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Memory effects and conservation laws in the quantum kinetic evolution of a dilute Bose gas

S. G. Bhongale, R. Walser, and M. J. Holland
JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440

~Received 15 March 2002; published 25 October 2002!

We derive a non-Markovian generalization to the quantum kinetic theory described by Walseret al. @Phys.
Rev. A 59, 3878 ~1999!# in the absence of a condensed fraction for temperatures above the Bose-Einstein
condensation temperature i.e.,T.Tc . Within this framework, quasiparticle damping arises naturally due the
finite duration of a binary collision and it leads to a systematic Markov approximation from the non-Markovian
Born theory. Such a self-consistent theory conserves the total energy to second order in the interaction strength.
By introducing an improved damping function, we demonstrate global energy conservation at the order of the
perturbation theory. Finally, we apply this kinetic theory to a simple model of an inhomogeneous Bose gas that
is confined in a spherical box. By studying numerically the real-time quantum evolution towards equilibrium,
we obtain damping rates and frequencies of the collective modes and illustrate the emergence of differing time
scales for correlation and relaxation.
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I. INTRODUCTION

In the mean-field approximation, a Bose-condensed ph
is well described by the Gross-Pitaevskii~GP! equation@1#.
Examples of collective phenomena that arise at the me
field level include the formation of vortex states@2–6# and
collective excitations@7–9#. In this context, the GP equatio
is often sufficient to describe the dynamics atT50. How-
ever, at finite temperatures, 0,T,Tc , it is important to in-
clude effects due to the presence of a thermal compon
These thermal, noncondensed atoms interact mutually
with the condensed atoms via binary collisions. In fact,
collisional dynamics is the microscopic mechanism
evaporative cooling and it leads to Bose-Einstein conden
tion ~BEC!. Finite temperature effects are also responsi
for phenomena such as phase diffusion and damping of
lective excitations. In order to describe these effects, the
clusion of collisions due to the thermal component becom
essential. A generalized GP equation, for example
Hartree-Fock-Bogoliubov approach, includes the effects
collisions only indirectly through their energy shifts an
hence is valid only at very low temperature~collisionless
regime!.

In the other limit,T.Tc , the condensate component
absent and the thermal component completely determine
dynamics. This limit is well described by the quantum
Boltzmann ~QB! equation. Thus, a nonequilibrium kinet
theory, which interpolates between the GP and the QB lim
corresponding toT50 andT.Tc , respectively, is necessar
to provide such a complete description.

Currently, there exist a number of kinetic theories inclu
ing those based on quantum stochastics@10,11#, the Fokker-
Planck equation@12#, generalized single-time master equ
tions @13–15#, a semiclassical hydrodynamic approa
@16,17#, and a Green’s-function approach@18–20#. However,
obtaining explicit solutions for the nonequilibrium dynami
has remained a challenge. In particular, the conden
growth dynamics is still a very active area of resea
@21,22#. More recently, Monte Carlo simulations have pr
vided an alternative approach to the solution of nonequi
1050-2947/2002/66~4!/043618~11!/$20.00 66 0436
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rium master equations@23–26#. In particular, Jackson and
Zaremba@26# have shown good agreement with experime
tal observations of decay rates and frequencies. Howe
Monte Carlo approaches suffer from the simulation no
that can lead to a spread in the value of quantities that sh
be exactly conserved. Also the theory as formulated can o
be applied to situations in which the anomalous pair corre
tions are not important~Popov approximation!. Under cer-
tain conditions, typically when the interactions are stron
anomalous densities can play a significant role. This was
case, for example, in the recent observation of Ramsey-
oscillations@27# and their subsequent theoretical explanat
@28#.

Energy conservation in theories with Boltzmann-type c
lision integrals is typically enforced by requiring exact e
ergy conservation in each individual collision event. From
fundamental perspective this is unsatisfactory as it would
preferable if energy conservation would arise intrinsica
from the theoretical formulation. The essential point is th
such an approach would allow off-the-energy-shell collisi
events as long as energy is conserved overall. In prac
this requires including effects arising from the finite durati
of a collision and quasiparticle damping.

Another issue for consideration is the question of M
kovian versus non-Markovian dynamics in an inhomog
neous system. Even though, for a dilute Bose gas, mem
effects can be neglected under the principle of rapid atte
ation of correlations, non-Markovian behavior is intricate
related to the conservation properties@29–33#. For example,
the Markovian-Boltzmann type kinetic equations derived
Walseret al. @34# conserves energy only to first order@35#.
Previous attempts to address this issue have been limite
the discussion of systems with translational symme
@36,37#.

In this paper, we generalize the kinetic theory derived
Ref. @34# in order to address the problems discussed abo
Presently, we limit our goal to the derivation of a systema
Markov approximation from the non-Markovian Born theo
by including finite duration effects and quasiparticle dam
ing. Using the short- and long-time behavior of the two-tim
©2002 The American Physical Society18-1
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Green’s function, we obtain a damping function that giv
improved energy conservation to second order in the per
bation parameter.

