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Memory effects and conservation laws in the quantum kinetic evolution of a dilute Bose gas
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We derive a non-Markovian generalization to the quantum kinetic theory described by \&atdgPhys.
Rev. A59, 3878(1999] in the absence of a condensed fraction for temperatures above the Bose-Einstein
condensation temperature i.& > T.. Within this framework, quasiparticle damping arises naturally due the
finite duration of a binary collision and it leads to a systematic Markov approximation from the non-Markovian
Born theory. Such a self-consistent theory conserves the total energy to second order in the interaction strength.
By introducing an improved damping function, we demonstrate global energy conservation at the order of the
perturbation theory. Finally, we apply this kinetic theory to a simple model of an inhomogeneous Bose gas that
is confined in a spherical box. By studying numerically the real-time quantum evolution towards equilibrium,
we obtain damping rates and frequencies of the collective modes and illustrate the emergence of differing time
scales for correlation and relaxation.
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I. INTRODUCTION rium master equationg23—26. In particular, Jackson and
Zaremba[26] have shown good agreement with experimen-

In the mean-field approximation, a Bose-condensed phadal observations of decay rates and frequencies. However,
is well described by the Gross-PitaevskBP) equation[1]. Monte Carlo approaches suffer from the simulation noise
Examples of collective phenomena that arise at the mearthat can lead to a spread in the value of quantities that should
field level include the formation of vortex statE3-6] and  be exactly conserved. Also the theory as formulated can only
collective excitationg7—9]. In this context, the GP equation be applied to situations in which the anomalous pair correla-
is often sufficient to describe the dynamicsTat 0. How-  tions are not importanfPopov approximation Under cer-
ever, at finite temperatures<Or <T,, it is important to in-  tain conditions, typically when the interactions are strong,
clude effects due to the presence of a thermal componenanomalous densities can play a significant role. This was the
These thermal, noncondensed atoms interact mutually anchse, for example, in the recent observation of Ramsey-type
with the condensed atoms via binary collisions. In fact, theoscillations[27] and their subsequent theoretical explanation
collisional dynamics is the microscopic mechanism for[28].
evaporative cooling and it leads to Bose-Einstein condensa- Energy conservation in theories with Boltzmann-type col-
tion (BEC). Finite temperature effects are also responsibldision integrals is typically enforced by requiring exact en-
for phenomena such as phase diffusion and damping of cokrgy conservation in each individual collision event. From a
lective excitations. In order to describe these effects, the infundamental perspective this is unsatisfactory as it would be
clusion of collisions due to the thermal component becomegpreferable if energy conservation would arise intrinsically
essential. A generalized GP equation, for example thérom the theoretical formulation. The essential point is that
Hartree-Fock-Bogoliubov approach, includes the effects okuch an approach would allow off-the-energy-shell collision
collisions only indirectly through their energy shifts and events as long as energy is conserved overall. In practice,
hence is valid only at very low temperatufeollisionless  this requires including effects arising from the finite duration
regime. of a collision and quasiparticle damping.

In the other limit, T>T,, the condensate component is  Another issue for consideration is the question of Mar-
absent and the thermal component completely determines th@vian versus non-Markovian dynamics in an inhomoge-
dynamics. This limit is well described by the quantum-neous system. Even though, for a dilute Bose gas, memory
Boltzmann (QB) equation. Thus, a nonequilibrium kinetic effects can be neglected under the principle of rapid attenu-
theory, which interpolates between the GP and the QB limitstion of correlations, non-Markovian behavior is intricately
corresponding td =0 andT>T_, respectively, is necessary related to the conservation propert[@9—-33. For example,
to provide such a complete description. the Markovian-Boltzmann type kinetic equations derived by

Currently, there exist a number of kinetic theories includ-Walseret al. [34] conserves energy only to first ordgg5].
ing those based on quantum stochasdtid 11], the Fokker-  Previous attempts to address this issue have been limited to
Planck equatiorf12], generalized single-time master equa-the discussion of systems with translational symmetry
tions [13-15, a semiclassical hydrodynamic approach[36,37).

