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A method for the experimental reconstruction of the quantum state of motion for a single trapped ion is
proposed. It is based on the measurement of the ground-state population of the trap after a sudden change of
the trapping potential. In particular, we show how theQ(a) function and the quadrature distributionP(x,u)
can be measured directly. In an example we demonstrate the principle and analyze the sensitivity of the
reconstruction process to experimental uncertainties as well as to finite grid limitations. Our method is not
restricted to the Lamb-Dicke Limit and works in one or more dimensions.

PACS number~s!: 42.50.Vk

The central entity of quantum physics is the density op-
erator r. It contains all measurable information about the
state of a system that can be obtained according to the prin-
ciples of quantum physics. Recent theoretical advances es-
tablished constructive procedures to recover the full informa-
tion about the state of a system from the repeated
measurement of a complete set of observables. From the ex-
perimentally detected probabilities
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one can determine the stater uniquely. Hereua& denotes a
coherent state andux,u& is a quadrature eigenstate. So far, the
underlying theory has been developed for finite-dimensional
discrete systems@1,2#, such as spin- or angular-momentum
states, as well as for continuous systems. This approach is
generally referred to as phase-space tomography@3#.

One of the most important and beautiful applications has
been the tomographic measurement of the Wigner function
for a single mode of the electromagnetic radiation field by
Raymer and co-workers@4# following the proposal by Vogel
and Risken@3#. It is based on a measurement of the quadra-
ture distributionP(x,u) with the help of a homodyne tech-
nique. On the other hand, theQ function has been measured
recently in various experimental schemes, using well-known
techniques of photodetection, together with related experi-
ments of phase measurement@5#.

Apart from cavity QED, a single trapped ion is one of the
other testing grounds for the intriguing features of quantum
mechanics@6# ~for other applications in the area of quantum
physics, see, for example, molecular spectroscopy@7# or im-
age reconstruction for matter waves@8#!. The motion of a
single trapped ion can be easily modified using laser light,
and decoherence in such a system can be made nearly neg-

ligible during long times. Using these properties, several pro-
posals have emerged dealing with the preparation of nonclas-
sical states of motion. Just recently, an observation of
nonclassical states, such as Fock states, and squeezed states
was reported@9#. Hence, the next step of research is to char-
acterize these states. Given the analogy between cavity QED
and a trapped ion interacting with a laser, one could imagine
that some techniques developed in the framework of cavity
QED can be immediately transcribed to the ion system. For
example, one can characterize the motional state by measur-
ing the evolution of the ion population inversion@10–13#.
Endoscopic techniques, for example, permit a complete state
detection if there is no statistical uncertainty in the state
preparation process. Unfortunately, this method does not al-
low us to recover the whole density matrix describing the ion
motion. Moreover, the mentioned analogy is only valid in the
Lamb-Dicke regime, whereby the motion of the ion is re-
stricted to a region smaller than a wavelength, which limits
the applicability of these methods. Thus, it would be desir-
able to have a method to recover the full information about
the motional state of an ion that is valid for more general
situations.

In this Rapid Communication we propose a realization of
a phase-space tomography to determine the motional state of
an ion in a harmonic trapping potential. In contrast to a re-
cent proposal@14# that addressed the same question, our
scheme is not restricted to the Lamb-Dicke regime and can
be extended easily to more than one spatial dimension. Fur-
thermore, an implementation of this idea is feasible with
present experimental setups. Specifically, we will present
procedures~i! to measure theQ(a) function, and~ii ! the
quadrature distribution functionP(x,u).

Our model consists of a single ion, trapped in a harmonic
potential oscillating with a frequencyn. The internal struc-
ture of the ion will be specified later in the context of the
measurement of the motional state. We use a density operator
r to describe this unknown state of the particle and represent
it in the Fock basis of the harmonic oscillator, i.e.,
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Let us first show how theQ function given in Eq.~1a! can
be measured experimentally. For this purpose, we reexpress
theQ function as

Q~a!5
1

p
^0ur̃u0&, ~3!

where

r̃5U~ uau,u!rU†~ uau,u!. ~4!

Here,U†(uau,u)5R†(u)D(uau) is the unitary transforma-
tion that is given by the displacement operator
D(a)5exp(aa†2a*a) and the phase shifting operator
R(u)5exp(2iua†a) that, acting on the vacuum, create a co-
herent statezuaueiu‹5U†(uau,u)u0&. As usual,a† anda de-
note creation and annihilation operators that obey
@a,a†#51.