We apply this theory to a simple model of an inhomog
neous Bose gas confined in a spherical box aboveTc with
discrete basis states. The usual Born-Markov theory give
d-function energy conservation that for any interacting s
tem will result in only exchange collisions. Therefore intr
ducing finite duration effects facilitates the calculation
relaxing the energy-conservation condition. The simplicity
this model allows us to study the real-time evolution of t
system from some initial state to a final state of equilibriu
We perform a linear-response calculation to study the sta
ity and damping rates for the steady-state solution. A ca
lation on similar lines with a more realistic model of a ha
monic trapping potential and nonvanishing condensatea)
and pair-correlation (m̃) components will ultimately make
comparison with experimental observations of the freque
and damping rates of collective excitations possible. T
will be discussed in a forthcoming paper@38#.

This paper is organized as follows. In Sec. II, we deriv
non-Markovian generalization to the kinetic theory of R
@34# using the prescription of a nonequilibrium statistical o
erator method@39#. Both quasiparticle damping and dampin
arising from the finite time of collision events are discuss
in Sec. III. This has implications for the underlying symm
tries of the theory and their associated conserved quanti
In Sec. IV, we apply this generalized kinetic theory to
simple model of an inhomogeneous dilute Bose gas confi
in a spherical box and obtain a self-consistent steady-s
solution to the second-order kinetic theory. Finally in Sec.
we study the response of the system to a small perturba
This allows us to determine the frequencies and damp
rates of collective modes.

II. KINETIC EQUATIONS

We start with the many-body Hamiltonian for a weak
interacting Bose gas given by

Ĥ5Ĥ (0)1Ĥ (1), ~1!

whereĤ (0) is the single-particle Hamiltonian that is define
as

Ĥ (0)5«12 â1
†â2 , ~2!

using the implicit summation convention for repeated in
ces. The two-body energyĤ (1) is given by

Ĥ (1)5f1234 â1
†â2

†â3â4 . ~3!

The bosonic operatorsâ1 andâ1
† annihilate and create a pa

ticle in a single-particle stateu1&, respectively. The abbrevi
ated notationu1& represents a state specified by a compl
set of quantum numbers for both the motional and electro
degrees of freedom.
04361
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We assume that the particles are confined by an exte
trapping potentialVext. Thus, the matrix elements of th
single-particle Hamiltonian are given by

«125^1u
p̂2

2m
1Vext~ x̂!u2&, ~4!

wherem is the mass. The binary interaction is mediated b
short-range repulsive potentialVbin . This gives the symme-
trized (S) matrix elements

f12345~S!^1u ^ ^2uVbin~ x̂^ 121^ x̂!u3& ^ u4&. ~5!

In the low-energy limitVbin can be approximated by a con
tact potential with the matrix elements given by

f1234'
V0

2 E
2`

`

^1ux&^2ux&^xu3&^xu4& d3x. ~6!

The interaction strengthV0 is related to the scattering lengt
as by V054p\2as/m.

Here, we use the well-known nonequilibrium statistic
operator method@39,40# to obtain an explicitly non-
Markovian version of the kinetic theory@34#. In this ap-
proach, the nonequilibrium state of a weakly interacti
quantum gas is specified by a set of single-time master v
ables. For our system, the most important master variab
the single-particle density matrixf (t),

f 12~ t !5^â2
†â1&5Tr$â2

†â1 s~ t !%, ~7!

where^•••&5Tr$•••s(t)% ands(t) is the statistical many-
body density operator. We focus our studies on the temp
ture regime above and in the close proximity to the critic
temperature for BEC. For this reason, we do not consi
either symmetry breaking fields^â1&, or the anomalous fluc-
tuations ^â1â2&. We therefore define$ĝ051,ĝk5â2

†â1uk
P$(1,2)%% as our complete set of relevant operators. T
expectation values of these operators,gk(t)5^ĝk&, are the
only quantities that will appear in the final kinetic equation

The time evolution of the nonequilibrium statistical o
erator s(t) is described by the Liouville equation with a
extra source term on the right-hand side:

d

dt
s~ t !1

i

\
@Ĥ,s~ t !#52h „s~ t !2s (0)~ t !…. ~8!

Such a source term breaks the time-reversal symmetry o
Liouville equation and represents a convenient way to inc
porate the irreversible character of macroscopic proces
We will see later that this procedure leads to finite durat
of collision effects and quasiparticle damping. The relev
distributions (0)(t) given by

s (0)~ t !5s$g(t)%
(0) 5exp$ĝkY

k~ t !%, ~9!

whereYk(t) are the Lagrange multipliers, represents a s
cial solution that maximizes the information entropyS85
2Tr$s8 ln(s8)% for the given averagesgk(t). Furthermore,
8-2
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at some initial instancet5t0 in the remote past, we ca
assume thats(t0) corresponds to its noninteracting valu
and therefore

s~ t0!5s (0)~ t0!. ~10!

The Lagrange multipliersYk(t) are calculated from the self
consistency condition,

gk~ t !5Tr$ĝk s (0)~ t !%5Tr$ĝk s~ t !%. ~11!