[16,17], and a Green's-function approact8—20. However, In this paper, we generalize the kinetic theory derived in
obtaining explicit solutions for the nonequilibrium dynamics Ref. [34] in order to address the problems discussed above.
has remained a challenge. In particular, the condensateresently, we limit our goal to the derivation of a systematic
growth dynamics is still a very active area of researchMarkov approximation from the non-Markovian Born theory
[21,22). More recently, Monte Carlo simulations have pro- by including finite duration effects and quasiparticle damp-
vided an alternative approach to the solution of nonequilibing. Using the short- and long-time behavior of the two-time
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Green'’s function, we obtain a damping function that gives We assume that the particles are confined by an external
improved energy conservation to second order in the pertutrapping potentialV,,. Thus, the matrix elements of the
bation parameter. single-particle Hamiltonian are given by
We apply this theory to a simple model of an inhomoge-
neous Bose gas confined in a spherical box abbyevith 1 p -
discrete basis states. The usual Born-Markov theory gives a e =(1] ﬁ+vext(x)|2>' (4)
o-function energy conservation that for any interacting sys-
tem will result in only exchange collisions. Therefore intro- wherem is the mass. The binary interaction is mediated by a
ducing finite duration effects facilitates the calculation byshort-range repulsive potentisl,,. This gives the symme-
relaxing the energy-conservation condition. The simplicity oftrized (S) matrix elements
this model allows us to study the real-time evolution of the
system from some initial state to a final state of equilibrium. $=(8)(1|®(2|Vyn(Xx@1-12X)[3)®|4).  (5)
We perform a linear-response calculation to study the stabil-
ity and damping rates for the steady-state solution. A calculn the low-energy limitVy,;, can be approximated by a con-
lation on similar lines with a more realistic model of a har- tact potential with the matrix elements given by
monic trapping potential and nonvanishing condensate ( .
and pair-correlation ) components will ultimately make P &J’ (1]x)(2]x)(x|3)(x|4) d3x. (6)
comparison with experimental observations of the frequency 2 J)-w
and damping rates of collective excitations possible. This_ | ) , )
will be discussed in a forthcoming pap@8]. The mteractlonzstrengtvo is related to the scattering length
This paper is organized as follows. In Sec. I, we derive a@s by Vo=4mh“as/m. - o
non-Markovian generalization to the kinetic theory of Ref. ~Here, we use the well-known nonequilibrium statistical
[34] using the prescription of a nonequilibrium statistical op-oPerator method[39,40 to obtain an explicitly non-
erator method39]. Both quasiparticle damping and damping Markovian version of the kinetic theor}34]. In this ap-
arising from the finite time of collision events are discussedProach, the nonequilibrium state of a weakly interacting
in Sec. IIl. This has implications for the underlying symme- quantum gas is specified by a set of single-time master vari-
tries of the theory and their associated conserved quantitie§0les. For our system, the most important master variable is
In Sec. IV, we apply this generalized kinetic theory to athe single-particle density matrii(t),
simple model of an inhomogeneous dilute Bose gas confined ~tn ~tn
in a spherical box and obtain a self-consistent steady-state f1a(t)=(aza:)=Tr{aza; o(t)}, (7)
solution to the second-order kinetic theory. Finally in Sec. V, . -
we study the response of the system to a small perturbatiof!n€re(- - -)=Tr{---o(t)} anda(t) is the statistical many-

This allows us to determine the frequencies and dampin?Ody de_nsity operator. We focus our stud_ie:?‘ on the te”?Pefa'
rates of collective modes ure regime above and in the close proximity to the critical

temperature for BEC. For this reason, we do not consider
either symmetry breaking fieldél), or the anomalous fluc-
tuations (a;a,). We therefore defing{y,=1,y=aja|k

We start with the many-body Hamiltonian for a weakly e{(1,2)}} as our complete set of relevant operators. The

A2

II. KINETIC EQUATIONS

interacting Bose gas given by expectation values of these operatopg(t)=(7,), are the
o A only quantities that will appear in the final kinetic equations.
H=HO®+H®), (1) The time evolution of the nonequilibrium statistical op-

erator o(t) is described by the Liouville equation with an
whereF(© is the single-particle Hamiltonian that is defined €X{ra source term on the right-hand side:
as .
d e ©
A - o+ [Ho®]==7 (c)-cO1). ®
HO=¢12 ala,, 2
Such a source term breaks the time-reversal symmetry of the
using the implicit summation convention for repeated indi-Liouville equation and represents a convenient way to incor-

ces. The two-body energy® is given by porate the irreversible character of macroscopic processes.
We will see later that this procedure leads to finite duration
" ~tata 2 of collision effects and quasiparticle damping. The relevant
H(l):¢1234 31333334- 3) q p ping

distribution o{%)(t) given by

The bosonic operatoia; anda] annihilate and create a par- aO(t)= o, = exp %Y (1)}, (9
ticle in a single-particle statgl), respectively. The abbrevi-

ated notatior|1) represents a state specified by a completevhere YX(t) are the Lagrange multipliers, represents a spe-
set of quantum numbers for both the motional and electronicial solution that maximizes the information entrofy=
degrees of freedom. —Tr{a" In(a")} for the given averagey,(t). Furthermore,
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at some initial instancé=t, in the remote past, we can implicitly on time through the averageg(t,). Moreover, by
assume thatr(ty) corresponds to its noninteracting value exploiting the transformation properties of a quantum Gauss-

and therefore ian (see Appendix A one finds that

o(to)=oO(ty). (10 d o d o

o ()= —y(t) 9, 0(1)