According to Eq.~3!, one has to determine the probability
of the state represented byr̃ to be in the ground state of the
harmonic potential, in order to measure thisQ function. Note
that such a state is related to the originalr by the unitary
transformationU(uau,u). Consequently, the identification of
this transformation with a physical process would enable us
to measure theQ function. In the context of an ion trapped in
a harmonic potential, this identification is as follows. The
operatorR(u) corresponds to the free evolution, whereas
the operatorD(a) corresponds to a sudden displacement of
the harmonic trap. A pictoral representation of these opera-
tions in phase space is shown in Fig. 1~a!. Thus, in order to
measure theQ function in a trap, one simply has to perform
the following steps:~i! Wait a particular timet while the ion
evolves freely in the trap. This gives it the appropriate phase
shift according tou5nt. ~ii ! Suddenly displace the center of
the trap to the right for a distanced, so that
uau5Amn/2\d. ~iii ! Finally, measure the probability of the
ion to be in the lowest motional stateu0&.

To achieve this last step, one may use the internal struc-
ture of the ion. Typically, it consists of three levelsug&,
ue&, andur &, whereug&→ur & is a dipole-forbidden transition
or Raman transition, whereasug&→ue& is a dipole-allowed
transition. Initially, the ion is in the internal ground state
ug&. After step~ii ! a laser beam is tuned to the lower side-
band of theug&→ur & internal transition. One can then trans-
fer completely the population of the ground statesun,g&
~with n51,2, . . . ) to theexcited statesun21, r & coherently
as described in Ref.@15# by an adiabatic sweep of the laser
frequency. After this population transfer one can switch on
another laser, this time on resonance with the transition
ug&→ue& @see Fig. 1~c!#. The appearance of fluorescence in-
dicates the presence of population in theu0,g& state. One can
repeat the same sequence of steps in order to determine the
probability of the ion being in the ground state. An alterna-
tive ~more sophisticated! way of measuring this probability
may be achieved by detecting the collapses and revivals in
the population inversion, since this technique provides the
whole population of the Fock states@10#.

Up to now, we have not addressed the question of the final
reconstruction of our state from the experimental data of the
Q function that is obtained in this manner. In principle, one
could use the method@16# that relates this function to the
matrix elementsrn,m . This is, however, impractical, since it
requires thenth andmth derivatives of theQ function, i.e.,
knowledge of them over a continuous interval. Another pos-
sibility would be to assume thatrn,m50 for n,m.nmax, for
a givennmax. The measurement ofQ(a i) for nmax

2 ~indepen-
dent! values ofa i would allow us to findrn,m by simple
matrix inversion. This procedure is also of limited usefulness
since small deviations from the exact values of theQ func-
tion ~such as experimental uncertainties! give large errors in
the reconstruction. This is due to the fact thatQ is the
smoothest function of alls-parametrized quasidistributions.

An alternative way of reconstructing the state of a quan-
tum system is by means of quantum tomography. Tomogra-
phy is an experimental tool used in several areas of research
that allows us to reconstruct an unknown object from mea-
sured data. In the context of quantum physics, the data we
will have to measure are the so-called quadrature distribution
functions given by Eq.~1b!, whereux,u&5R†(u)ux& is the
eigenstate of the operatorx̂(u)5R†(u) x̂R(u), with eigen-
valuex ( x̂ is the dimensionless position operator of the har-
monic oscillatormn/\→1). This distribution is equivalent
to that given by the marginal distribution for quadrature
components using the Wigner-function description of the
state@5#.

Our scheme for the measurement ofP(x,u) is based on
the well-known property of the squeezed states,

ux,u&5 lim
ueu→`

N eua,e&, ~5!

whereua,e&5D(a)S (e)u0&, S (e)5exp@(e*a22ea†
2
)/2# is

the ‘‘squeeze’’ operator, e5ueue2iu, and a5xeiu/A2
(0<u,p). As proper position eigenstates are not nor-
malizable, there is a constant of proportionality
N e5@exp(2ueu)/(4p)#1/4 that increases with the degree of
squeezing. As before, we can use these states to reexpress the
quadrature distribution in the form

FIG. 1. Phase-space representation of the operations~phase
shifting, displacement, and squeezing! required to measure~a! the
Q(a) function and~b! the quadrature distribution;~c! level scheme
and laser configuration for the detection of the trap ground-state
population.
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P~x,u!5 lim
ueu→`

uN eu2^0ur̃u0&. ~6!