This essentially enforces the Chapman-Enskog condi
@41# for the restricted set of relevant operators at all time

From the Liouville equation~8!, one can easily establis
the basic equations of motion for the average values,

d

dt
gk~ t !5

i

\
Tr$@Ĥ (0),ĝk# s~ t !%1

i

\
Tr$@Ĥ (1),ĝk# s~ t !%.

~12!

The form ofĤ (0) enables us to express the first trace on
right-hand side of the above equation in terms of the av
agesgk(t). The second trace plays the role of the ‘‘collision
term, the evaluation of which requires us to seek an inte
solution of the Liouville equation. But, before we proceed
is instructive to repartition the total Hamiltonian equation~1!
into single-particle and two-particle contributions,

Ĥ5 Ĥ̄ (0)~ t !1 Ĥ̄ (1)~ t !5@Ĥ (0)1Q̂~ t !#1@Ĥ (1)2Q̂~ t !#.
~13!

This modification anticipates self-energy shifts,

Q̂~ t !5Q12~ t !â1
†â2 , ~14!

which will inevitably arise in the course of the calculation
An integral solution fors(t) can then be obtained easi

from the Liouville equation~8!, by using the single-particle
time evolution operatorÛ (0)(t,t1); from the boundary con-
dition ~9!; and from an additional partial integration. Thu
one finds

s~ t !5s (0)~ t !2E
t0

t

dt1 e2h(t2t1)Û (0)~ t,t1!F d

dt1
s (0)~ t1!

1
i

\
@ Ĥ̄ (0)~ t1!,s (0)~ t1!#

1
i

\
@ Ĥ̄ (1)~ t1!,s~ t1!#GÛ (0) †~ t,t1!. ~15!

Since the HamiltonianĤ̄ (0)(t) depends on time through th
Q̂(t), the time evolution operatorÛ (0) is in general a time-
ordered exponent

Û (0)~ t,t0!5T̂ expF2
i

\Et0

t

dt1 Ĥ̄ (0)~ t1!G . ~16!

To establish the time derivativeds (0)(t1)/dt1 in Eq. ~15!, we
recall from Eq.~9! that the relevant operator depends on
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implicitly on time through the averagesgk(t1). Moreover, by
exploiting the transformation properties of a quantum Gau
ian ~see Appendix A!, one finds that

d

dt
s (0)~ t !5

d

dt
gk~ t ! ]gk

s (0)~ t !

52
i

\
@ Ĥ̄ (0)~ t !,s (0)~ t !#

1
i

\
Tr$@ Ĥ̄ (1)~ t !,ĝk# s~ t !% ]gk

s (0)~ t !.

~17!

Using these relations, we eliminate the time derivative
s (0)(t1) in Eq. ~15! to obtain the integral form of the statis
tical operator

s~ t !5s (0)~ t !2
i

\Et0

t

dt1e2h(t2t1)Û (0)~ t,t1!

3@Tr$@ Ĥ̄ (1)~ t1!,ĝk# s~ t1!%]gk
s (0)~ t1!

1@ Ĥ̄ (1)~ t1!,s~ t1!##Û (0) †~ t,t1!. ~18!

Since we are only interested in a weakly interacting gas,
seek a power-series expansion in the interaction strength

s~ t !5s (0)~ t !1s (1)~ t !1••• ~19!

s (1)~ t !52
i

\Et0

t

dt1e2h(t2t1)Û (0)~ t,t1!†Tr$@ Ĥ̄ (1)~ t1!,ĝk#

3s (0)~ t1!%]gk
s (0)~ t1!

1@ Ĥ̄ (1)~ t1!,s (0)~ t1!#‡Û (0) †~ t,t1!. ~20!

With this explicit expression for the statistical operator, t
evaluation of the equation of motion~12! is straightforward
and one obtains the quantum-Boltzmann equation

d

dt
f ~ t !5L@ f #1L@ f #†. ~21!

Here, Wick’s theorem has been used to express the hig
order averages in terms of the single-particle ones. The
netic operatorL consists of a reversible Hartree-Fock~HF!
part LHF and a collisional quantum-Boltzmann contributio
LQB,

L@ f #5LHF@ f #1LQB@ f #,

LHF@ f #52
i

\
HHF~ t ! f ~ t !,

LQB@ f #5G f f (11 f )(11 f )2G (11 f )(11 f ) f f .
8-3
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BHONGALE, WALSER, AND HOLLAND PHYSICAL REVIEW A 66, 043618 ~2002!
HHF5«12 U f is the Hartree-Fock Hamiltonian, withU f
14

52 f1234f 32 the self-energy, whileG ’s are the collision in-
tegrals given by

GABCD
15 5

1

\Et0

t

dt1@e2h(t2t1)f1234f19293949K 1918~ t,t1!

3K 2928~ t,t1!K 3938
†

~ t,t1!K 4948
†

~ t,t1!A318~ t1!

3B428~ t1!C482~ t1!D385~ t1!#. ~22!