The Lagrange multipliery ¥(t) are calculated from the self- dt dt 7 T
consistency condition, P

] . =— = [HOt),6O ()]

nO=Tr{n oOO}=Tr{y ov)}. (11) h
This essentially enforces the Chapman-Enskog condition +i—Tr g‘(l)t 2 N g, Ot
[41] for the restricted set of relevant operators at all times. h {HPW 7 o0} 0, a0
From the Liouville equatior{8), one can easily establish (17)

the basic equations of motion for the average values,

d i i Using these relations, we eliminate the time derivative of
Fi(D= gTr{[ﬂ“’wk] o(t)}+ %Tr{m(l),“yk] a(t)}. o©)(t,) in Eq. (15) to obtain the integral form of the statis-
t tical operator

(12)
The form of H(®) enables us to express the first trace on the o(t)=aO(t)— I—ftdt e~ Mttt t,)
right-hand side of the above equation in terms of the aver- iy, ! o
agesy,(t). The second trace plays the role of the “collision” - R
term, the evaluation of which requires us to seek an integral X[TH[HD(t), %] U(tl)}ayka(o)(tl)
solution of the Liouville equation. But, before we proceed, it N
is instructive to repartition the total Hamiltonian equati@n +[H(l)(tl),a'(tl)]]0(o) T(t,ty). (18

into single-particle and two-particle contributions,

e - . . . . Since we are only interested in a weakly interacting gas, we
H=HOt)+HO(t)=[HO+Q(t) ]+ [HM-Q(1)]. ) seek a power-series expansion in the interaction strength,
13

— 5(0) (1) ...
This modification anticipates self-energy shifts, o(t)=o () + o () + (19

At — 121515 it -
Q=LA B9 aon=— 1| dye M W00 THIAD (L), %]

which will inevitably arise in the course of the calculation. ‘o

An integral solution foro(t) can then be obtained easily xa(O(ty)}a,, 0O (ty)
from the Liouville equation8), by using the single-particle N
time evolution operatot) (°)(t,t,); from the boundary con- +[H®O(ty), @ (t)1]0@ T(t,t,). (20)
dition (9); and from an additional partial integration. Thus,
one finds With this explicit expression for the statistical operator, the

. evaluation of the equation of motigi?2) is straightforward
O_(t):o_(o)(t)_f dt, e~ 70Ot t,) and one obtains the quantum-Boltzmann equation
t

0

d
— 50
dtlo- (tl)

d
i~ [ SRall

i R Here, Wick's theorem has been used to express the higher-
+ g[H(l)(tl),a(tl)]}U(o) T(t,ty). (15  order averages in terms of the single-particle ones. The ki-
netic operatorl consists of a reversible Hartree-Fo@hF)

) LA , part L and a collisional quantum-Boltzmann contribution
Since the Hamiltoniatd (°)(t) depends on time through the

~ ~ £ B
Q(t), the time evolution operatdd(®) is in general a time- ©
ordered exponent LIF]1= Ly F1+ Logl ],

~ - i [t -

0O t,t )=Texp[——f dt; HOX(t )}. (16) i

’ il ' Lud 1= = 7 Hue(D (1),

To establish the time derivativir(?)(t,)/dt; in Eq.(15), we
recall from Eq.(9) that the relevant operator depends only Loal f1=Ttta+narn—Ta+narnre-
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Hue=&+2 U; is the Hartree-Fock Hamiltonian, wit*  tion is not obvious as the Hamiltonidi cannot be repre-

=2 ¢'?%%,, the self-energy, whild’s are the collision in- sented as a linear combination of the relevant operators. We

tegrals given by start with writing the total-energy function&(f) as a per-
turbative expansion i,

1 rt
15  _= —(t—ty) 41234 ,1"2"3"4" R R R
I'xsco ﬁftodtl[e V= K nr(ttg) E(H)=Tr{H@ o} +[THA® GO+ TH{AO© 1N
X IC g (18)IC Lo (841 K b (1,81 Ay (t1) F[THAOcO 4+ THAO @)+ . .. (29)
X Bax(t1)Cyqra(t1)Dars(ty)]. (22

i
:Tr{(8+Uf)f}+§Tr{[Fff(1+f)(1+f)
The propagator&’(t,ty) are given by

—Tasnasnmli+---. (29

Using the self-consistency conditighl) for the relevant op-
erators, one can show that the third and the fifth trace terms
Therefore, unlike the collision terms of RdB4], theI''s in the right-hand side of the above expression drop out. The
defined above depend on the past history of the systenkinetic equation for the energy functiong( f) can then be
Thus, Eq.(21) represents a non-Markovian generalization ofwritten as

the kinetic equation previously derived in RE34].

