourier components com
prising the oscillation depends on the initial relative pha
f(0).
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