The propagatorsK(t,t0) are given by

K~ t,t0!5T̂ expF2
i

\Et0

t

dt1 HHF~ t1!G . ~23!

Therefore, unlike the collision terms of Ref.@34#, the G ’s
defined above depend on the past history of the syst
Thus, Eq.~21! represents a non-Markovian generalization
the kinetic equation previously derived in Ref.@34#.

III. CONSERVATION LAWS
AND QUASIPARTICLE DAMPING

The conserved quantities for a closed isolated system
the total energyE and the total numberN. These quantities
then represent the constants of motion for the full kine
equation. The total number operator can be represented
linear combination of the relevant operators,

N̂5â1
†â1 , ~24!

and therefore the functionalN( f ) representing the total num
ber is given by

N~ f !5Tr$ f %. ~25!

The kinetic equation forN( f ) can then be written as

d

dt
N~ f !5Tr$L@ f #1L@ f #†%

5Tr$LHF@ f #1LHF@ f #†%1Tr$LQB@ f #1LQB@ f #†%.

~26!

The first-order term on the right-hand side involves the tr
of a commutator and is trivially equal to zero. TheG ’s asso-
ciated with the second-order terms have the following pr
erty due to the symmetries off:

Tr$G f f (11 f )(11 f )%5Tr$G (11 f )(11 f ) f f%* . ~27!

As a result, the second-order contribution in Eq.~26! can
also be shown to be zero. Hence the total numberN is a
constant of motion. The important point here is that the to
number conservation is a result of the symmetries off and
does not depend on the non-Markovian nature of the co
sion integral. Therefore a Markov approximation wou
leave this conservation law unchanged.

While the number conservation is a natural conseque
of the self-consistency condition, the total-energy conser
04361
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tion is not obvious as the HamiltonianĤ cannot be repre-
sented as a linear combination of the relevant operators.
start with writing the total-energy functionalE( f ) as a per-
turbative expansion inf,

E~ f !5Tr$Ĥ (0)s (0)%1@Tr$Ĥ (1)s (0)%1Tr$Ĥ (0)s (1)%#

1@Tr$Ĥ (1)s (1)%1Tr$Ĥ (0)s (2)%#1••• ~28!

5Tr$~«1U f ! f %1
i

2
Tr$@G f f (11 f )(11 f )

2G (11 f )(11 f ) f f #%1•••. ~29!

Using the self-consistency condition~11! for the relevant op-
erators, one can show that the third and the fifth trace te
in the right-hand side of the above expression drop out. T
kinetic equation for the energy functionalE( f ) can then be
written as

d

dt
E~ f !5Tr$« ḟ 1U f ḟ 1U ḟ f %

1
i

2
TrH ]

]t
@G f f (11 f )(11 f )2G (11 f )(11 f ) f f #J .

~30!

Again, we use the symmetry properties off to write the
simplified equation

d

dt
E~ f !52 i

h

2
Tr$G f f (11 f )(11 f )2G (11 f )(11 f ) f f%. ~31!

One can now see that the energy is conserved only in
h→0 limit. In this limit the kinetic equation~21! represents
the Born approximation. A finite value ofh could then be
thought of as resulting in additional terms that are beyo
the Born approximation. Such terms model the duration
collision effects and quasiparticle damping. In principle,
this effect is treated self-consistently,h will be a time-
dependent function at least of orderf. This means that the
rate of change ofE given by Eq.~31! is of the orderf3.

Also, if one is only interested in times greater than t
correlation timetcor, the finiteness ofh allows us to extend
the lower limit of the collision integral to2`. Now we can
approximate thef (t8) in the non-Markovian expression ofG
by its instantaneous valuef (t) to obtain the Markov form

GABCD
(m)15

5
1

\E2`

t

dt1@e2h(t2t1)f1234f19293949K1918~ t,t1!

3K2928~ t,t1!K3938
†

~ t,t1!K4948
†

~ t,t1!A318~ t !

3B428~ t !C482~ t !D385~ t !#. ~32!

One can verify that the above Markov form results in
energy conservation up to the most significant order given

d

dt
E~ f !5Tr$HHF~LQB

(m)@ f #1LQB
(m)@ f #†!%. ~33!
8-4
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If we compare this with the expression for the correlati
energyEcor in Refs.@29,30#, the right-hand side of Eq.~33! is
exactly2]Ecor/]t. This is not surprising and can be unde
stood more intuitively by writing the collision integral as
sum of two contributions: correlation and collision

G5Gcor1Gcol5E
2`

0

•••dt81E
0

t

•••dt8. ~34!

For a finiteh, the Gcor contribution decays to zero ase2ht.
Therefore the decaying correlation energyEcor associated
with this part shows up in the rate of change of the to
energyE. In the Born approximation,Gcor is constant be-
causeh→0.