~ i [t
K(t,to):TeXF{_%ﬁ dtl HHF(tl):|' (23)
0

d . .
IIl. CONSERVATION LAWS gi E(=Tr{ef+Uf+Uif}

AND QUASIPARTICLE DAMPING

I J
The conserved quantities for a closed isolated system are +§Tr E[Fff(lﬂ)(lﬂ)_F(1+f)(1+f)ff] :
the total energ)E and the total numbeN. These quantities
then represent the constants of motion for the full kinetic (30

equation. The total number operator can be represented a

S . . .
linear combination of the relevant operators, A%am, we use the symmetry properties éfto write the

simplified equation

N=aja, (24) .
, _ aE(f):_iETr{Fff(lJrf)(lJrf)_F(l+f)(1+f)ff}- (31)
and therefore the functional(f) representing the total num-

ber is given by One can now see that the energy is conserved only in the

N(f)=Tr{f}. (25) 7—0 limit. In this limit the kinetic equatior{21) represents
the Born approximation. A finite value of could then be
The kinetic equation foN(f) can then be written as thought of as resulting in additional terms that are beyond

the Born approximation. Such terms model the duration of
collision effects and quasiparticle damping. In principle, if
this effect is treated self-consistently; will be a time-
dependent function at least of ordér This means that the
=Tr{Luel 1+ Luel F17+ Tr{ Loal f1+ Lqal 17} rate of change oE given by Eq.(31) is of the ordere®.
(26) Also, if one is only interested in times greater than the
correlation timer,,, the finiteness of; allows us to extend

The first-order term on the right-hand side involves the tracehe lower limit of the collision integral te-~. Now we can
of a commutator and is trivially equal to zero. Thés asso-  approximate thé(t') in the non-Markovian expression bf
ciated with the second-order terms have the following propby its instantaneous valugt) to obtain the Markov form
erty due to the symmetries af:

%N(f)=Tr{£[f]+£[f]T}

15 1 t _ _ Mol gn
T tra+ a0t = TR @enaned ™ 27 I{Bco= gfﬁxdtl[e 1) 1238 23T 1 ()
As a result, the second-order contribution in Eg6) can t t
’ . X Konor(1,t nar (1,1 o (LT Agp (T
also be shown to be zero. Hence the total numes a Kara (61 Kgrg (1) Ky, (L 11) Agy (D)
constant of motion. The important point here is that the total X By (1)Cqro(t)D3rs(t)]. (32

number conservation is a result of the symmetrieghand

does not depend on the non-Markovian nature of the colli- One can verify that the above Markov form results in an

sion integral. Therefore a Markov approximation would energy conservation up to the most significant order given by

leave this conservation law unchanged. g
While the number conservation is a natural consequence el — (m) (Mmrf1t

of the self-consistency condition, the total-energy conserva- th(f) TH{Hue(Logl 1+ Log[T1)}- (33
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If we compare this with the expression for the correlation Thus, our model is represented by a spherical trap with
energyE.,, in Refs.[29,30, the right-hand side of E§33) is  box potential given by
exactly — dE,,/dt. This is not surprising and can be under-

stood more intuitively by writing the collision integral as a Vv B 0, r<R 36
sum of two contributions: correlation and collision exd1) = ©, r=R. (36)
0 ) t ) The eigenfunctions are a product of spherical Bessel func-
I'=Teort o= L -dt'+ 0 -dt. (34 tions j;y and spherical harmonicg,, :
- I Nan Ttk Yam (6, ¢), <R
For a finite , the I’ s, contribution decays to zero as ™. t//(mm)(r,ﬁ,qb):[ o Ty (rken) Yamy (6, ¢)
Therefore the decaying correlation enerBy, associated 0, r=R.
with this part shows up in the rate of change of the total (37)
energyE. In the Born approximation[ e is constant be- A normalization constant is represented WY, . The
causen—0. (nh)

eigenenergies are given in terms of the wave vedtgys,
which can be obtained from theth nodes of the spherical
Bessel functions of angular momentum

The exponential damping results in a widengtlnction
and therefore the rate of changeB(f) (33) can be shown
to be of orderyI'™. Thus, by including terms beyond the
Born approximation, we have obtained a collision integral S(nl):(Rk(nl)/ﬂ.)Z go. (39
that is Markovian and still conserves energy upgtoorder.