Here

r̃5U~ ueu,uau,u!rU†~ ueu,uau,u!, ~7!

whereU†(ueu,uau,u)5R†(u)D(uau)S (ueu) denotes the op-
eration that creates a squeezed state, and we furthermore use
the propertyS (e)5 R†(u)S (ueu)R(u). Thus, to measure
the quadrature distribution one has to find the physical pro-
cesses that correspond to the unitary operatorsR, D , and
S . The first two are the same as those needed for the experi-
mental determination of theQ function. On the other hand, it
is well known that sudden changes in the frequency of a
harmonic oscillator lead to squeezed states, a process that
can be readily achieved in a trap, just opening or closing the
harmonic potential@17#. In particular, changing the trap fre-
quency fromn to n8 leads to a squeezing parameterueu
51

2ln(n/n8).
Thus, in order to measure the quadrature distribution in

our trap one has to follow these four steps.~i! Wait for a time
t, such asu5nt. ~ii ! Perform a sudden displacement of the
center of the trap to the right a distanced, so that
uau5Amn/2\d. ~iii ! Change the trap frequency instanta-
neously fromn to n8. ~iv! Determine the population of the
motional ground state. Note that the steps~i!, ~ii !, and ~iv!
are the same as before.

We are now in position to extract the full information
about the unknown quantum state starting from the quadra-
ture distribution. This can be done as in the case where one
measures the quantum state of light by means of balanced
homodyne detection. As has been shown by Vogel and
Risken @3#, one can reconstruct the Wigner function
W(x,p) by means of the so-called inverse Radon transfor-
mation. Alternatively, one can use one of the algorithms that
have been developed for reconstructing the density matrix
directly from discrete measured data@18#.

To illustrate this procedure, we have numerically simu-
lated the reconstruction of a quantum state. We assumed that
the system is prepared initially in a ‘‘Schro¨dinger-cat’’ state
of the form

uC&5
1

A2~11e22uau2!
~ ua&1u2a&), ~8!

where ua& is a coherent state. This is a highly nonclassical
state, and can be easily produced in the trapped ion system
@19#. In Fig. 2 we plot the real part of the reconstructed
matrix elementsrn,m corresponding to the initial state Eq.
~8! with a51.5. We have taken the values ofP(x,u) for a
set of points (xi ,u j ) and with a finitee. Starting from these
data we have reconstructed the statern,m using the algorithm
of Leonhardtet al. @20#. We have selected a uniform grid of
Nx points corresponding to values ofx ranging between
64@\/(mn)#1/2, and a uniform grid ofNu points for
0<u,p. Figure 2~b! corresponds to a squeezing parameter
ueu52 and a gridNx3Nu530330 points. The reconstructed
state is indistinguishable from the original one. We have
checked that even forueu51 the obtained state is remarkably
similar to the original one. We have also tested the depen-

dence of the reconstruction on the number of grid points. In
Fig. 2~b! we have taken a grid ofNx3Nu530315 points,
keeping the squeezing parameterueu52. In this case, the
reconstruction is also quite faithful. Reducing the number of
grid points causes small residual background structures. On
the other hand, reconstructing density operators that involve
higher Fock states~increasinga) requires an increased range
of x values and a larger number of grid points, since it is
necessary to resolve the oscillatory behavior of these states.
Finally, in a real experiment one cannot measure the prob-
ability distributionP(xi ,u j ) with arbitrary precision, due to
the fact that the number of measurements is always finite. We
have simulated the statistical error caused by the finite sam-
pling number by truncating the values ofP(xi ,u j ) to one
decimal digit. That is, we have approximated each of the
exact values by one of the following numbers
0.0, 0.1,. . . ,1.0. The results of this simulation are shown in
Fig. 2~c!. In this case, the grid size is again
Nx3Nu530330 points, andueu52. The reconstruction still
resembles the original one even in the presence of these un-
certainties. Therefore, it would be enough to perform about
100 measurements per grid point to obtain the density ma-
trix. Obviously, states with a larger phonon number will re-
quire more measurements.

In summary, we have presented a scheme to measure the
quantum state of motion for a single ion confined in a har-
monic potential~statistical mixtures as well as pure states!. It
is based on the detection of the ground-state population of
the trap after a sudden change of the trapping potential. We
wish to emphasize that the effect of a sudden displacement of
the trap center and a sudden opening of the trap can be ob-

FIG. 2. Real part of the reconstructed density-matrix elements
rn,m
R for a ‘‘Schrödinger-cat’’ state with a51.5: ~a!
Nx3Nu530330 andueu52; ~b! Nx3Nu530315 andueu52; ~c!
same parameters as in~a!, but withP(x,u) rounded to one decimal
digit.
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tained ~in principle! by a single noninstantaneous process
that yields the same symplectic phase-space transformation.
Moreover, these two operations can be mimicked using Ra-
man pulses with two lasers of frequencies differing byn and
2n, respectively@9,21#. Note, however, that in this case the
scheme only works in the Lamb-Dicke limit. Finally, it is
straightforward to generalize the schemes presented here to
measure the quantum state of motion in two and three spatial

dimensions. This can be done by moving and opening the
trapping potential along different directions.
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