The exponential damping results in a widenedd function
and therefore the rate of change ofE( f ) ~33! can be shown
to be of orderhG (m). Thus, by including terms beyond th
Born approximation, we have obtained a collision integ
that is Markovian and still conserves energy up tof2 order.
Now if we assume that the equilibration time is of the ord
1/G (m), the total change in energyDE is therefore

DE5E~ f eq!2E~ f in!;h G (m)S 1

G (m)D 5h, ~35!

wheref in and f eq are the initial and equilibrium distributions
respectively.

The importance of the damping term becomes more o
ous when one attempts to solve the kinetic equation num
cally. One no longer has to worry about theh→0 limit in the
Born-Markov approximation, which for a finite system wi
discrete levels can result in the nonphysical situation of o
exchange collisions and hence no equilibration.

IV. APPLICATION TO A DILUTE BOSE GAS
IN A SPHERICAL BOX TRAP

In the preceding section, we introduced the general m
ods and concepts to describe a weakly interacting Bose
under nonequilibrium conditions. We will now apply these
a simple model of a typical87Rb experiment, as realized b
many laboratories around the world, for example Re
@7,42,43#. The physical parameters are usually quoted in
natural units for a harmonic-oscillator trapping potential, i.
the angular frequencyv52p3200 Hz, the atomic mas
m87586.9092 amu, the ground state sizeaH
5@\/(v m87)#1/25763 nm, and thes-wave scattering length
as55.82 nm.

However, in the present paper, we do not pursue the u
harmonic confinement, but rather explore the properties
radial box as a particle trap. This choice is motivated
previous studies of the self-consistent Hartree-Fock sin
particle states@35#. As soon as the repulsive mean-field p
tentials are added to the bare harmonic trapping potent
the corresponding eigenstates widen in size and look rem
ably close to the eigenstates of a box, provided the spa
extensions of the box is chosen appropriately. In particu
we pick a box of radiusR51000aS55.82mm.
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Thus, our model is represented by a spherical trap w
box potential given by

Vext~r !5H 0, r ,R

`, r>R.
~36!

The eigenfunctions are a product of spherical Bessel fu
tions j ( l ) and spherical harmonicsY( lm) :

c (nlm)~r ,u,f!5HN(nl) j ( l )~rk (nl)!Y( lm)~u,f!, r ,R

0, r>R.
~37!

A normalization constant is represented byN(nl) . The
eigenenergies are given in terms of the wave vectorsk(nl) ,
which can be obtained from thenth nodes of the spherica
Bessel functions of angular momentuml,

« (nl)5~Rk(nl) /p!2 «0 . ~38!

Here,«0 represents the ground-state energy and defines
energy scale of the problem,

«05
\2p2

2 mR2
. ~39!

All the physical parameters are scaled with respect to
energy unit«0 and the radius of the boxR.

For simplicity, we assume all the atoms to be in thel
50 state initially. One therefore needs to consider only
l 50 manifold and get for the normalization constantN(n0)
5n@p/(2R3)#1/2 and radial wave vectorRk(n0)5np. If the
cloud is relatively cold, then most of the population resid
in the lowest few energy states. Therefore, we can also l
the number of radial modes 1<n<nmax. For the present
case, we takenmax55. Obviously, all these simplification
reduce the number of degrees of freedom significantly
thus we are able to study certain aspects of the nonequ
rium dynamics of the trapped Bose gas in great detail.

With the above definitions, the bare single-particle b
Hamiltonian is given by

«pq5dpq q2 ~no implicit sum overq!. ~40!

The interaction partĤ (1) involves the matrix elements of th
interaction potential defined by Eq.~6!,

fpqrs5
4aS

p E
0

p

sin~px!sin~qx!sin~rx !sin~sx!
dx

x2
, ~41!

which in general have to be computed numerically. Intere
ingly, in the case of a spherical box this integral can
evaluated analytically and simplified to a finite sum of si
integrals and cosine functions~see Appendix B for details!.

The nonequilibrium state of the above system is rep
sented by the single-particle distribution functionf with time
dependence given by Eq.~21!. Neglecting the second-orde
collision terms, the first-order evolution is governed by t
Hartree-Fock HamiltonianHHF and is given by
8-5
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d

dt
f 5LHF@ f #1LHF@ f #†. ~42!

The energy eigenstates of the interacting system are there
shifted from the bare box states due to the self-energy eff
These shifts can be significant depending on the total par
number. This is clear from Fig. 1 where we plot the eigen
ergies as a function off 11, the total particle number in the
box ground state~with all other f i j ’s equal to zero!.

Now note that the time-dependent Hartree-Fock equa
~42! for the density matrixf is nonlinear and hence we see
a self-consistent solution such that

f 5(
i

P~« i !u« i&^« i u, ~43!

whereHHFu« i&5« i u« i&, and for a Bose-Einstein distributio
P(«) is given by

P~«!5
1

exp@~«2m!/kBT#21
. ~44!

For a given total particle numberN and temperatureb
51/kBT, a self-consistent chemical potentialm(b,N) and
hence a self-consistent Bose-Einstein distribution is
tained. For example, let us consider three different total p
ticle numbersN510,100,500 at two different temperatur
b51/kBT50.01,0.5, corresponding to hot and cold cloud
respectively. In Figs. 2 and 3, we plot the self-consist
solution and the self-energy density in the position sp
representation. We see that the self-energy density is pro
tional to the number density only near the center of the t
and drops off faster with increasing radius. This can be
tributed to the restricted number of basis states used in
calculation and effectively gives a finite range to the tw
body potentialVbin .