Now if we assume that the equilibration time is of the orderHere, g, represents the ground-state energy and defines the

1™, the total change in energyE is therefore energy scale of the problem,
= —E(fin)~ (m) _1 him (39
e n m — En— .
AE=E(f*Y—E(f")~» T o 7, (35 0TS TR

wheref" andf® are the initial and equilibrium distributions, All the physical parameters are scaled with respect to this
respectively. energy unitey and the radius of the bok.

The importance of the damping term becomes more obvi- FOr simplicity, we assume all the atoms to be in the
ous when one attempts to solve the kinetic equation numeri= 0_State initially. One therefore needs to consider only the
cally. One no longer has to worry about the>0 limitinthe =0 manlfgldllgnd get for the normalization constalto
Born-Markov approximation, which for a finite system with =NnL7/(2R°)]"* and radial wave vectoRkio)=n. If the

discrete levels can result in the nonphysical situation of onlyloud is relatively cold, then most of the population resides
exchange collisions and hence no equilibration. in the lowest few energy states. Therefore, we can also limit

the number of radial modes<in<n,,,,. For the present

case, we taken,,=5. Obviously, all these simplifications
IV. APPLICATION TO A DILUTE BOSE GAS reduce the number of degrees of freedom significantly and
IN'A SPHERICAL BOX TRAP thus we are able to study certain aspects of the nonequilib-

In the preceding section, we introduced the general methdum dynamics of the trapped Bose gas in great detail.
ods and concepts to describe a weakly interacting Bose gas With the above definitions, the bare single-particle box
under nonequilibrium conditions. We will now apply these to Hamiltonian is given by
a simple model of a typical’Rb experiment, as realized by
many laboratories around the world, for example Refs.
[7,42,43. The physical parameters are usually quoted in the . o (1) ,
natural units for a harmonic-oscillator trapping potential, i.e.,] N€ interaction pati**’ involves the matrix elements of the
the angular frequencyo=27x 200 Hz, the atomic mass nteraction potential defined by E(f),
mg;=86.9092 amu, the ground state sizeay
=[#/(» mgy)]*?=763 nm, and the-wave scattering length d)"qrs:A;asfwsin(px)sin(qx)sin(rx)sin(sx)d—x, 41)
as=>5.82 nm. T Jo X2

However, in the present paper, we do not pursue the usual
harmonic confinement, but rather explore the properties of ahich in general have to be computed numerically. Interest-
radial box as a particle trap. This choice is motivated byingly, in the case of a spherical box this integral can be
previous studies of the self-consistent Hartree-Fock singleevaluated analytically and simplified to a finite sum of sine
particle state$35]. As soon as the repulsive mean-field po- integrals and cosine functiorisee Appendix B for details
tentials are added to the bare harmonic trapping potentials, The nonequilibrium state of the above system is repre-
the corresponding eigenstates widen in size and look remarlsented by the single-particle distribution functiowith time
ably close to the eigenstates of a box, provided the spatialependence given by E¢R1). Neglecting the second-order
extensions of the box is chosen appropriately. In particulargollision terms, the first-order evolution is governed by the
we pick a box of radiufR=1000ag=5.82 um. Hartree-Fock Hamiltoniai - and is given by

eP9= 8,4 9° (no implicit sum overg). (40)
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FIG. 1. Hartree-Fock energies as a function of particles number
in the box ground statd,; with all otherf;;'s equal to zero.

FIG. 2. The scaled mean-field denslti(r,r)/eq as a function
of the scaled radial distangéR at a relatively hot temperatur@
=0.01 is shown for three different values of particle numbéts:
gif = Lrelf1+ Luel f1N. (42) =10 (solid curve, N=100 (dasheg, and N=500 (dot dashe
Inset shows the corresponding number density as a function of
The energy eigenstates of the interacting system are thereforga/€d radial distance.
shifted from the bare box states due to the self-energy effect.
These shifts can be significant depending on the total particl

m from some initial state to a final equilibrium state. Here
number. This is clear from Fig. 1 where we plot the eigenen-

ergies as a function of;4, the total particle number in the

box ground statéwith all other f;;’s equal to zerp

we will be using the Markov form(32) for the collision
integral. We take the Hartree-Fock self-consistent state for
the initial condition.
Now note that the time-dependent Hartree-Fock equation

(42) for the density matriX is nonlinear and hence we seek €

In the preceding section, we interpreted the function
Xp(—n7) to account for duration of collision effects and
a self-consistent solution such that quasiparticle damping. But the exponential form was origi-

f=zi P(ei)lei(eil,

nally introduced to break the time-reversal symmetry and it
has the correct long-time behavior. However, an exponential
(43 damping will result in a Lorenzian line shape for the final
whereH ¢|s)=gi|¢;), and for a Bose-Einstein distribution 5 ' 2000
P(e) is given by 300} “‘ 1500 \"'\,\
1 | -
P(e)= X (e~ m)TkaT]— 1 (44) £ 1000
For a given total particle numbeX and temperature3 o 200F e IO
=1/kgT, a self-consistent chemical potentia8,N) and = 4 0 LTI S
hence a self-consistent Bose-Einstein distribution is ob-> H 0 02 04 08 08 A1
tained. For example, let us consider three different total par- 4 R
ticle numbersN=10,100,500 at two different temperatures 1o},  *
B=1/kzT=0.01,0.5, corresponding to hot and cold clouds, IS
respectively. In Figs. 2 and 3, we plot the self-consistent kN
solution and the self-energy density in the position space
representation. We see that the self-energy density is propot o-\“g.-f_‘;:‘:_— .................. _ )
tional to the number density only near the center of the trap 0 02 04 06 08 1
and drops off faster with increasing radius. This can be at- /R
tributed to the restricted number of basis states used in our g, 3. The scaled mean-field density(r,r)/e, as a function
calculation and effectively gives a finite range to the two-of the scaled radial distanagR at a relatively cold temperature
body potentialVy;,. B=0.5 is shown for three different values of particle numbisrs
Up to first order, the equation is totally reversible. The =10 (solid curve, N=2100 (dashed, andN =500 (dot-dashed In-
inclusion of the second-order ternllisions break the re-
versibility, and therefore represents a relaxation of the sysradial distance.

set shows the corresponding number density as a function of scaled
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FIG. 5. Evolution of the diagonal elemertts, (n=1,2,...,5)
(shown with curves from bottom to tpgoward a self-consistent

(dashegl Note that the hyperbolic secant function asymptotes to arsteady-state solution starting from an approximate solution. Two

exponential form for large- and a Gaussian form for smatl

different damping functions are used in the evaluation ofltfe
Dashed and solid curves correspond to exponential and hyperbolic

equilibrium distribution. Due to the long-reaching wings of secant, respectively.

the Lorenzian curve, in the Markov limit, off-the-energy-

shell collisions get weighted strongly. To seek an improvedpitial correlations. Also, a plot of(f,,)=In(1/f,,+1) vs

damping function that will have the correct short- and long-ihe Hartree-Fock energieﬁ'F shown in Fig. 6, shows that
time behavior, we use the equivalence of kinetic theoriesihe fed is very close to a Bose-Einstein distribution. The

based on the Green’s-function approdd®| and the non-
equilibrium statistical operator meth¢89] as shown in Ref.
[44]. The behavior of the retarded Green’s functigft,t,)
for very large and very small time scales is given by

e W t—t>

g(tltl)N e 7I(t_t1)2 (45)

t_tl< Tcor-

slope, which represents the self-consistent valug,ahows
that the change in temperature is far greater for the exponen-
tial damping function compared to the hyperbolic secant
case, because off-the-energy-shell effects are larger as ex-
plained previously.

Thus we have obtained a self-consistent steady-state solu-
tion to the second-order kinetic equation. We emphasize here
that the steady-state solution is a result of the real-time non-

Therefore, behavior over the intermediate time scale will be

best represented by an interpolating function. This is also 0.4
true for the damping function. From Fig. 4, we see that the

function

F(t,ty)=1/coshn(t—1ty)], (46)

has exactly this behavior and therefore represents a bettés

choice than the exponential form.

With either choice of the damping function, for a particu-
lar value of the parametey, a time propagation results in a
self-consistent steady-state solutiiffl Figure 5 shows such
a time evolution foN=500 particles with an initial tempera-
ture corresponding t8=0.01. We have chosg to be of the
order R¢I']=2.3. In principle,n should be obtained self-

consistently at every time step. As long as one considers
large enough number of basis states, the final result is rea

sonably insensitive to the value ef as long aspy=Rg 1'].

As mentioned earlier, we see that the exponential damping
function results in significant transfer of population to the

_—

c

0.2r

5
o ()

FIG. 6. Linear behavior of)(f,,) as a function ofsEF. Initial

excited states. This effect is less with the hyperbolic secaniistribution shown with diamonds. Final distribution shown with
damping function. We get different steady-state solutions beeircles for the case of exponential damping function, and squares
cause different damping functions correspond to differentor the case of hyperbolic secant damping function.
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500 where5f(") denotes a positive frequency amplitude. It turns
out to be useful to decompose it into quadrature components