Up to first order, thef equation is totally reversible. Th
inclusion of the second-order terms~collisions! break the re-
versibility, and therefore represents a relaxation of the s

FIG. 1. Hartree-Fock energies as a function of particles num
in the box ground state,f 11 with all other f i j ’s equal to zero.
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tem from some initial state to a final equilibrium state. He
we will be using the Markov form~32! for the collision
integral. We take the Hartree-Fock self-consistent state
the initial condition.

In the preceding section, we interpreted the functi
exp(2ht) to account for duration of collision effects an
quasiparticle damping. But the exponential form was ori
nally introduced to break the time-reversal symmetry and
has the correct long-time behavior. However, an exponen
damping will result in a Lorenzian line shape for the fin

er
FIG. 2. The scaled mean-field densityU f(r ,r )/«0 as a function

of the scaled radial distancer /R at a relatively hot temperatureb
50.01 is shown for three different values of particle numbers:N
510 ~solid curve!, N5100 ~dashed!, and N5500 ~dot dashed!.
Inset shows the corresponding number density as a function
scaled radial distance.

FIG. 3. The scaled mean-field densityU f(r ,r )/«0 as a function
of the scaled radial distancer /R at a relatively cold temperature
b50.5 is shown for three different values of particle numbersN
510 ~solid curve!, N5100 ~dashed!, andN5500 ~dot-dashed!. In-
set shows the corresponding number density as a function of sc
radial distance.
8-6
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equilibrium distribution. Due to the long-reaching wings
the Lorenzian curve, in the Markov limit, off-the-energ
shell collisions get weighted strongly. To seek an improv
damping function that will have the correct short- and lon
time behavior, we use the equivalence of kinetic theor
based on the Green’s-function approach@19# and the non-
equilibrium statistical operator method@39# as shown in Ref.
@44#. The behavior of the retarded Green’s functiong(t,t1)
for very large and very small time scales is given by

g~ t,t1!;H e2h(t2t1), t2t1@tcor

e2h(t2t1)2
, t2t1!tcor.

~45!

Therefore, behavior over the intermediate time scale will
best represented by an interpolating function. This is a
true for the damping function. From Fig. 4, we see that
function

F~ t,t1!51/cosh@h~ t2t1!#, ~46!

has exactly this behavior and therefore represents a b
choice than the exponential form.

With either choice of the damping function, for a partic
lar value of the parameterh, a time propagation results in
self-consistent steady-state solutionf eq. Figure 5 shows such
a time evolution forN5500 particles with an initial tempera
ture corresponding tob50.01. We have choseh to be of the
order Re@G#'2.3. In principle,h should be obtained self
consistently at every time step. As long as one consid
large enough number of basis states, the final result is
sonably insensitive to the value ofh as long ash>Re@G#.
As mentioned earlier, we see that the exponential damp
function results in significant transfer of population to t
excited states. This effect is less with the hyperbolic sec
damping function. We get different steady-state solutions
cause different damping functions correspond to differ

FIG. 4. Comparison between different damping functio
exp(2ht) ~solid!, exp(2ht 2) ~dot dashed!, and 1/cosh(ht)
~dashed!. Note that the hyperbolic secant function asymptotes to
exponential form for larget and a Gaussian form for smallt.
04361
d
-
s

e
o
e

ter

rs
a-

g

nt
e-
t

initial correlations. Also, a plot ofu( f nn)[ ln(1/f nn11) vs
the Hartree-Fock energies«n

HF , shown in Fig. 6, shows tha
the f eq is very close to a Bose-Einstein distribution. Th
slope, which represents the self-consistent value ofb, shows
that the change in temperature is far greater for the expon
tial damping function compared to the hyperbolic sec
case, because off-the-energy-shell effects are larger as
plained previously.

Thus we have obtained a self-consistent steady-state s
tion to the second-order kinetic equation. We emphasize h
that the steady-state solution is a result of the real-time n

,

n

FIG. 5. Evolution of the diagonal elementsf nn (n51,2, . . . ,5)
~shown with curves from bottom to top! toward a self-consisten
steady-state solution starting from an approximate solution. T
different damping functions are used in the evaluation of theG ’s.
Dashed and solid curves correspond to exponential and hyper
secant, respectively.

FIG. 6. Linear behavior ofu( f nn) as a function of«n
HF . Initial

distribution shown with diamonds. Final distribution shown wi
circles for the case of exponential damping function, and squa
for the case of hyperbolic secant damping function.
8-7



ui
is

an

. I
e
x
tio
us
im
s
a

ti

ta

ui

su
r

en
ti

ns
ents

etic
fi-

ntal

h an

al,
ing
ely.
The
Her-
nor-

ture
at
tive,
ig.
ted

il-

in
b-
the

on.

ff-

ig.

to
s to
the

te
icl

BHONGALE, WALSER, AND HOLLAND PHYSICAL REVIEW A 66, 043618 ~2002!
equilibrium evolution of the system. Deriving such an eq
librium solution, whose absolute value is plotted in Fig. 7,
a prerequisite step to the study of collective modes
damping rates of a dilute gas.