400

1
=00 St =3 1ot 5100, (51)
200

=

1
100 51 =5—[ 8101510, (52)

and evaluate the kinetic operat6ff] only for such Hermit-

ian arguments. From a Taylor-series expansion of the kinetic
operator around the equilibrium distribution, one obtains fi-
nally the linear-response equations for the fundamental

modes,
5 1
m n (—iw) 8t =5 +ig @O 5tO 1+ £ O 56T
FIG. 7. Absolute value of®Y the self-consistent steady-state +iL st (53
solution for the second-order kinetic equation. The single-particle
density matrix is plotted in the Hartree-Fock basis. where we have defined a linear-response operator through an

appropriate centered difference limit
equilibrium evolution of the system. Deriving such an equi- o o
librium solution, whose absolute value is plotted in Fig. 7, is £ W[ 8] lim LI NS ] = LI 59N 6]
a prerequisite step to the study of collective modes and NesO AN '
damping rates of a dilute gas.

(59

We solve Eq.(53) as an eigenvalue problem. In general,
V. REAL-TIME RESPONSE TO PERTURBATION the eigenvalues are complex, with frequency and damping
) I ) o rate given by the real and the imaginary parts, respectively.
The properties of the equilibrium solutidii exhibit the ¢ “aigenvalues appear as complex-conjugate pairs. The
expected characteristics of a Bose-Einstein distribution. Iréigenmodes corresponding to nonzero eigenvalues are Her-

order to verify the stability of this solution and to study the \iian conjugates of each other and are traceless with nor-
damping rates of the collective excitations, we will now €X- malization given by

amine the real-time response of the system to a perturbation.

First, we will outline the linear-response theory and discuss Tr{(sfgj)affj)‘r}:l_ (55)

the structure of the modes, their frequencies, and the lifetime

of the excitations. Subsequently, we will use these modes t@he physical linear-response mode is given by the quadrature
initially prepare the system and to evolve the full nonlinearcomponentsf$ and§f¢ . There also exists a zero mode that

quantum kinetic equation towards equilibrium. ~has nonvanishing trace. The damping rates are all negative,
One of the fundamental properties of the quantum kinetiahus confirming the stability of the collective modes. In Fig.
equation(21) 8, we plot the positive frequency eigenvalues. The dotted
d lines correspond to the difference frequencies of the Hamil-
—f(t)=L[f]+ L[], ap  tomanHue. , _
dt (O=LLT1+ 2L “7 It is interesting to see how these different modes evolve in

real time. For this we use the equilibrium distribution ob-
is its Hermitian structure. Thus, if we prepare a physical statgained in the preceding section and perturb it with one of the
initially, it will remain Hermitian with f(t)=f(t)" indefi- quadrature components,
nitely. We will now consider a weak perturbation of an equi-
librium state, f— £+ \5f () (56)

f(t) =19 5f(1), (48 whereh=0.2 determines the smallness of the perturbation.
In particular, we will consider the modes labeled dyb, c,
and calculate the first-order response of the system. As usuandd in Fig. 8.
we want to assume that we can decompose a general pertur- The real-time response is shown by plotting the off-
bation into fundamental damped and/or oscillatory eigendiagonal matrix element,, of the single-particle density
modes of the system. Therefore, such a specific perturbatiofatrix in the box basis as shown in Figs. 9 and 10. In Fig.

can be parametrized as 11, we plot the change in the total energyE=E(f)
i etee(4) —E(f®%) as a function of time. In casesandb (Fig. 8), we
of(t)=e of, '+H.c, (49 see that the\E oscillates about zero and eventually goes to
() el rs sel®) zero. This is expected because such a perturbation tends to
of, '=ot,+i ot (50)  create coherences, resulting in an energy change by the
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30 T T -48.4 -48.43

-48.435

- 0O <
B -48.44

-48.445

-48.45

_48. -48.4
8.9 5 0 15 20 4% 5 10 15 20

t (h/so) t (h/so)

Re[h(o/21t]/£0

15 1]

-1 -0.5 0 0.5
Im[hay2n)/e,,

FIG. 10. The perturbation §f (bottom) is shown in a rotated
FIG. 8. Non-negative frequency eigenvalues scaled with respedtame such that®®is diagonal; the resulting damped beha\iimp)
to £ shown with crosses for the Hartree-Fock equation and squaresf the element,, of f in the box basis is due to the perturbation.
for the quantum-Boltzmann equation. The dotted lines correspondhe left and right figures correspond to the points maikaddd in
to difference energiese('™ —&]'")/&,. The modes labeled andb  Fig. 8, respectively.
show nonzero frequency and damping ratshows zero mode, and
d shows zero frequency; and nonzero damping rate will be consid-

ered for further discussion. VI. CONCLUSION

A non-Markovian version of the quantum kinetic theory is
amount of E.;, (coherence energythat would eventually derived using the prescription qf a nonequiliprium stati§tical
decay down to zero. Similar damped behavior is observe@Perator method as outlined in RB9]. This theory is
for cased. Such an oscillatory damped behavior of the totalSNOWn to conserve energy in thg—0 limit. Inclusion of
energy could be attributed to the Markov approximation induasiparticle damping and duration of collision effects re-
the collision integral32). On the other hand, perturbations sults in a description beyond the Born approximation with

B 2 . . .
of the kindc increase the total particle number by the amountSNergy conservation b order_even in the I\_/Iarkpv limit. TQ
5N:Tr{)\5f(s)} and hence result in a finite change in total obtain col!|3|on mtegrals that involve quasiparticle damping
energy © and duration of collision effects and conserves energy pre-

cisely, one will have to calculate th& matrix in the full

0.04 T T T
-48.3 -48.4 0.02
>

-48.42

f12

-48.44 -0.04

15 20

~
........

0 5 10 15 20
t{hve,)

FIG. 9. The perturbation 6f3 (bottom) is shown in a rotated FIG. 11. The change in the total energf=E(f) —E(f9) as
frame such that®®is diagonal; the resulting oscillatory and damped the system relaxes to its new equilibrium. In the top figure, the solid
behavior(top) of the elemenf ,, of f in the box basis is due to the and dashed lines correspond to caaesdb (Fig. 8), respectively.
perturbation. The left and right figures correspond to the pointsSimilarly in the bottom figure, the solid and dashed lines corre-
markeda andb in Fig. 8, respectively. spond to cases andd (Fig. 8), respectively.
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collision operator keeping terms of all orders in the interac-of this quantum Gaussian operator, it follows that
tion.

We applied the generalized second-order kinetic theory to O] =0ttty @ Octtn). Al
the nonhomogeneous dilute Bose gas confined in a spherical witgr ki)~ U (ble) ol Ultto)- (A1)
box to numerically study the full nonequilibrium evolution R
of the system towards equilibrium. The self-consistent distriin the aboveU represents the single-particle propagator of
bution f®9 thus obtained is very close to the Bose-EinsteinEq. (16) acting in many-particle Fock space aidis the
distribution as shown in Fig. 6. We also observe a significantorresponding single-particle Hilbert-space propagator of
Hartree-Fock self-energy shift that depends on the singleEq. (23). This condition implies that
particle distribution functionf. The form of the damping
function is important in determining the line shape. Particu- ﬂka(O)Tf{[F'(O),S’k]}: —[H©, 5] (A2)
larly, the function with a 1/cosh type of behavior is found to
be appropriate and gives improved energy conservation due ,
to smaller initial correlation effect. and was used to obtain EGL7).

The importance of such a real-time calculation is apparent
from the full real-time response calculation, where we have APPENDIX B: MATRIX ELEMENTS

calculated the damping rates and frequencies. These damping . )
rates correspond to a shorter time scale compared to the 1n€ matrix element of Eq41) can be evaluated easily by

equilibration time scale, which depend on rates in and out of*Panding the sine functions into the copropagating and
the various levels. counterpropagating complex exponents and by an additional

This simple model of a spherical trap can be easily exartial integration. This results in eight separate terms, i.e.,
tended to a more realistic situation of a harmonic trap. As in
Refs.[34,45,48, the condensed component can be easily in- . 4 (= ) dx
cluded by introducing a symmetry-broken mean fieq, d’”kl/aS:;L sin(ix)sin(jx)sin(kx)sin(lx) 2
=(a;), as one of the relevant observables and Hartree-Fock-
Bogoliubov quasiparticle excitations. Even though this ex- =F(i+j+k=D+F(i+j—k+1)+F(i—j+k+I)
tension of the kinetic theory discussed in this paper ma S -
seem simple, the actual calcyulations are complicgte% and i?]/— HR(i—-i—k=D=F(i+j-k=1)

volved due to the presence of anomalous fluctuations. Also —F(i—j+k=)—F(i—j—k+I)
the theory needs to be renormalized in order to ensure a o
gapless spectrum. Such a calculation will allow us to make —F(i+j+k+1), (BY)

experimentally verifiable predictions of damping rates of col-

lective excitations. One can also explore the possibility ofwhere

including a time-dependent potential or an external force

term to selectively excite one or more of the collective 1

modes. These calculations are feasible and will be dealt in F(n)=—[cognm)+nm Si(inm)], (B2
detall in a forthcoming papdiB8]. 2m?
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APPENDIX A: REFERENCE DISTRIBUTION
sin(nr) N 2 cognm)

nwr (m-r)Z

The reference distributiong?}) of Eq. (9) is parametrized F(n>0)~

o
— | =|nm|-
through its expectation values in E41). From the structure 272 2
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