V. REAL-TIME RESPONSE TO PERTURBATION

The properties of the equilibrium solutionf eq exhibit the
expected characteristics of a Bose-Einstein distribution
order to verify the stability of this solution and to study th
damping rates of the collective excitations, we will now e
amine the real-time response of the system to a perturba
First, we will outline the linear-response theory and disc
the structure of the modes, their frequencies, and the lifet
of the excitations. Subsequently, we will use these mode
initially prepare the system and to evolve the full nonline
quantum kinetic equation towards equilibrium.

One of the fundamental properties of the quantum kine
equation~21!

d

dt
f ~ t !5L@ f #1L@ f #†, ~47!

is its Hermitian structure. Thus, if we prepare a physical s
initially, it will remain Hermitian with f (t)5 f (t)† indefi-
nitely. We will now consider a weak perturbation of an eq
librium state,

f ~ t !5 f eq1d f ~ t !, ~48!

and calculate the first-order response of the system. As u
we want to assume that we can decompose a general pe
bation into fundamental damped and/or oscillatory eig
modes of the system. Therefore, such a specific perturba
can be parametrized as

d f ~ t !5e2 i vtd f v
(1)1H.c., ~49!

d f v
(1)5d f v

(c)1 i d f v
(s) , ~50!

FIG. 7. Absolute value off eq, the self-consistent steady-sta
solution for the second-order kinetic equation. The single-part
density matrix is plotted in the Hartree-Fock basis.
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whered f v
(1) denotes a positive frequency amplitude. It tur

out to be useful to decompose it into quadrature compon

d f v
(c)5

1

2
@d f v

(1)†1d f v
(1)#, ~51!

d f v
(s)5

1

2 i
@d f v

(1)†2d f v
(1)#, ~52!

and evaluate the kinetic operatorL@ f # only for such Hermit-
ian arguments. From a Taylor-series expansion of the kin
operator around the equilibrium distribution, one obtains
nally the linear-response equations for the fundame
modes,

~2 iv! d f v
(1)5L (1)@d f v

(c)#1 iL (1)@d f v
(s)#1L (1)@d f v

(c)#†

1 iL (1)@d f v
(s)#†, ~53!

where we have defined a linear-response operator throug
appropriate centered difference limit

L (1)@d f #5 lim
l→0

L@ f eq1ld f #2L@ f eq2ld f #

2l
. ~54!

We solve Eq.~53! as an eigenvalue problem. In gener
the eigenvalues are complex, with frequency and damp
rate given by the real and the imaginary parts, respectiv
The eigenvalues appear as complex-conjugate pairs.
eigenmodes corresponding to nonzero eigenvalues are
mitian conjugates of each other and are traceless with
malization given by

Tr$d f v
(1)d f v

(1) †%51. ~55!

The physical linear-response mode is given by the quadra
componentsd f v

s andd f v
c . There also exists a zero mode th

has nonvanishing trace. The damping rates are all nega
thus confirming the stability of the collective modes. In F
8, we plot the positive frequency eigenvalues. The dot
lines correspond to the difference frequencies of the Ham
tonianHHF .

It is interesting to see how these different modes evolve
real time. For this we use the equilibrium distribution o
tained in the preceding section and perturb it with one of
quadrature components,

f→ f eq1ld f v
(s) , ~56!

wherel50.2 determines the smallness of the perturbati
In particular, we will consider the modes labeled bya, b, c,
andd in Fig. 8.

The real-time response is shown by plotting the o
diagonal matrix elementf 12 of the single-particle density
matrix in the box basis as shown in Figs. 9 and 10. In F
11, we plot the change in the total energyDE5E( f )
2E(feq) as a function of time. In casesa andb ~Fig. 8!, we
see that theDE oscillates about zero and eventually goes
zero. This is expected because such a perturbation tend
create coherences, resulting in an energy change by

e

8-8
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amount of Ecoh ~coherence energy! that would eventually
decay down to zero. Similar damped behavior is obser
for cased. Such an oscillatory damped behavior of the to
energy could be attributed to the Markov approximation
the collision integral~32!. On the other hand, perturbation
of the kindc increase the total particle number by the amo
dN5Tr$ld f v

(s)% and hence result in a finite change in to
energy.

FIG. 8. Non-negative frequency eigenvalues scaled with res
to «0 shown with crosses for the Hartree-Fock equation and squ
for the quantum-Boltzmann equation. The dotted lines corresp
to difference energies (« i

HF2« j
HF)/«0. The modes labeleda andb

show nonzero frequency and damping rate,c shows zero mode, and
d shows zero frequency; and nonzero damping rate will be con
ered for further discussion.

FIG. 9. The perturbationld f v
s ~bottom! is shown in a rotated

frame such thatf eq is diagonal; the resulting oscillatory and damp
behavior~top! of the elementf 12 of f in the box basis is due to th
perturbation. The left and right figures correspond to the po
markeda andb in Fig. 8, respectively.
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VI. CONCLUSION

A non-Markovian version of the quantum kinetic theory
derived using the prescription of a nonequilibrium statisti
operator method as outlined in Ref.@39#. This theory is
shown to conserve energy in theh→0 limit. Inclusion of
quasiparticle damping and duration of collision effects
sults in a description beyond the Born approximation w
energy conservation tof2 order even in the Markov limit. To
obtain collision integrals that involve quasiparticle dampi
and duration of collision effects and conserves energy p
cisely, one will have to calculate theT matrix in the full

ct
es
d

d-

s

FIG. 10. The perturbationld f v
s ~bottom! is shown in a rotated

frame such thatf eq is diagonal; the resulting damped behavior~top!
of the elementf 12 of f in the box basis is due to the perturbatio
The left and right figures correspond to the points markedc andd in
Fig. 8, respectively.

FIG. 11. The change in the total energyDE5E( f )2E( f eq) as
the system relaxes to its new equilibrium. In the top figure, the s
and dashed lines correspond to casesa andb ~Fig. 8!, respectively.
Similarly in the bottom figure, the solid and dashed lines cor
spond to casesc andd ~Fig. 8!, respectively.
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collision operator keeping terms of all orders in the inter
tion.

We applied the generalized second-order kinetic theor
the nonhomogeneous dilute Bose gas confined in a sphe
box to numerically study the full nonequilibrium evolutio
of the system towards equilibrium. The self-consistent dis
bution f eq thus obtained is very close to the Bose-Einst
distribution as shown in Fig. 6. We also observe a signific
Hartree-Fock self-energy shift that depends on the sin
particle distribution functionf. The form of the damping
function is important in determining the line shape. Partic
larly, the function with a 1/cosh type of behavior is found
be appropriate and gives improved energy conservation
to smaller initial correlation effect.

The importance of such a real-time calculation is appar
from the full real-time response calculation, where we ha
calculated the damping rates and frequencies. These dam
rates correspond to a shorter time scale compared to
equilibration time scale, which depend on rates in and ou
the various levels.

This simple model of a spherical trap can be easily
tended to a more realistic situation of a harmonic trap. As
Refs.@34,45,46#, the condensed component can be easily
cluded by introducing a symmetry-broken mean field,a i

5^âi&, as one of the relevant observables and Hartree-Fo
Bogoliubov quasiparticle excitations. Even though this e
tension of the kinetic theory discussed in this paper m
seem simple, the actual calculations are complicated and
volved due to the presence of anomalous fluctuations. A
the theory needs to be renormalized in order to ensur
gapless spectrum. Such a calculation will allow us to ma
experimentally verifiable predictions of damping rates of c
lective excitations. One can also explore the possibility
including a time-dependent potential or an external fo
term to selectively excite one or more of the collecti
modes. These calculations are feasible and will be dea
detail in a forthcoming paper@38#.
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APPENDIX A: REFERENCE DISTRIBUTION

The reference distributions$ f %
(0) of Eq. ~9! is parametrized

through its expectation values in Eq.~11!. From the structure
v.
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of this quantum Gaussian operator, it follows that

s$K(t,t0) f K †(t,t0)%
(0)

5Û†~ t,t0! s$ f %
(0) Û~ t,t0!. ~A1!

In the above,Û represents the single-particle propagator
Eq. ~16! acting in many-particle Fock space andK is the
corresponding single-particle Hilbert-space propagator
Eq. ~23!. This condition implies that

]gk
s (0)Tr$@Ĥ (0),ĝk#%52@Ĥ (0),s (0)# ~A2!

and was used to obtain Eq.~17!.

APPENDIX B: MATRIX ELEMENTS

The matrix element of Eq.~41! can be evaluated easily b
expanding the sine functions into the copropagating a
counterpropagating complex exponents and by an additio
partial integration. This results in eight separate terms, i.

f i jkl /aS5
4

pE0

p

sin~ ix !sin~ jx !sin~kx!sin~ lx !
dx

x2
,

5F~ i 1 j 1k2 l !1F~ i 1 j 2k1 l !1F~ i 2 j 1k1 l !

1F~ i 2 j 2k2 l !2F~ i 1 j 2k2 l !

2F~ i 2 j 1k2 l !2F~ i 2 j 2k1 l !

2F~ i 1 j 1k1 l !, ~B1!

where

F~n!5
1

2p2
@cos~np!1np Si~np!#, ~B2!

Si~z!5E
0

zsin~ t !

t
dt. ~B3!

An asymptotic expansion of the sine integral leads to
following approximation that is correct at the 1% level, i.e

F~0!5
1

2p2
, ~B4!

F~n.0!'
1

2p2 Fp

2
unpu2

sin~np!

np
1

2 cos~np!

~np!2 G .
ell,
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